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An efficient method of interpretation of the crystal field effect in nonmetallic f-electron systems, the en-
hanced angular overlap model �EAOM�, is presented. The method is established on the ground of perturbation
expansion of the effective Hamiltonian for localized electrons and first-principles calculations related to avail-
able experimental data. The series of actinide compounds AO2, oxychalcogenides AOX, and dichalcogenides
UX2 where X=S,Se,Te and A=U,Np serve as probes of the effectiveness of the proposed method. An idea is
to enhance the usual angular overlap model with ab initio calculations of those contributions to the crystal field
potential, which cannot be represented by the usual angular overlap model �AOM�. The enhancement leads to
an improved fitting and makes the approach intrinsically coherent. In addition, the ab initio calculations of the
main, AOM-consistent part of the crystal field potential allows one to fix the material-specific relations for the
EAOM parameters in the effective Hamiltonian. Consequently, the electronic structure interpretation based on
EAOM can be extended to systems of the lowest point symmetries or/and deficient experimental data. Several
examples illustrating the promising capabilities of EAOM are given.
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I. INTRODUCTION

The list of phenomena traditionally discussed in the con-
text of the crystal field �CF�, like optical excitations,
Schottky effect, Van Vleck susceptibility, etc., has been ex-
tended in recent decades to include such intriguing and dif-
ferent manifestations of many-body effects as unconven-
tional superconductivity, Kondo-like behavior, magnetic
rearrangements, and non-Fermi liquids. The complexity of
these phenomena contrasts with the apparent simplicity of
the one-electron, local CF potential in the effective Hamil-
tonian. Nevertheless, its reliable determination meets serious
difficulties even today, 75 years after Bethe considered the
CF effect for the first time.1 These concern not only calcula-
tions from first principles but also common phenomenologi-
cal schemes based exclusively on symmetry arguments. In
practice, only compounds of the highest symmetries can be
handled satisfactorily. In most cases, the usual least-squares
fitting of all the parameters in the effective Hamiltonian re-
quires additional, more or less heuristic reasoning referring
to physical or chemical foundations. Alternatively, simplified
phenomenological models are employed to circumvent the
problem of overnumerous parameters. The accuracy of these
models is one of the issues the present discussion addresses.
We focus on the angular overlap model �AOM� inspired by
the molecular orbital theory2,3 and confirmed by further the-
oretical calculations.4,5 The AOM assumes, as in the super-
position model �SPM�,6 a total CF potential in the form of a
superposition of axial potentials due to ligands represented
by a set of intrinsic parameters. The approximations are
rather crude but the number of free parameters is remarkably
reduced in comparison with basal parametrization, especially
for low-symmetry systems. A more refined analysis of the
experimental data, having fundamental meaning for subtle
magnetic properties or cooperative phenomena at low tem-
peratures, may require methods that are more rigorous. Can
these simplified CF models be improved without increasing
the number of free parameters? This question is discussed

here on the grounds of ab initio calculations for a series of
actinide compounds.

There are two general ways to determine the CF potential
from first principles: one based on the perturbation theory
and the idea of the effective Hamiltonian for localized, open-
shell electrons4 and a second developed on the grounds of
the density functional theory �DFT�.7,8 Taking into account
proximity of the band states or/and widening of the localized
nf states, DFT seems to be a more suitable method for me-
tallic systems. However, the early implementations of DFT
based on the local spin density approximation �LSDA� failed
to predict not only the subtle magnetic, low-temperature
thermodynamic properties and the low-energy spectra but
even some of the main characteristics of the crystals. For
instance, the antiferromagnetic semiconductor UO2 becomes
a ferromagnetic metal.9 Over the years some inherent short-
comings of the LSDA, like double counting of states or the
requirement for the electron density to be a slowly varying
function, were lessened or removed by various corrections:
the generalized gradient approximation, U approximation,
self-interaction correction, or, more recently, the hybrid den-
sity functional theory.9 Nevertheless, these improvements, to
our best knowledge, have not eliminated completely the
problems related to the CF effect �see the discussion in Ref.
10, p. 206�.

An alternative approach,10,11 based on the perturbation ex-
pansion of the effective Hamiltonian, seems to be more effi-
cient and reliable in providing material-specific details of the
electronic structure. The model was developed for nonmetal-
lic systems successively by Sugano and Schulman,12 New-
man and co-workers,6,13 Faucher and Garcia,14 and others
�see Refs. 10 and 13, and references therein�. The effective
CF potential appears in this approach as a sum of several
contributions, most of which obey the assumptions of the
mentioned simplified phenomenological models.

In metallic systems, additional mechanisms, apart from
those characteristic for insulating crystals, have to be
considered:10 mixing of the localized and band states �hy-
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bridization� and static and dynamic screening of the conduc-
tion electrons including offset screening of the carriers occu-
pying a virtual bond state. None of them can be regarded as
a pure superposition of the nearest-neighbor contributions.
Moreover, the role of each mechanism remains unclear; for
instance, the hybridization term alone can represent almost
the whole CF effect for some compounds,15 but for others it
is only one of the important contributions.16 In addition, the
dynamic correlations become increasingly important as the
localized state nears the conduction band, giving rise to
many-electron crystal field effects or even leading to a break-
down of the effective Hamiltonian theory for localized elec-
trons. Thus, an extension of the crystal field theory toward
self-consistent models for mixed systems of localized and
itinerant electrons attracts growing attention recently.17 How-
ever, material-specific results based on these efforts have not
been achieved yet and we have to confine our discussion to
simpler systems in which an admixture of the band states to
the localized ones or a mixing of the states localized on
adjacent atoms can be treated as an additional perturbation
term in our effective Hamiltonian. We only note that there
exists a subgroup of metallic systems for which the basic CF
mechanisms remain essentially the same as those for ionic
crystals.18

The accuracy of the simplified models has been discussed
on the grounds of numerical simulations for actinide
compounds.5 It has turned out that the lattice contributions
were not always negligible and the e� contribution �see Sec.
II B� has not behaved as a characteristic, intrinsic parameter
of the metal-ligand �M-L� interaction. Moreover, the present
paper shows that the main AOM energies e� and e� may also
fail a more rigorous test of their transferability. Thus we
propose a quasiphenomenological approach that links the
simplified phenomenological model with partial ab initio cal-
culations: the enhanced angular overlap model �EAOM�.

The paper is organized as follows. The perturbation ex-
pansion leading to the effective Hamiltonian and the angular
overlap model is outlined in Sec. II. Details of the ab initio
calculations and results obtained for UX2 �X=S,Se,Te� and
those reported previously for AO2 �Ref. 16� and AOX �Refs.
19 and 20� are discussed in Sec. III, including their reliabil-
ity, adequacy of the superposition approximation, and varia-
tion of the intrinsic parameters with distance across the se-
ries. The enhanced angular overlap model is considered in
Sec. IV together with examples of its application. Conclud-
ing remarks are provided in Sec. V. To ensure self-
consistency of the presentation some known formulas used
in the calculations are included in Appendixes.

II. FORMULATION

A. Effective Hamiltonian

Since the theoretical model applied here has been pre-
sented elsewhere �see Ref. 10 and references therein�, we
only recapitulate its main points for clarity of further discus-
sion. The basic assumption of the model is that all magnetic
electrons in a crystal occupy stationary orbitals, 5f in the
case of the actinide ions discussed here. The initial infinite
many-electron problem is reduced then to a single cluster

consisting of a metal ion and nearest neighbors—the ligands.
The outside of the cluster is represented by the classic elec-
trostatic potential. The cluster itself is treated as a system of
weakly interacting groups of electrons localized on different
ions. This allows one to apply the group product function
formalism and reduce the initial N-electron system to several
subsystems of lower dimensions.4,10,21 The zero-order group
product wave functions are built up from the free-ion spin
orbitals obtained with the standard self-consistent Dirac-
Slater procedure and stabilization potential wall for anions,
the depth of which is determined by the Madelung energy.22

The function basis is restricted to the ground and the most
important inter- and intraion excited electronic configura-
tions. Projection of the initial function space onto the ground
configuration subspace, contraction of the closed-shell states,
and renormalization due to the nonorthogonality of the wave
functions centered on different ions are the main steps in this
approach. They lead to an effective Hamiltonian defined in
the restricted wave-function space spanned by the single-
5fn-configuration states. The effective Hamiltonian contains
several renormalization terms which can be regarded as a
perturbation to the initial Hamiltonian. The theory may be
easily verified by the experimental data because the same
function basis is employed in the conventional phenomeno-
logical description of the electronic structure �see Appendix
A�. The nonspherical part of the effective Hamiltonian de-
fines the effective CF potential V�r� “seen” by a 5f electron.
Since all the wave functions in our restricted function basis
have the same radial part �1/r�P�r�, the Hamiltonian and all
relevant operators can be contracted to the angular coordi-

nates. The resulting operator of the CF potential V̂�r /r� is
commonly written in the form of an expansion in terms of

the normalized spherical harmonics Ĉq
�k�,23

V̂�r/r� = �
k,q

BkqĈq
�k��r/r� , �1�

where k=2,4,6 denotes the rank of the spherical harmonic
and q=−k ,−k+1,… ,k runs over its components. Bkq are the
integrals19

Bkq =� �1

r
Pnf�r��2

V�r�Ĉq
�k�*�r/r�dr , �2�

playing the role of adjustable CF parameters in the phenom-
enological theory.

B. Angular overlap model

The angular overlap model is a simplified phenomeno-
logical approach based on certain restrictive assumptions, in-
spired by the Hückel molecular orbital model.2,3 From
among various formulations appearing in the literature we
chose one proposed by Schäffer24 which does not refer to the
molecular orbital scheme. This formulation is consistent with
the perturbation approach outlined above and the Newman
superposition model6 discussed later. According to it, the CF
potential V is a superposition of independent contributions—
the potentials vt generated by the nearest-neighbor ligands:
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V�r� � �
t

vt�r − Rt� , �3�

where Rt denotes the position of the tth ligand. Additionally,
as an approximation, the local symmetry of the separated
metal-ligand system is assumed to be axial.

The AOM parameter e�
t of the given ligand t is defined as

a matrix element of the ligand potential vt in the coordinate
system t with the z axis along the metal-ligand t-linear liga-
tor in which vt is diagonal:

e�
t � e�

t �Rt� = 	±�
vt
 ± ��t, �4�

where the index �=0��� ,1��� ,2��� ,3���denotes the absolute
value of the magnetic quantum number of the 5f electron. It
is convenient to fix the energy scale by setting e�=0. In
practice we put ẽ��e�−e� instead of e�. Since only ẽ�’s are
used hereafter, we omit the tilde for convenience. Transfor-
mation properties under the rotation group R3 of the l=3
wave functions allow one to express the matrix elements of
V in the global coordinate system in terms of e�

t ’s:

	m
V
m�� = �
t

�
�

D�m
�3�*�0,�t,�t�D�m�,

�3� �0,�t,�t�e�
t , �5�

where D�m
�3� �0,�t ,�t� is the matrix element of the irreducible

representation D�3� of the rotation group and Rt ,�t ,�t are
the angular �global� coordinates of the ligand t. Equation �5�
is the fundamental equation of the AOM. It relates the matrix
elements of the CF potential to the intrinsic parameters de-
scribing the individual metal-ligand pairs through rotation
matrices dependent on the geometry of the coordination
polyhedron.

For practical purposes it is advisable to relate the AOM
parameters to the basic CF parameters Bkq. Comparing the
right side of Eq. �5� with the matrix elements of the potential
given by the expansion �1� and using the properties of tensor
operators and the rotation matrices25,26 we obtain after some
manipulation the following relation:

Bkq = �
�

Wkq
� e� �6�

where

Wkq
� =

2k + 1

7
��3 k 3

0 0 0
�−1

�− 1���2 − ��0�

� � 3 k 3

− � 0 �
��

t

Cq
�k�*��t,�t�s�

t , �7�

s�
t =

e�
t

e�

, �8�

and �:::� are the 3j symbols. The e� parameters are the mean
values of the AOM parameters averaged over t. Their intro-
duction into Eq. �6� is one of the possible solutions of the
problem of several sets of intrinsic parameters in the case of
nonequivalent ligands. Note that if Wkq

� and s�
t given by Eqs.

�7� and �8� are inserted into Eq. �6�, then the averaged e�’s
cancel out. Moreover, the ratios s�

t can be treated as param-
eters of the model instead of e�

t ’s. From the algebraic point

of view, this is only a scaling of the parameters without loss
of generality. In practice, it is possible to estimate the ratios
independently �this question is discussed later� and to con-
sider the averaged quantities e� to be adjustable parameters.
The Wkq

� coefficients absorb all information about the geom-
etry of the coordination polyhedron whereas the ratios s�

t

encode differences in the AOM parameters due to the indi-
vidual M-Lt distances. The distance dependence of s�

t has
exponential character,5 yet, within a limited range of dis-
tances, it is fairly well approximated by the simple power
function

s�
t = � R

Rt
�	�

�9�

with the power exponents 	� taking values in the range 4.3
to 8.9 in the case of actinide ions and simple ligands.5,10,19

An extension of the above equations to arbitrary number
of different anions is straightforward. Note that the partition-
ing �3� neglects the contribution from the outside of the co-
ordination cluster. This contribution and also other effects,
which cannot be represented in the form of the decomposi-
tion �3�, are included explicitly in the enhanced model pre-
sented below.

The AOM reduces the number of adjustable parameters
describing the CF effect to 3. The strength of the model
stems from the fact that the local interion interaction param-
eters e� may be regarded as quantities characteristic for a
given metal-ligand �M-Lt� pair. They allow one to verify
unphysical solutions generated by false minima of the fitting
procedures in the standard parametric analysis on the one
hand and to indicate the ensuing approximations in the case
of especially complex systems on the other. Due to the domi-
nant character of the renormalization terms �see Sec. II C and
Eq. �14��, the AOM parameters e� and e� manifest several
characteristic properties:4,5,10,13,19,27 �i� their values reflect the
spectrochemical ordering of the anions; and �ii� decrease
slightly with increasing atomic number along the lanthanide
and actinide series and, independently, with decreasing oxi-
dation number of the metal ion; �iii� e�
e�
 
e�
; �iv�
e�

t /e�
t��const for two different M-Lt and M-Lt� systems �t

� t��; �v� e�
t /e�

t �const for a given M-Lt pair; �vi� the e�

parameter, usually of minor importance, has been shown to
be “lattice sensitive”5 if obtained from the fitting of the ex-
perimental data. For this reason, transferability of e� between
various compounds seems to be questionable in the conven-
tional AOM.

Even though exceptions from the above rules happen �see
the next section�, they may serve as an instructive test of any
set of CF parameters determined from the experimental data.
This concerns not only the fitting results obtained with other
approximate models but also the basic Bkq parameters, which
can be “translated” to e� using Eq. �6� and a standard least-
squares procedure.

As mentioned, one of the most widely applied approxi-
mate methods, the Newman superposition model,6,13 is based
on the same assumptions as the AOM. However, the role of
intrinsic parameters is played by the Bkq parameters for a
separated linear ligator in a local coordinate system. Due to
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the assumed cylindrical symmetry of each M-L subsystem,
only the parameters with q=0 are effective. They are denoted
hereafter as “bk” to distinguish them from the Bk0 parameters
in the global coordinate system. The relation between the
two sets of intrinsic parameters, for the AOM and SPM, can
be easily obtained from Eqs. �6�–�8� by rewriting them for
the specific case of the separated linear ligator:

bk =
2k + 1

7
��3 k 3

0 0 0
�−1

�
�=0

3

�− 1���2 − ��0�

�� 3 k 3

− � 0 �
�e�. �10�

The algebraic equivalence of the two sets of intrinsic param-
eters evidenced by the above relation allows one to extend
the literature data for their values, independently of the way
in which they have been obtained.

C. Contributions to the CF potential

The procedure outlined in Sec. II A leads to several char-
acteristic contributions to the CF potential V, corresponding
to different mechanisms. Their discussion in next sections
precedes a formulation of the enhanced angular overlap
model. Thus, it is advisable to separate out those that obey
the assumptions of the angular overlap model �the AOM-
consistent contributions�, VAOM, and the residuum Vres:

V = VAOM + Vres. �11�

In VAOM one can further distinguish the primary �Vpr� and
renormalization �Vren� components:

VAOM = Vpr + Vren. �12�

Vpr represents the Coulomb interaction �direct and exchange�
of the ligand electrons, and the potential of the nuclei. It
diverges from the point-charge model1 �pcm� due to the
charge penetration28 �cp� and interionic exchange29 �ex� ef-
fects included in Vpr:

Vpr = Vpcm + Vcp + Vex + Vprsh. �13�

The intraionic excitations on the metal ion induced by the
primary contribution lead to the AOM-consistent part of the
shielding potential Vprsh.

Vren comprises the main renormalization terms implied by
the ligand-metal charge transfer excitations—the covalency
contribution Vco,6 and nonorthogonality of the free-ion wave
functions localized on adjacent ions: the overlap contribution
Vov,6 and the contact shielding, Vcs,11

Vren = Vov + Vcs + Vco. �14�

Vres includes all the remaining terms. One can distinguish
Vnnpol, the contribution of electric multipoles induced on
ligands �polarization of nearest neighbors�, Vfn, the electro-
static potential of the point charges and electric multipoles
induced on the all the ions outside the cluster �electrostatic
potential of further neighbors�, and Vressh which symbolizes
the shielding correction to these electrostatic potentials:

Vres = Vnnpol + Vfn + Vressh. �15�

Due to the cancellation of various terms in the primary
and residual contributions, Vren or Vov in essence turns out to
be the most important mechanism for the ionic compounds in
favor of the AOM.5,6,10,13,27 This corollary is supported also
by the results presented in the next section.

Explicit formulas for all the above contributions are given
in Appendix B.

III. AB INITIO CALCULATIONS

A. Details of the calculations

The compounds under consideration represent a variety of
crystal structures. The point symmetry of the metal ion varies
from cubic in UO2 �CaF2 structure, space group Fm3m, 225�,
through D2d in UOX �PbFCl-type structure, P4/nmm, 129�,30

C2v in UTe2 �orthorhombic space group Immm, 71�,31 up to
Cs in �-US2 and �-USe2 �PbCl2-type structure, Pnma, 62�.32

Zero-order free-ion wave functions have been generated
using the self-consistent Dirac-Slater procedure ATOM,33,34

with the stabilizing potential well determined by the Made-
lung energy.22 The calculations have been performed in the
crystallographic coordinate system. The lattice sums of static
and induced multipoles generated by the set of the crystal
electrostatic equilibrium equations �B13� in Appendix B
have been calculated according to Eq. �B12� using a modi-
fied version of the program CHLOE,14,35 and multipole polar-
izabilities from Ref. 36. The summation in the multipole ex-
pansion �B12� was limited to monopoles, dipoles, and
quadrupoles �n=0,1,2� in the present calculations. The effect
of the outer electrons occupying the 6s and 6p closed shells
of the metal ion has been estimated via Sternheimer’s shield-
ing factors �k scaling the corresponding Bkq’s.37,38 The
charge penetration, exchange, and renormalization terms
have been calculated using the program LF developed for the
f-electron compounds.39

The free-ion part of the effective Hamiltonian contains the
intraionic Coulomb repulsion of the 5f electrons of the U4+

ion, controlled by the Slater integrals Fk, k=2,4,6, spin-orbit
coupling with the �5f parameter and further corrections of
higher order �see Appendix A�. The “free-ion” parameters
depend on the crystal, in which the metal ion is embedded,
and may vary in certain range, modifying the interterm
spacing.40 Fortunately, these differences are limited and they
have rather negligible impact on the splitting of the ground
multiplet. Thus, we adopt the values obtained earlier from
the fitting of the optical spectra for U4+ in ThGeO4 �in
meV�:41 F2=5339, F4=4833, F6=3018, 	=3.72, �=−81.8,
=148.8, M0=0.124, M2=0.069, M4=0.047, P2=62.0, P4

=31.0, P6=6.2, and �5f =224.2. The calculations of the ei-
genvalues and eigenvectors and/or fitting of the measured
energies of electronic transitions have been performed with a
set of f-shell empirical computer programs developed by
Reid,42 supplemented with a subprogram39 POD for calcula-
tion of some thermodynamic quantities.

B. Reliability of the results

This type of ab initio calculation was performed previ-
ously for, among others, UO2 and UOS,19,20,43 compounds
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for which comprehensive experimental data are available,
including optical and/or inelastic neutron scattering �INS�
spectra.43–45 The discrepancy of the obtained theoretical Bkq
parameters and the phenomenological values determined by
a fitting to the experimental data did not exceed 20–30 %.
Now the calculations are extended to the UX2 subseries. For
these compounds the published experimental results are not
so rich.32,46,47 We can reproduce certain thermodynamic av-
erages, e.g., the paramagnetic Van Vleck susceptibility �see
Appendix C� depicted in Fig. 1. The corresponding energy
levels are shown in Fig. 2 and they are discussed later. The
experimental slope, shape, and variation of the temperature-
independent susceptibility at the lowest temperatures along
the series agree quite well with the results of the ab initio
calculations. A discrepancy between the theoretical and ex-

perimental lines visible for USe2 and UTe2 can be attributed
to the interionic exchange not included in the model calcu-
lations. Judging from the mutual shifts of the lines, the inter-
action has to be of ferromagnetic type for USe2 and greater
in the absolute value than the antiferromagnetic type ob-
served for UTe2. The first excited level lying at 8.0, 1.6, and
2.5 meV for the U4+ ion in US2, USe2, and UTe2, respec-
tively �see Fig. 2� influences the magnetic properties of these
systems with a singlet ground state. Above 20 K, UTe2 and
especially USe2 behave as if they had a degenerate ground
state. The relatively weak U-U exchange interaction in USe2
�U-U distance32 of 0.423 nm� turns out to be sufficient to
induce long-range ferromagnetic order below 14 K.46 Note
that the first excited state has the lowest energy just for this
compound. USe2 is the only dichalcogenide that orders
magnetically.32 The lack of ordering in UTe2 with the short-
est U-U distance 0.378 nm may be due to the fact that only
one of seven neighboring uranium ions is placed at that dis-
tance, whereas four are placed at 0.490 nm and two at 0.416
nm. A different curvature of the theoretical and experimental
reciprocal susceptibilities observed for USe2 below 60 K
may be ascribed to the magnetic fluctuations increasing with
temperature approaching the critical point, which were not
taken into account in the model calculations. The effective
magnetic moments, of 2.94�B, 3.01�B, and 3.09�B, are
lower than those derived from the experimental curves,
3.25�B, 3.20�B, and 3.21�B, reported for US2,USe2,46 and
UTe2,47 respectively.

Figure 2 shows the splitting of the ground term 3H4 of the
U4+�5f2� ion in the UX2 series, obtained by simultaneous
diagonalization of the Hamiltonian �A1�,�A2�, with the CF
parameters determined from first principles shown in Table I
and the free-ion parameters listed above.These results have
been employed in calculations of the temperature dependen-
cies of the magnetic susceptibilities discussed above. The Bkq
parameters in Table I reveal no regularity along the series
which might be expected, for instance, from the spectro-
chemical ordering of ligands. This observation seems not to
be only a consequence of the inherent ambiguity of the CF
parametrization �CFP� in low-symmetry systems48 since it
would be difficult to find any trend also in the energy levels

FIG. 1. Reciprocal magnetic susceptibilities of powdered dichalcogenides as a function of the temperature: comparison of the experi-
mental �open circles� �Refs. 32, 46, and 47� and theoretical �continuous lines� curves obtained using the Van Vleck formula �C1�.

FIG. 2. Splitting of the uranium �4+ � ground term 3H4 in UX2

crystals obtained by simultaneous diagonalization of Hamiltonian
�A1�,�A2� with the CF parameters determined from first principles.
The lower part of the diagram uses a scale enlarged several times as
compared with that for the upper part.
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shown in Fig. 2. Analogous behavior of the AOX series has
been ascribed to the influence of the competing oxygen and
chalcogenide groups in the Wkq

� coefficients �7�.19,20 Now it
becomes evident that also in the case of one type of anion the
coordination geometry may obscure the expected regularities
so clearly manifested, on the other hand, by the intrinsic
AOM parameters �cf. Table II�. As we see in the next section,
possible trends in CFP sets revealed elsewhere using an in-
dependent method based on certain conserved quantities as-
sociated with CF parameters49 may be governed by the
AOM-consistent part of the crystal field.

C. AOM-consistent part of crystal field

The results displayed in Table I are indicative of the es-
sential meaning of the AOM-consistent contributions. Nev-
ertheless, they also show that the residual contribution may
become crucial for some parameters as in the case of B44 for
US2 or B22 for UTe2. More detailed data, which are pre-
sented in Table I for USe2, give some idea about the role of
the particular CF mechanisms. Mutual compensation of the
various primary components and the importance of the renor-
malization terms is clearly manifested there.

Handling each nonequivalent M-L pair independently in
compounds like US2 �with six different M-Lt distances and
two nonequivalent crystallographic positions of the sulfur
ion� would multiply the number of intrinsic parameters, mak-
ing the model practically intractable. Usually, the depen-
dence of the intrinsic parameters e� �or their renormalized
counterparts s� �8�� on the M-L distance R is assumed to
have a definite character.13,19 In a limited range of distances
around an average value for a given M-L bond, it is approxi-
mated by the power function �9�. The power exponents 	�

are treated then as an additional characteristic of the M-L

bond that allows one to maintain the minimal number of
independent parameters.

The simulations of the e��R� functions have been per-
formed for all the uranium linear ligators occurring in the
series U4+-X2−. As Eqs. �B4�–�B10� in Appendix B show, the
functions are determined by squares of metal-ligand overlap
integrals and Madelung energies of the ions in crystals. To
ensure comparability of the results obtained for different ML
pairs, a virtual ML2 crystal of the CaF2 structure has been
employed, where ligands form a cube with its center occu-
pied by the metal ion. The Madelung potential at the L and
M sites in this structure is given by the formulas UL

=−8.14e /a and UM =15.13e /a, respectively, whereas the lat-
tice constant a is related to the M-L distance R by the ex-
pression R=�3a /4. The intrinsic parameters depend on UL

and UM in a nontrivial way through the zero-order wave
functions and explicitly due to the renormalization terms
�B4� and �B6�. This implies the use of different free-ion
wave functions for each R. The calculations have been per-
formed for seven values of R distributed uniformly between
0.18 and 0.40 nm. The radius D of the stabilizing potential
well for the negative ions of the UL depth has been assumed
to be equal to −2e /UL.

The results are shown in Fig. 3. Due to the predominating
renormalization terms �cf. Fig. 4�, the e��R� functions have
an exponential character for M-L distances around the aver-
age values. For larger distances, where the electrostatic con-
tributions dominate, they take the form of a polynomial. The
slope of e��R� decreases in the limit of short distances, more
visibly on going from the oxide to the telluride. The function
e��R� reaches a maximum for the U4+-Te2− bond. Figure 4
indicates that the importance of the charge penetration rap-
idly increases as compared with that for other mechanisms.
Since this contribution has opposite sign for e� and e�, the

TABLE I. AOM-consistent �12� and residual �15� contributions to the CF parameters calculated from first principles for the UX2 series
in the crystallographic coordinate systems �Ref. 50�. The primary contribution Vpr �13�, renormalization term Vren �14�, ligand polarization
Vnn pol �B12�, and potential of the further neighbors Vfn are specified for USe2 in parentheses. All values in meV.

US2 USe2 UTe2

VAOM Vres V VAOM �=Vren+Vpr� Vres �=Vnn pol+Vfn� V VAOM Vres V

B20 65 −17 48 84 �73+11� −10 �−24+14� 74 38 13 51

B21 −203 −3 −206 −200 �−194−5� −6 �−1−5� −206

B22 −79 −6 −85 −24 �−26+3� −3 �−9+6� −26 28 42 70

B40 −88 2 −86 −71 �−52−19� 4 �4−0� −67 −436 −184 −619

B41 82 6 88 39 �32+7� −5 �0−5� 34

B42 −274 −8 −282 −264 �−297+33� −16 �6−22� −280 364 79 442

B43 257 45 301 186 �236−49� 26 �25+1� 212

B44 −60 −51 −111 −64 �−62−2� −48 �−21−27� −112 74 −26 48

B60 174 −2 172 78 �80−3� 1 �2−1� 78 87 4 91

B61 −233 −1 −233 −230 �−311+82� −1 �−1+0� −231

B62 394 5 398 340 �441−101� 3 �−5+9� 344 11 −6 6

B63 171 −1 170 203 �248−45� −1 �−1−0� 202

B64 37 18 55 34 �59−26� 9 �8+1� 43 −122 26 −96

B65 −369 −10 −379 −320 �−383+63� −4 �−4−0� −324

B66 243 9 252 212 �262−50� 6 �2+4� 219 −151 0 −151
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ratio e� /e� increases in the limit of small distances.
A similar behavior, although not so evident, can be de-

duced from the data presented in Table II of Ref. 51 for
Pr3+-Cl−, if the Coulomb contributions are scaled using the
Sternheimer shielding factors and the SPM parameters are
converted into the AOM ones by Eq. �10�. An open question
is whether the observed increase of the e� /e� ratio at the
lowest distances characteristic for dense systems is a true
property of metals. We only note that analogous distance
dependencies of the AOM parameters for the Sm2+-Cl− and
Sm2+-F− systems derived from the data reported in Ref. 52
did not confirm this conjecture.

The model calculations taking into account the variation
of Madelung energy with the M-L distance lead to lower
values of the power exponents 	� as compared with earlier
estimations.19 The AOM parameters determined for the ac-
tual crystals AOX and AX2 are listed in Table II and shown in
Fig. 3. Each M-L distance occurring in these compounds is
represented in Fig. 3 by three points corresponding to the
e� , e�, and e� parameters. We see that they do not follow the
smooth curves discussed above. Moreover, the crucial e� pa-
rameter turns out to be simultaneously the most irregular
one. This is because it is especially sensitive to the variation
of the Madelung potential. In light of the present calcula-
tions, the properties �i�–�v� of the AOM parameters specified
in Sec. II B should be treated very carefully, not only be-
cause of the very existence of the residual contributions but
also because of the just revealed inherent irregularity of the
AOM-consistent contributions.

IV. ENHANCED ANGULAR OVERLAP MODEL

A. Formulation

In view of the apparent irregularity of the AOM param-
eters and the erratic behavior of the residual contribution
�15� discussed in the preceding section and manifested in
Fig. 3 and Table I, we propose to link the phenomenological
AOM approach with the ab initio calculations in the en-
hanced angular overlap model. Our model assumes each or-
dinary CF parameter to be composed of two components: the
main, adjustable one, parametrized according to Eqs. �6�–�8�
and the fixed residuum Bkq

res corresponding to the potential
�15�, determined from Eq. �B12�:

Bkq = �
�

Wkq
� e� + Bkq

res �16�

with e� playing the role of the phenomenological EAOM
parameters. The separation of the residual, off-AOM contri-
bution from the global CF parameters allows one to establish
a more precise and consistent AOM parametrization of the
remainder. Consequently, the intrinsic character of the corre-
sponding EAOM parameters is genuinely maintained.
EAOM is not much more complicated than the parental
AOM but the main inherent shortcoming of the latter is re-
moved by excluding explicitly the off-AOM contributions
from the simplified phenomenological treatment. These off-
AOM contributions are estimated in our model from first
principles. Note that its very construction makes the model

TABLE II. Results of ab initio calculations of the AOM parameters �in meV� corresponding to the
AOM-consistent part of the CF potential for various A4+-X2− systems and the average interion distances Rav.

Rav �nm� e� e� e�

U4+-O2− in

UO2 0.237 350 209 64

UOSa 0.234 340 211 63

UOSea 0.236 324 196 55

UOTea 0.237 316 186 46

U4+-S2− in

UOS 0.293 211 96 32

US2 0.289 265 102 36

U4+-Se2− in

UOSe 0.304 204 91 31

USe2 0.301 240 88 30

U4+-Te2− in

UOTe 0.325 185 90 31

UTe2 0.317 190 88 29

Np4+-O2− in

NpO2 0.235 317 186 56

NpOS 0.233 304 181 53

NpOSe 0.235 291 169 47

Np4+-S2− in

NpOS 0.291 191 87 30

Np4+-Se2− in

NpOSe 0.302 183 82 29

aFrom Ref. 19.
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exact �at least in the framework of the one-electron approxi-
mation� provided the off-AOM contributions are determined
precisely, which, of course, is hardly possible.

The AOM-consistent contributions listed in Table II can
be regarded as a crude theoretical estimation of the EAOM
parameters. Their more accurate determination requires an
involved self-consistent approach to account for the energy-

dependent parameter-renormalization terms.4 Thus, treating
this part of the CF potential as a phenomenological quantity
allows one to handle these self-energy effects in the simplest
possible way.

Naturally, the EAOM parameters obtained from the fitting
of the observed electronic energy levels cannot have the
same values as the AOM parameters derrived from the analo-

FIG. 3. Dependence of the interion effective
interaction parameters of the angular overlap
model on the metal-ligand distance for the
U4+-X2− pairs in a hypothetical crystal of CaF2

structure. The circles, squares, and triangles rep-
resent actual intrinsic parameters e� , e�, and e�

obtained for UX2.

FIG. 4. Distance dependence of the main contributions to the e� parameters: point charges �pcm�, overlap �ov�, covalency �co�, charge
penetration �cp�, exchange �ex�, and contact shielding �cs�.
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gous fitting within the conventional AOM approach. More-
over, the rules �i�–�v� observed for the usual AOM param-
eters �see Sec. II B� seem more justifiable in the case of the
theoretical, AOM-consistent contributions and thus, also for
the EAOM parameters. Nevertheless, in light of the calcula-
tions presented in Sec. III C, still they remain acceptable in a
rather limited range of the M-L distances, in the vicinity of
their averaged values.

Compounds containing several groups of symmetry-
equivalent ligands require the s�

t ratios in the geometrical
coefficients Wkq

� �7� to be determined. The observed above
�see Sec. III C and Fig. 3� irregularity of the EAOM param-
eters due to, among others, the Madelung energy, can be
reproduced by employing the ab initio values of these ratios.
Thus, it is advisable to calculate the s�

t ’s for each individual
M-Lt pair rather than applying the approximation �9�.

The same theoretical calculations may also be employed
to formulate further, more restrictive parametrizations, which
may be helpful in the case of the most complicated experi-
mental data. For instance, fixing both the ratios

s�� = e�/e�, � = �,� �17�

equal to their theoretical values leads to a single-parameter
version of the model:

Bkq = Bkq
res + W̃kqẽ �18�

with

W̃kq =
2k + 1

7
��3 k 3

0 0 0
�−1

�
�

�− 1���2 − ��0�

� � 3 k 3

− � 0 �
��

t

Cq
�k�*��t,�t�s�

t s��. �19�

The ẽ parameter in Eq. �18� corresponds directly to e� but
also the e� and e� contributions enter into the model through

the s�� ratios in the above W̃kq coefficients. Hence, a varia-
tion of ẽ modifies also the e� and e� contributions to the
crystal field in proportions given by s��. Note that Eq. �18�
without the residual part would be a simple scaling of the
crystal field effect predicted by the AOM-consistent part of
the ab initio calculations.

An intermediate, two-parameter version of the model can
be defined in several ways by fixing any of the s�� ratios or
their combinations. These single- and two-parameter ver-
sions should not be confused with models commonly em-
ployed for the transition elements4,13 which omit simply the
� and � contributions or only the � contribution.

Generalization of the model and Eqs. �16�–�19� to sys-
tems containing different ligands is straightforward �see the
example given below�.

B. Applications

Due to the highly reduced number of free parameters �up
to the single-parameter version, Eq. �18��, the simplified
EAOM parametrizations of the CF effect may be especially
helpful in all those cases of incomplete or more complicated
experimental data so frequently met in the most interesting

f-electron systems. Three possible types of applications of
EAOM are exemplified in what follows.

The first one, already discussed in Ref. 20, concerns in-
terpretation of certain magnetic properties of NpOX where
X=O, S, and Se. The procedure might be seen as a general
method of interpretation of the electronic properties based on
transferability of the intrinsic parameters between different
compounds. The interpretation follows the phenomenologi-
cal CF parameters for the specimens assumed to be known,
i.e., the compounds, the electronic structure of which is be-
lieved to be reliably determined. In the example under con-
sideration, the parameters �Bkq�U reported for UO2,UOX, the
ones of the most widely investigated uranium compounds,
were employed.19,43 The corresponding AOM parameters
e�

UO and e�
UX were determined from the system of equations

�16� and its version adapted to two different ligands, oxygen
and chalcogenide,

Bkq = Bkq
res + �

�

�Wkq
�,Oe�

O + Wkq
�,Xe�

X� , �20�

exploiting the ab initio values of the s�
t ratios. In the second

phase, the procedure was reversed to estimate unknown
CFP’s for the less explored experimentally neptunium oxy-
chalcogenides. First, the e�

NpO and e�
NpX parameters were de-

rived by scaling their uranium counterparts in terms of the
ratios of the corresponding theoretical values: �e�

NpX /e�
UX�calc.

The Bkq
Np parameters obtained, again, from Eqs. �16� and �20�

were, in the final step, adjusted to match the experimental
values of the ordered magnetic moments. In this phase, a
simultaneous diagonalization included, apart from the CF
Hamiltonian and the free-ion interactions, the intermetallic
exchange interaction in the zero-temperature mean-field ap-
proximation. The magnetic properties of the neptunium oxy-
chalcogenides, including the anisotropic ground-state mag-
netic moment, the temperature dependencies of the
paramagnetic susceptibility and the magnetization at 0 K,
were described satisfactorily in the outlined approach �see
Ref. 20 for further details�. The example illustrates the effi-
ciency of the method based on the EAOM in prediction of
the electronic structure in the case of inconclusive experi-
mental data. The intrinsic parameters collected in Table II
may serve as a tentative source of the relations between them
in further applications of the EAOM approach.

The second example concerns interpretation of the ther-
modynamic and magnetic properties53,54 and inelastic neu-
tron scattering spectra of UOS.45,55 In the analysis of the
experimental data,19 the initial energy level assignment was
deduced on the grounds of first-principles calculations. The
fitting of the INS data45,55 was performed in two steps. First,
the AOM was applied to obtain the identified INS transition
energies. Subsequent refinement of the corresponding usual
CF parameters yielded agreement with the remaining experi-
mental data.45,53,54 Special attention was paid to the ordered
magnetic moment �ord and relative intensities of the INS
transitions. However, the problem with the infinite number of
acceptable solutions could not be resolved; namely, the ex-
perimental data for this tetragonal C4v system could be sat-
isfactory reproduced with any value of the B20 in the range of
−50 to −223 meV, provided the remaining parameters
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B40, B44, B60, and B64 were simultaneously adjusted to the
given B20. Some features of the electronic structure were
varying with the CF parameters in this ambiguity range but
they were not detectable in �ord and in the position and shape
of the most intense INS lines below 100 meV. In addition, it
was demonstrated19 that the INS excitations to two of the
highest levels of the 3H4 term, �2 and �1�2�, could be invis-
ible if B20 had decreased below −146 meV under actual in-
cident neutron energy and angle, just as it was observed.
Eventually, the set of Bkq parameters corresponding to the
threshold value of B20=−146 meV was accepted as the clos-
est one to the initial estimation.

The above ambiguity disappears if the EAOM is applied
with its inherent constrains. To start with, the single-
parameter version of the EAOM, Eq. �16�, is adapted to ac-
count for the two different anions occurring in the coordina-
tion sphere—the oxygen and sulfur:

Bkq = Bkq
res + W̃kq

O ẽO + W̃kq
S ẽS �21�

with coefficients W given by Eq. �19�, Bkq
res and the remaining

data taken from Ref. 19. It turns out that this simplest version
of the EAOM, with only two effective parameters ẽO and ẽS,
describes fairly well the three electronic INS transitions:45,55

74 meV ��5�1�→�3�, 83 meV ��5�1�→�4�, and 87 meV
��5�1�→�5�2��. These intervals can be easily matched by a
slight refining of the ab inito ratios s��. Figure 5�c� shows
the resulting energies and the transition probabilities esti-
mated in terms of the squares of the matrix elements of the
Zeeman operator between the initial and final states.56 The
Debye-Waller and 5f-electron form factors are not taken into
account since we are interested only in comparison of vari-
ous numerical simulations without a direct reference to the
experimental recordings. The Gaussian shape of the figured
transitions has only an illustrative character. The present
simulation of the INS transitions does not differ much from
the previous one shown in Fig. 5�b�.19 Taking into account a
finite width of the experimental lines and limited range of the
measurable energies both the simulations seem acceptable. In
particular, the main lines around 80 meV are quite similar to
the measured ones.45,55 The line at about 40 meV was neither
observed nor excluded by the experimental data since it is
relatively weak and lies in the region of the phonon side-
bands. Further INS investigations with higher incident neu-
tron energies could decisively verify the predicted positions
of the �2 and �1�2� levels. The ordered magnetic moment of
2.11�B as determined from the obtained wave functions, is
higher than the observed one of 2.00�B.54 Nevertheless it
can be reduced to about 2.04�B due to the overlap and co-
valency effects.57 Our phenomenological results can be com-
pared with ab inito predictions. The parameter ẽO

=370.2 meV is about 10% higher than the theoretical value
of e� from Table II, whereas ẽS=157.1 meV is lower than its
counterpart. The differences between the corresponding phe-
nomenological and theoretical parameters become even more
pronounced in the case of the corresponding Bkq parameters
listed in Table III. Taking into account inherent limitations of
the ab inito calculations due to numerous approximations
and uncertainty of the Sternheimer shielding factors and di-
pole and quadrupole polarizabilities, such a divergence
seems inevitable. Nevertheless, we still propose to keep the
ratios of the theoretical values of the EAOM parameters
�Eqs. �8� and �17�� in our simplified phenomenological mod-
els �Eqs. �16� and �18�� assuming them to be more reliable
than the theoretical EAOM parameters themselves because
of the restricted number of contributions they are dependent

FIG. 5. Simulation of the INS spectra of UOS in various crystal
field models: �a� ab initio calculations, �b� refined model from Ref.
19, and �c� EAOM.

TABLE III. Comparison of various Bkq sets obtained for UOS �in meV�.

B20 B40 B44 B60 B64

Ab initio calculations −180 −545 −119 424 104

AOM −117 −567 −11 632 250

Model from Ref. 19 −147 −579 −39 595 447

EAOM −159 −624 −21 627 380
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on an expected partial cancellation of the calculation errors.
The Bkq parameters determined within the EAOM ap-

proach lie between those obtained using the conventional
AOM and the refined model from Ref. 19. The phenomeno-
logical sets do not differ much, especially these in the two
last lines of Table III. The ab initio values look less satisfac-
tory, especially the nonaxial Bk4 �k=4,6� parameters. The
outstanding discrepancy of the latter can be attributed to the
competing contributions of the oxygen and chalcogenide
groups resulting in relatively small values of these param-
eters and increased cumulative relative errors.19

The low-symmetry crystals UX2 considered in Sec. III B
may serve as the next example of application of the EAOM.
The model allows one to reduce 15 �US2,USe2� or nine
�UTe2� Bkq parameters specific for the point group symme-
tries in these compounds to only 1–3 EAOM parameters.
Note that very construction of any version of the EAOM,
including the single-parameter one Eq. �18�, ensures accu-
racy of the electronic structure simulation not worse than that
obtained from the ab initio calculations. This is because the
ab initio calculations determine not only the starting values
of the parameters but also the coefficients W and residual
off-AOM terms in Eqs. �16� and �18�. Thus, with the EAOM
one can try to reproduce the electronic structure of any com-
pound even if the available experimental data are limited
merely to a single thermodynamic characteristic like the
magnetic susceptibility discussed in Sec. III B. In the specific
case of UX2, the theoretical curves displayed in Fig. 1 rep-
resent simultaneously the initial phenomenological depen-
dencies in our model. The corresponding EAOM parameters
listed in Table II are thus the natural and right starting values
in subsequent steps of the further interpretation of the elec-
tronic structure and the forthcoming experimental data.

V. CONCLUDING REMARKS

The crystal field potential in the quasiphenomenological
enhanced angular overlap model proposed here is divided
into two parts: the main part, adjustable, which comprises the
contributions amenable to the conventional AOM parametri-
zation, and the residual one, fixed, representing all the re-
maining terms. The fixed, off-AOM residual part contains
the electrostatic contributions of further neighbors and the
ligand polarization contribution, the accuracy of determina-
tion of which hinges on the available ionic polarizabilities
and the shielding factors. Much more complicated renormal-
ization terms in the CF potential are handled in the phenom-
enological way together with the core, charge penetration,
and interionic exchange contributions. The parametrization
applied is known from the usual AOM approach. Its simplic-
ity is a consequence of the axial local symmetry of the en-
coded contributions and their additivity.

The aptness of such a discrimination between the contri-
butions is illustrated by an increasing amount of examples of
first-principles calculations in the literature and also by the
results presented in this paper. Additionally, the calculations
provide the ratios of the intrinsic parameters that may be
employed in further applications of EAOM. The simulations
performed for the virtual UX2 crystal of CaF2 symmetry give

an idea about dependence of the EAOM parameters on
metal-ligand distance. They show the evolution of the mutual
relations between the AOM-consistent contributions. The ob-
served behavior of the AOM-consistent contributions to the
intrinsic parameters in the limit of the shortest metal-ligand
distances touches a more complex problem of the CF effect
in metallic systems. A comparison of these simulations with
the ab initio calculations for the actual UX2 compounds evi-
dences a certain volatility of the intrinsic parameters. It turns
out that the assumption, commonly accepted for models
based on the superposition anzatz �conventional AOM or
SPM and their various modifications�, saying that the intrin-
sic parameters are smooth functions of the metal-ligand dis-
tance, is not always valid due to the various Madelung ener-
gies of the ions in real crystals and a high sensitivity of the
intrinsic parameters to these energies. This points to the ne-
cessity of enforcing each particular implementation of the
phenomenological model with the ab initio calculations for
an actual specimen just as is postulated in the EAOM.

The EAOM ensures a highly compact description of the
electronic structure of even such complex ionic systems as
the actinide crystals. The examples discussed in the paper
represent various kinds of conceivable applications. The case
of experimental data limited to only certain magnetic char-
acteristics of systems of low crystal symmetries is illustrated
for the UX2 series. In another example, the electronic struc-
ture for NpOX is predicted by transforming the intrinsic pa-
rameters for the corresponding UOX compounds and exploit-
ing relations between the parameters calculated ab initio.
Various experimental data are available in the case of UOS.
They include magnetic and thermodynamic properties as
well as the inelastic neutron scattering spectra. Nevertheless,
the electronic structure cannot be resolved within the con-
ventional CF parametrization scheme without additional as-
sumptions of rather heuristic nature. The EAOM is shown to
be capable of describing of all of the observed properties
unequivocally.

The EAOM is open for further improvements. We men-
tion here a more accurate potential that could be obtained
from lattice self-consistent calculations4,10 to correct the
zero-order wave functions used in the calculations. Direct
evaluation of multipole polarizabilities and shielding factors
for a given specimen may be important for calculations of
the residual part of the crystal field, since these quantities
depend on the Madelung energies of the ions.36 Perhaps the
analogous idea of partitioning of the CF potential into phe-
nomenological and fixed parts may also be applied to much
more complicated metallic systems.
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APPENDIX A

The parametric Hamiltonian10,23,58 contains a free-ion,
spherically symmetric part H0 and crystal field potential V,

H = H0 + �
i

V�ri/ri� , �A1�

where the summation index i runs over all f electrons. The
free-ion part can be written as follows:

H0 = Eav + �
k=2,4,6

Fk�nf ,nf�fk + �5fAS0	L�L + 1� + �G�G2�

+ G�R7� + �
k=0,2,4

Mjmj + �
k=2,4,6

Pkpk �A2�

where Eave is the spherically symmetric one-electron part of
the Hamiltonian, Fk�nf ,nf� and �5f represent the radial inte-
grals due to the electrostatic and spin-orbit interactions,
while fk and ASO are the angular operators corresponding to
these interactions, respectively. The 	 , �, and  parameters
are associated with the two-body correction terms. G�G2�
and G�R7� are Casimir operators for the G2 and R7 groups
and L is the total orbital angular momentum. The electro-
statically correlated spin-orbit perturbation is represented by
the Pk parameters and those of the spin-spin and spin–other-
orbit relativistic corrections by the Mj parameters. The op-
erators associated with these parameters are designated by mj
and pk, respectively.

APPENDIX B

The main contributions to the one-electron CF potential in
nonmetallic crystals are listed here. For derivations and a
detailed discussion see Ref. 10. Some numerical questions
related to multicenter integrals and summation of weakly
convergent infinite series are dealt with in Refs. 11, 14, and
29.

From definition, the AOM-consistent part of the CF po-
tential and thus the AOM-consistent contributions in Eqs.
�13� and �14� are partitioned due to ligands according to Eq.
�3�. Therefore, without loss of generality we can consider
only a single ligand potential vt in the local coordinates cen-
tered at the metal site, the z axis of which is directed toward
the ligand. Due to the axial symmetry of the ligand potential
the orientation of the x and y axes is immaterial. Atomic
units are applied throughout this section.

vt
pcm�r� =

2


r − Rt

�B1�

vt
cp�r� = �

�
�Ĵ„�t��r�,�t��r�… −

8


r − Rt

 , �B2�

vt
ex�r� = − �

�

K̂„�t��r�,�t��r�… , �B3�

vt
ov = �

�


�t��	�t�
�	�
ĥ0
�� − 2ĥ0 + �
t�,��

�ĥ0 − Ĵ��,���
�t����

�	�t���
� , �B4�

vt
cs = �

�
�

� ��	��
�t���2�2Ĵ���,��� − K̂���,���� − 2	��
�t�
�

��2Ĵ��t�,��� − K̂��t�,���� + �
t�� t

t�,��

	��
�t�
�	
�t���
���

���2Ĵ��t�,�t���� − K̂��t�,�t����� � , �B5�

vt
cov = �

�

h̃t�
�t��	�t�
h̃t�

�t�
. �B6�

�m and �� in the above equations denote the 5f and 6s ,6p
orbitals of the metal ion obtained from the Dirac-Slater cal-
culations for the free ion, �t� stand for the analogous ns and
np orbitals of the anion and m ,� ,� are the corresponding sets

of quantum numbers. Ĵ and K̂ are the usual Coulomb direct
and exchange operators �see for instance Ref. 10�,

ĥ0 =
− �2

2
+ v0

M + �
t

v0t
L + Vfn, �B7�

where v0
M and v0t

L are the Dirac-Slater free-ion metal and
ligand potentials.

h̃t� = ht� − �
t���

�
t�,��


�t����	�t���
ht�
�t����	�t�
 , �B8�

ht� = h0 − Ĵ��t�,�t�� , �B9�

�t� = 	�
ht�
�� − 	�t�
h0
�t�� . �B10�

vt
pcm�r� represents only ligands as point charges �monopoles�.

The remaining contributions are conveniently presented
as a part of the electrostatic model, which includes all ions in
the crystal represented by a sequence of point monopole,
dipole, quadrupole, etc.:

Vel = Vnn pol + Vfn + Vpcm. �B11�

Note that the two first terms on the right-hand side of Eq.
�B11� are part of Vres in Eq. �15�, whereas the third term
enters into Vpr in Eq. �13�. The electrostatic potential Vel of
point multipoles can be expanded in series of spherical har-
monics, similarly to the global CF potential in Eq. �1�. The
corresponding contribution to the Bkq parameters has the fol-
lowing form:10

Bkq
el = 	rk��

t
�

n
�
�

�− 1�k+q+�� �2k + 2n + 1�!
2n�2k�! 1/2

��k n k + n

q � − q − �
� 1

Rk+n+1 Mt�
�n�Cq+�

�k+n��Rt/Rt� ,

�B12�

where 	rk� is the mean value of rk for the 5f orbital. Mt
�n� is
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the 2n-pole electric momentum induced on ion t, where t
runs over all the ions in the infinite net and � runs over the
components of Mt

�n�. The state of electrostatic equilibrium
between the Mt

�n� moment and the remaining multipole mo-
ments of the crystal lattice is represented by the following
equations determining the electric multipole moments
Mt

�n�:10,14

Mt
�n� = �

t�
�

p=0,1,2
�− 1�n+1	t

�n�I�2n��t�
�n��Mt�

�p� · �t�
�p� 1

Rt�

�B13�

where I�2n� is the diagonal unit tensor of rank 2n. 	t
�n� is the

2n-pole polarizability.

APPENDIX C

The temperature dependence of the paramagnetic suscep-
tibility is given by the Van Vleck formula59

�	�T� =
NA�B

2

Z
�


��a,	 + 2b,	�exp�− �E� �C1�

with

a,	 = �
E� = E

�

�	
L	 + gS	
��� , �C2�

b,	 = �
E� � E

�

�	
L	 + gS	
���
E� − E

, �C3�

Z = �


exp�− �E� . �C4�

�=1/kT, 	=x ,y ,z, the index  numbers the eigenstates, the
E’s denote their energies, L	 and S	 are the 	 components
of the total orbital and spin operators, and g is the gyromag-
netic ratio of the electron spin.
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