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The real-space multiple-scattering approach is applied to model nonresonant inelastic scattering from deep
core electron levels over a broad energy spectrum. This approach is applicable to aperiodic or periodic systems
alike and incorporates ab initio, self-consistent electronic structure and final state effects. The approach gen-
eralizes to finite momentum transfer a method used extensively to model x-ray absorption spectra �XAS�, and
includes both near-edge spectra and extended fine structure. The calculations can be used to analyze experi-
mental results of inelastic scattering from core electrons using either x-ray photons or electrons. In the low
momentum transfer region �the dipole limit�, these inelastic loss spectra are proportional to those from XAS.
Thus, their analysis can provide similar information about the electronic and structural properties of a system.
Results for finite momentum transfer yield additional information concerning monopole, quadrupole, and
higher couplings. Our results are compared both with experiment and with other theoretical calculations.
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I. INTRODUCTION

The primary aim of this work is to model inelastic scat-
tering quantitatively using a generalization of the real-space
multiple scattering �RSMS� approach. This ab initio Green’s
function method has been extensively developed for calcula-
tions of x-ray absorption spectra �XAS� and related
spectroscopies.1,2 Thus, the approach permits calculations of
inelastic scattering in arbitrary aperiodic materials over a
broad energy range, including the near-edge and extended
fine structure. In inelastic scattering experiments, the scatter-
ing cross section is measured as a function of the energy �
and momentum q transferred from the probe to the system
�throughout this paper we use Hartree atomic units,
e=�=m=1�. When the energy transfer is close to the binding
energy of a core state, the inelastic scattering cross section
exhibits pronounced jumps, from which one can study the
core-excited states of the system. We focus in this paper on
the excitations from such core levels.

In the low momentum transfer regime the scattering cross
section is dominated by the dipole allowed excitations.
Qualitatively the dipole approximation is valid when qa�1,
where a�1/� is the mean radius of the core state, � being
the effective core charge. In the dipole limit the inelastic
scattering cross section is proportional to the x-ray absorp-
tion coefficient,3–5 and the direction q̂ of the momentum
transfer vector plays the role of the XAS polarization vector
�̂. Thus, the anisotropy of the x-ray edge can be studied by
varying q̂ in much the same way it is studied in XAS by
varying the direction of �̂. However, as the magnitude of q
increases, contributions from other �dipole forbidden� exci-
tation channels become important. The symmetries of a sys-
tem generally restrict the available excitation channels at a
given excitation energy. The relative weights of the various
excitation channels, as a function of momentum transfer, also
depend on the spatial extent of the excited state. In general,
the classification of the spectral features into given spatial
symmetries of the final state electron �i.e., s-type, p-type,

etc.� is not as straightforward as in XAS. This is because
contributions to the spectra from different excitations often
overlap at finite momentum transfer. Due to this overlap, a
detailed analysis of experimental results can be difficult in
the absence of quantitative theoretical calculations. There are
some exceptions though; core excitons can have well-defined
spatial symmetries and energies well separated from other
excitations.

Nonresonant inelastic scattering spectra can be measured
using either electron energy-loss spectroscopy �EELS�6 or
nonresonant inelastic x-ray scattering �NRIXS�.7 The cross
sections in both cases are related to the dynamic structure
factor S�q ,�� of the system. For the case of x rays, the
nonrelativistic Born approximation for the NRIXS double-
differential cross section is8,9

d2�

d�d�
= � d�

d�
�

Th
S�q,�� . �1�

Here �d� /d��Th is the Thomson scattering cross section. The
Thomson cross section can be expressed in terms of the in-
coming �scattered� photon polarization vector and energy
��̂1 ,�1����̂2 ,�2�� as

� d�

d�
�

Th
= r0

2��̂1 · �̂2�2�2

�1
,

where r0 is the classical electron radius. In Eq. �1� we have
implicitly assumed that the energy of the incident x ray is not
close to any core binding energy Ei �typically Ei��1�. This
is in contrast with resonant inelastic x-ray scattering experi-
ments, where the incident x-ray energy is tuned close to a
core binding energy and resonant processes dominate the
double-differential cross section. The different forms of in-
elastic x-ray scattering and their relationships are discussed
in more detail in Refs. 8 and 9. In EELS the corresponding
scattering cross section in the Born approximation is10
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= � d�

d�
�

e−e
S�q,�� , �2�

where �d� /d��e−e=4q−4�p� / p� is the electron-electron scat-
tering cross section, with p �p�� being the momentum of the
incoming �scattered� electron. In other words, with these ap-
proximations the cross sections differ only by a coupling
constant which is related to the probe �i.e., a photon or elec-
tron� that interacts with the system. The system-dependent
part, namely the dynamic structure factor S�q ,��, is the
same for both NRIXS and EELS, and depends only on the
structure and excited-state properties of the system under in-
vestigation.

Nonresonant inelastic x-ray scattering from core-excited
states is often called x-ray Raman scattering �XRS�. Tradi-
tionally, XRS experiments have been limited to K edges of
low-Z materials. However, for the K edges, experimentally
accessible systems include such important cases as those
with carbon and oxygen, as has already been demonstrated
�see Ref. 12 and references therein�. Recently, XRS experi-
ments were done for the L edges and N edges of materials
with higher Z including the N edge of Ba in Ba8Si46.

11 The
smallness of the x-ray scattering cross section implies that
bulk information is generally obtained in these probes, i.e.,
that multiple scattering of the probe particles and surface
effects are usually not serious problems. XRS has been used
to study both the momentum transfer magnitude13–17 and di-
rection dependence17 at K edges. Recently, the K edge of Be
metal was studied using both degrees of freedom �magnitude
and direction�.18 The typical energy resolution of current
XRS experiments is around 1.0 eV FWHM, although some
experiments with an energy resolution of 0.4 eV have been
carried out.13 The finite core-hole lifetime broadening also
limits the useful energy resolution to a few tenths of an elec-
tron volt.

As noted above, one can also measure the fine structure of
the spectra above deep core edges using electrons as a probe.
Unlike nonresonant x-ray scattering, EELS is not limited to
low-Z materials, and has a typical energy resolution on the
order of 0.1 eV. Electrons interact strongly with solids, so
that one is often able to obtain results with good statistical
accuracy. However, their strong interaction also implies that
multiple scattering of the probe electrons can be a problem
which has to be removed or otherwise accounted for in the
analysis of experimental results. This is especially true of
experiments with large scattering angles or low incident elec-
tron energies, in which case one should explicitly include
multiple scattering in the analysis, as explained in Refs. 19,
20. The dependence of x-ray edges on the magnitude of the
momentum transfer has been investigated in Refs. 6, 21, and
22, and more recently in Ref. 23. The dependence on the
momentum transfer direction at x-ray edges has also been
used in the analysis of anisotropy of x-ray edges �see Refs.
24, 25 and references therein�. Additionally, the very high
spatial resolution available in EELS makes it possible to
study the anisotropy of x-ray edges in fine-grained solids.25

Theoretically the problem of calculating inelastic scatter-
ing spectra from core-excited states is analogous to the cal-
culation of core level x-ray absorption, the main difference

being in the nature of the transition matrix elements. Thus,
there are a number of effects that must be taken into account
for accurate computational results. Within the independent
electron approximation, the main problem is the behavior of
the core-excited final states. This can be approached either
by calculating the core-excited states one by one �e.g., in
band-structure- or molecular-orbital-based approaches� or
equivalently, by calculating the one-electron Green’s func-
tion for the excited states, as is done in this work. For accu-
rate results one needs a highly quantitative method for cal-
culating single-particle properties such as electron densities
and Coulomb potentials. Also, a number of many-body prop-
erties of the excited states of the system have to be consid-
ered. These include the interaction of the final-state electron
with the core hole created in the excitation process, as well
as an approximation for the energy-dependent self-energies
��E� of both the electron and the core hole, e.g., to account
for inelastic losses. A good approximation in many cases is
to calculate the final state in the presence of the core hole and
the initial state with ground-state potentials.1 This approxi-
mation is referred to as the final state rule. In principle one
should include the whole energy dependence of the self-
energy, as discussed for example in Ref. 26. However, often
a quasiparticle approximation is used both for the electron
and the core hole. In the quasiparticle approximation, the
imaginary part of the self-energy causes the electron �and the
hole� in the excited state to have a finite lifetime. Addition-
ally, the real part of the self-energy shifts the spectral fea-
tures from the positions predicted by ground state �or mean-
field� approximations, whereas traditional ground-state
density functional treatments can lead to significant errors in
peak positions and intensities. For a full treatment, especially
at high energies, one also needs to consider coupling to vi-
brational degrees of freedom, which give the spectra a
temperature-dependent damping comparable to that of x-ray
Debye-Waller factors. A more detailed review of the problem
of computing core-excited states in XAS can be found in
Ref. 1. As noted above, the main difference between inelastic
scattering and x-ray absorption lies in the transition matrix
elements. This is due to the fact that the operator mediating
the transitions in inelastic scattering is exp�iq ·r�, as com-
pared to the dipole operator �̂ ·r �and, in some cases, also the
quadrupole operator� in x-ray absorption. We will discuss
this difference in more detail below.

In this paper we have applied the real-space multiple-
scattering �RSMS� approach to calculate the core-excited
states in EELS and NRIXS over a wide energy range. The
RSMS approach adopted here is essentially an effective, in-
dependent particle approach for excited states which takes
into account the most important final-state effects. The ap-
proach is an extension of the RSMS approach previously
used for x-ray absorption spectra �see for example Ref. 1 and
references therein�. The RSMS approach can also be ex-
tended to situations where many-particle effects have to be
taken into account more accurately than is possible using an
effective single-particle approach.27–30 The momentum trans-
fer dependence of both the near-edge spectra and the fine
structure in inelastic loss spectra is analyzed in detail and
compared with experimental results.

Recently, a two-particle approach to core-excited states
has been developed31,32 based on the Bethe-Salpeter equation
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�BSE�. The BSE goes beyond the independent particle ap-
proximation with an explicit treatment of the screened elec-
tron core-hole interaction. However, when the core-hole in-
teraction is strong, the results from the final-state rule can be
comparable.33 The BSE approach has been applied to differ-
ent situations using the momentum transfer-dependent matrix
elements in the analysis of XRS.14,15,18,32 For completeness,
our calculations are also compared with calculations based
on the BSE. However, the BSE approach is currently appli-
cable only relatively close to a given edge, typically between
a few tens and 100 eV depending on the material, and be-
comes computationally impractical for treating the extended
fine structure in inelastic scattering spectra.

II. REAL-SPACE MULTIPLE-SCATTERING FORMALISM

A. Green’s function formulation

We now briefly describe the extension of the real-space
multiple-scattering approach for calculations of nonresonant
inelastic scattering. The RSMS approach can be regarded as
the real-space analog of the Korringa-Kohn-Rostoher �KKR�
band structure method,34 but unlike KKR, the method makes
no assumption of symmetry and is applicable to periodic and
aperiodic systems alike. Moreover, the implementation used
here is an all-electron approach which can be applied to
arbitrary systems throughout the periodic table. This method
has been extensively developed for ab initio calculations of
x-ray spectra including both EXAFS �extended x-ray absorp-
tion fine structure� and XANES �x-ray absorption near-edge
structure�.1,2,27 Its generalization here to finite momentum
transfer q is relatively straightforward, though nontrivial in
several respects, as discussed below. We will rewrite the dy-
namic structure factor in a form that makes it suitable for
analysis using concepts and ideas familiar from the RSMS
work on XAS.1,2,27 This is not done only to use the modeling
experience obtained from studies on XAS but also to show
how inelastic scattering can be used to obtain new informa-
tion. The contributions to S�q ,�� from excitations from a
tightly bound core state �i	 can be approximated using Fer-
mi’s golden rule, i.e.,

Si�q,�� = 

f

��f �eiq·r�i	�2��� + Ei − Ef� , �3�

where Ei �Ef� is the initial �final� state quasiparticle energy
of the electron. For the remainder of the paper we will drop
the index i and use simply S�q ,�� when referring to the
contribution from a core state �i	. Within the one-electron
approximation and the final-state rule, the final �photoelec-
tron� states �f	 are quasiparticle states which are eigenfunc-
tions of the final-state Hamiltonian in the presence of an
adiabatically screened core hole �denoted with a prime�, i.e.,
H�= p2 /2m+Vcoul� +��E�. Here, ��E� is the self-energy �or
dynamically screened exchange-correlation potential� which
accounts for inelastic losses, which are essential for a proper
treatment of inelastic electron scattering. In our calculations
we use the energy-dependent local density approximation for
��E� of Hedin and Lundqvist,35 based on the plasmon-pole
approximation for the dielectric function. This approxima-

tion is usually adequate at moderate to high photoelectron
energies.1 The states �i	 are deep core levels of the initial
state Hamiltonian without a core hole. For small momentum
transfers in the case of core-excited states, the excitation op-
erator exp�iq ·r� can be expanded as

exp�iq · r� � 1 + iq · r + O�q2� . �4�

Thus, the dipole selection rule is approximately valid at
small q, since the first term should not contribute to transi-
tions due to orthogonality of the initial and final states, and
the next term �	q2� is also small. In fact, since � and q can,
in principle, be chosen separately, the dipole approximation
can sometimes be satisfied better in inelastic scattering than
in absorption, where the photon momentum and energy are
always linked. At higher q, dipole forbidden transitions be-
come important, and it is more convenient to expand the
exponential in terms of spherical harmonics

exp�iq · r� = 4


lm

iljl�qr�Ylm
* �q̂�Ylm�r̂� . �5�

Thus, for any finite momentum transfer all excitation chan-
nels are present.

To avoid explicit calculations of final states, it is
advantageous to re-express the golden rule in terms
of the one-particle Green’s function or propagator
G= E−H�+ i��−1 in real space, where � is the core-hole
lifetime. Thus, using the spectral representation,
−�1/
�Im G�E�=� f�f	�f ���E−Ef����E�, the dynamic struc-
ture factor becomes

S�q,�� = �i�e−iq·r�P��r�,r,E�Peiq·r�i	 , �6�

where the photoelectron energy is E=�+Ei. The operator P
projects the Green’s function onto the unoccupied states of
the initial state �without the core hole� Hamiltonian.26 The
operator P is needed here since, in general, the eigenstates of
the final-state Hamiltonian are not strictly orthogonal to the
initial states. In practice, this nonorthogonality implies that at
low momentum transfer

�i�e−iq·r�f	 � �i�f	 − i�i�q · r�f	 + ¯ . �7�

Thus, the dipole forbidden excitations, which incorrectly
vary as 	�i � f	, can begin to dominate over the dipole al-
lowed transitions 	q as q→0. The application of the full
projection operator P would require taking an inner product
and appropriate matrix elements of all the occupied states �j	
of the initial state Hamiltonian, i.e.,

Peiq·r�i	 = eiq·r�i	 − 

j

occ

�j	�j�eiq·r�i	 . �8�

Instead, we simply approximate the effect of P by modifying
the excitation operator as

P̃eiq·r�i	 � eiq·r − �i�eiq·r�i	��i	 . �9�

Clearly, at low momentum transfers this gives matrix ele-
ments
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�i�e−iq·rP̃�f	 � − i�i�q · r�f	 + �q2� , �10�

while at high momentum transfers the correction �i�eiq·r�i	
��f � i	 approaches zero. Although in what follows we do not

explicitly include the operator P̃, it is included in the actual
calculations. The terms coming from the difference of P and

P̃ are neglected. Although this is a somewhat uncontrolled
approximation, comparison with experiments and previous
XRS calculations at different momentum transfers show that
these terms should be small, as illustrated in Fig. 2 below.
Also, work in XAS suggests that the difference is not signifi-
cant compared with other theoretical uncertainties.26

In multiple scattering �MS� theory, the scattering pertur-
bation is the total electron potential, which is separated into
contributions from “scattering potentials” vR which are local-
ized on each atomic site R, i.e.,

Vcoul� + ��E� = 

R

vR�r − R� . �11�

In the RSMS method vR�r� is usually taken to be spherically
symmetric. This is a good approximation for electron scat-
tering calculations at moderate electron kinetic energies, i.e.,
a few electron volts above the threshold. These potentials are
calculated self-consistently by iterating the total electron
density, potential and Fermi energy, typically requiring about
10–20 iterations. Once the potentials are known, scattering
phase shifts �l are calculated and dimensionless t matrices
evaluated using the relation tl=exp�i�l�sin��l�. With spheri-
cally symmetric potentials, the propagator G�E� and hence
the density matrix ��E�� can be represented in an angular-
momentum L= �l ,m� and site R basis �L ,R	. Thus, at the site
of the core-excited atom �R=0�

��r�,r,E� = 

L,L�

RL�r,E��L,L��E�RL��r�,E� , �12�

where RL�r ,E� are scattering states at energy E, which are
regular at the origin. The expansion for r and r� about dif-
ferent sites R and R� is similar, with GL,L��E� replaced by
GLR,L�R��E�. Consequently, the calculation of the dynamic
structure factor is reduced to a calculation of �embedded�
atomic transition matrix elements ML�q ,E�= �RL�E��eiq·r�i	
and a multiple-scattering matrix �L,L��E�=�L0,L�0�E�, i.e.,36

S�q,�� = 

LL�

ML�− q,E��L,L��E�ML��q,E� . �13�

Here �L,L��E�= �−1/
�Im GL,L��E� denote matrix elements of
the final-state density matrix, including the effect of the core-
hole potential. It can be shown that S�q ,�� also satisfies a
generalized oscillator strength sum rule. The representation
in Eq. �13� shows that the essential physics of the problem
separates into two parts: �i� a q-dependent transition matrix
which governs the production of photoelectrons into various
final states, and �ii� a propagator matrix GL,L� which de-
scribes the scattering of the photoelectron within the system
at a given excitation energy. The transition matrix elements
ML�q ,E� are calculated using the expansion in Eq. �5� of
exp�iq ·r� in terms of spherical harmonics. Depending on the

excitation energy and momentum transfer, different terms L
in this expansion are important. For low momentum transfer
and excitation energy, the small �l transitions are most im-
portant, starting from the dipole �l= ±1, monopole �l=0,
and quadrupole �l= �±2,0� transitions. Thus, provided one
can neglect the coupling to phonons �which is a good ap-
proximation for core excitations discussed in this work�, a
typical spectrum at low q can be analyzed using only these
three excitation channels. Monopole transitions, which are
present in S�q ,�� through the term 	4
j0�qr�Y00

* �q̂�Y00�r̂�,
have no counterpart in absorption �s-to-s transitions being
forbidden within the dipole approximation�. When the mo-
mentum transfer is increased in inelastic scattering, other ex-
citation channels become more important, especially at high
energy values.

The above RSMS formulation can be advantageous even
for crystals, since periodicity is broken by the core-hole in-
teraction and spectral broadening from the core-hole lifetime
and the self-energy. Typically, �ch+ �Im �� is several electron
volts at photoelectron energies above about 30 eV of an
edge. This broadening limits the range probed by the photo-
electron to clusters of the order of a few hundred atoms, and
gives rise to a short-range order theory for energies above
about 30 eV. Thus, long-range effects such as the sharp van
Hove singularities of band structure calculations are natu-
rally smeared out. Moreover, in this extended energy regime
scattering is relatively weak and perturbation theory con-
verges well. Conversely, in the near-edge regime �energies
less than about 30 eV�, the range is dominated mostly by the
core lifetime 1/�ch, which is very long for low-Z materials
or for very shallow edges. For those cases an intermediate-
or long-range order theory may be needed, involving mul-
tiple scattering to all orders or very large clusters of atoms.

For polycrystalline materials or systems with cubic sym-
metry, only the diagonal terms in L and L� survive in Eq. �9�,
corresponding to couplings to various partial local, projected
densities of states �LDOS� �l�E�, i.e.,

S�q,�� � 

l

�2l + 1��Ml�q,E��2�l�E� . �14�

Thus, the dynamic structure factor is directly related to the
LDOS. The coupling terms Ml�q ,E� are essentially atomic
quantities which can be calculated theoretically to good ac-
curacy. Thus, it may be possible to extract the LDOS �l�E� or
the density matrix components �L,L��E� from a sequence of
experimental measurements of S�q ,�� at various q by a suit-
able inversion procedure of Eq. �13� or �14�, regarded as a
set of linear equations.

The propagator G=Gc+Gsc naturally separates into intra-
atomic contributions from the central atom Gc and from MS
contributions from the environment Gsc. Thus, as in XAS,
S�q ,�� can be factored as

S�q,�� = S0�q,��1 + �q�k�� , �15�

where S0�q ,�� represents a smoothly varying atomic back-
ground, and �q�k� is the “fine structure” due to multiple scat-
tering from the environment. Here, we have also used a stan-
dard XAS notation, where k=�2��+Ei� is the photoelectron
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wave number. The momentum transfer dependence of these
two contributions to the dynamic structure factor can be ana-
lyzed separately as shown in detail below.

B. Central atom contribution

Much of the qualitative behavior of the spectra can be
understood in terms of the central atom contribution �in the
absence of other scatterers�, which has been analyzed for
isolated atoms by, e.g., Leapman et al.37 This contribution is
independent of the direction of the momentum transfer, and
hence depends only on the magnitude q. For a condensed
system, the states RL�r ,E�= ilRl�r�YL�r̂�, where Rl�r� are ra-
dial wave functions and YL�r̂� spherical harmonics, are scat-
tering states defined for the potential of an “embedded” atom
in the system. However, the deep core states differ little from
those of isolated atoms, and spherical symmetry is still a
good approximation. This yields the atomic background con-
tribution

S0�q,�� = 

l

�2l + 1��Ml�q,E��2�l
0�E� , �16�

where �l
0 denote the diagonal matrix elements of the density

matrix.
The matrix elements can be calculated by rotating the

system so that the momentum transfer is along the z axis.
Additionally, summing over the m quantum numbers of both
the initial state and the final state partial waves and using
properties of 3-j symbols, one finds37

�Ml�q,E��2 = �2li + 1�

l�

�2l� + 1���li l� l

0 0 0
�

�� r2drRl�r,E�jl��qr�Ri�r��2

. �17�

Since jl��qr���qr�l� near the origin, the dominant term for
small q is the dipole approximation l=1. The first term in a
power series expansion of j0�qr� cancels by orthogonality for
q→0, and hence the first contributing terms of jl��qr� from
both l�=0 and l�=2 behave as �qr�2. For large momentum
transfers such that qa�1 and higher excitation energies, suc-
cessively larger angular momentum �l��2� excitation chan-
nels become more important. As a consequence, the behavior
of S0�q ,�� at increasing q reflects that of the LDOS of in-
creasing l. This is illustrated in Fig. 1 for the background
contribution S0�q ,��. For EELS, however, experimental
measurements of the double-differential cross section
d2� /d�d� still tend to favor the dipole approximation due
to the q−4 dependence of the electron scattering cross section
�d� /d��e−e. Thus, most of the experimental signal in EELS
is at small q.

C. Fine structure

From Eqs. �9� and �11�, the normalized fine structure in
the dynamic structure factor is given by

�q�k� =
1

S0�q,��

LL�

ML�− q,E��L,L�
sc �E�ML��q,E� , �18�

where �L,L�
sc �E�= �−1/
�Im GL,L�

sc �E�. Clearly, the directional
dependence of the spectra on q̂ comes only from the scatter-
ing contribution, and naturally �q�k� will change with the
magnitude of the momentum transfer due to the q depen-
dence of the coupling terms. This momentum transfer depen-
dence of the near-edge structure has been used to study the
symmetries of the core-excited states in solids.6,13–18,22–25 It
may also be possible to use this momentum transfer depen-
dence to obtain information about intermediate- and long-
range structure, which are contained in the EXAFS-type os-
cillations �q�k�.

One way of calculating the scattering contribution to the
propagator Gsc for a big cluster of atoms is to use matrix
inversion involving the free-particle propagator G0 and the
scattering matrix T, i.e.,1

GL,L�
sc = ei�l�1 − G0T�−1G0�L,L�e

i�l�. �19�

This representation is referred to as full multiple scattering
�FMS�, since it formally includes MS to all orders. FMS is
often used to treat near-edge spectra where scattering is
strong and the dimensions of the matrix GL,L� are relatively
small. At higher energies or whenever the MS series con-
verges well, the matrix GL,L� can alternatively be calculated
in terms of a “path expansion,” i.e., as a sum over all MS
paths that a photoelectron can take away from the absorbing
atom and back.38 Formally, the path expansion is given by
the sum

GL,L�
sc = ei�lG0TG0 + G0TG0TG0 + ¯ �L,L�e

i�l�, �20�

where the successive matrix products terms represent single-,
double-, and higher order scattering processes. Remarkably,
the path expansion has been found to be generally adequate
for energies above about 30 eV of threshold, where of order
102 of the largest amplitude paths suffice to yield an accu-
racy of a few percent for most materials.39

FIG. 1. LDOS �l
0�E� for the central site of fcc Al, in the absence

of other scatterers: l=0 �solid�; l=1 �long dashes�; l=2 �dashes�;
and l=3 �short dashes�. Note how the successive terms �l

0�E� with
increasing angular momentum l peak at successively higher ener-
gies and overlap each other.
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Due to the large dimension D�N�lmax+1�2 of the matrix
GLR,L�R�, where N is the size of the cluster, exact calculations
with the path expansion can only be carried out for a few,
low-order MS paths. To overcome this bottleneck, an exact
separable representation of the propagator was introduced by
Rehr and Albers �RA�39

GL�R�,L�R�
0 =

eikR

kR


�

YL�,��kR��Ỹ�,L��kR�� , �21�

where R= �R�−R�� is the bond distance. The generalized

spherical harmonic expansion coefficients YL�,� and Ỹ�,L�
converge rapidly in powers of 1 /kR, which is always �
unity for unoccupied states k�kF, and hence this represen-
tation can be severely truncated. For FMS calculations
the RA representation of the propagators in Eq. �21� is
stable and converges rapidly. For the path expansion, the
RA approach is exact for single scattering, and typically
only six terms in � suffice to give accuracies to the order
of a percent or better over the typical range of wave numbers
encountered in XAS experiment, kF�k�20 Å−1, i.e.,
EF�E�1500 eV.

With the separable representation, one can sum over all
intermediate angular momentum variables �l ,m� at each site
and define local scattering matrices. Then, the contribution
G0TG0T¯G0 to the total propagator from a given N-atom
path ��R1 ,R2 ,…RN=R0� can be factored as a matrix
product over small �typically 6�6� matrices39

F�,����,��� = 

L

Ỹ�,L���tlY��,L���� ,

which is the analog of the scattering amplitude f��� in plane-
wave scattering theory, and a termination matrix

mL,L�
�1,�N��1 ,�N�=YL,�1

��1�ỸLN,�N
��N�, where �=kR.39 For

large L or L�, it may be necessary to increase the dimension
of � in the termination matrices mL,L�

�1,�N beyond 6 for adequate
convergence. Specifically, we obtain for each path �cf.
Ref. 39�,

GL,L�
� =

ei��1+�2+¯�N+�l+�l��

�1�2 ¯ �N


���

mL,L�
�1,�N��1,�N�

� F�N,�N−1
��N,�N−1� ¯ F�2,�1

��2,�1�� . �22�

In our code, the dependence on the bond vectors � and �� is
simplified using rotation matrices and Euler angles. This ex-
pression is similar to the one used for analysis of XAS using
path expansion.1 In contrast to the case for XAS, which is
dominated by the dipole approximation, however, all angular
momentum channels now contribute with q-dependent cou-
plings. Thus, the fine structure from the path expansion can
be written as

�q�k� = − Im

�

ei��1+�2+¯�N�

�1�2 ¯ �N


���

H�1,�N��1,�N,q�

� F�N,�N−1
��N,�N−1� ¯ F�2,�1

��2,�1�� , �23�

where

H�1,�N��,�N,q� =
1

S0�q,�� 

L,L�

ei��l+�l��

�ML�− q�mL,L�
�1,�N��1,�N�ML��q� . �24�

Note that only the coupling terms H�1,�N��1 ,�N ,q� depend
on q, while the scattering contribution is a product of low-
order scattering matrices F�,�� which are dependent only on
the material. When the dominant contribution comes from
the dipole limit l= l�=1, the dependence on q̂ has the form

�q̂ · R̂1��q̂ · R̂N�. This form emphasizes paths beginning or
ending in the direction q̂, and acts like a “searchlight” in
probing the structure of a system. For polycrystalline mate-
rials or for measurements averaged over all q̂, this depen-
dence averages out. Similarly, the contributions from the
higher angular momenta couplings probe other symmetries.

By defining a q-dependent effective scattering amplitude
feff�q ,k�, one can use the path expansion Eq. �23�� to ex-
press the fine structure �q�k� in a form identical to the origi-
nal EXAFS equation

�q�k� = s0
2


�

�feff�q,k��
kR2 sin�2kR + �k�e−2R/�ke−2�2k2

,

�25�

where k=�2��+Ei� , R= �1/2��iRi is the effective path
length, and the prefactor s0

2�0.9 is a many-body amplitude
factor which accounts for inelastic losses �satellite excita-
tions� beyond the quasiparticle approximation.26 Here, the
effects of thermal and structural disorder are included using a
configurational average of Eq. �23�. These damping effects
can be approximated by a Debye-Waller factor exp�−2�2k2�,
where �2 is the correlated mean-square variation ���R�2	 for
each scattering path,1 while anharmonic terms from the first
and third cumulants are generally weaker and contribute to
the phase. Typically �2 is of order 10−2–10−3 Å2. For the
case of full multiple scattering at low energies, these effects
can be calculated to a good approximation by including a
similar Debye-Waller factor exp�−�2k2� in each propagator
GLR,L�R��k�; this ensures that the Debye-Waller factors for
the dominant single-scattering paths agree with those for the
path expansion. Finally, close to an absorption edge where k
is small, the Debye-Waller factors are of order unity and can
be ignored, except in cases where dipole forbidden transi-
tions become allowed due to vibronic coupling.40 In practical
calculations �2�T� can be approximated to reasonable accu-
racy using the correlated Debye model evaluated for the De-
bye temperature D of a material.1 For other methods of
treating multiple-scattering Debye-Waller factors, see for ex-
ample, Filipponi et al.41 A more general discussion is given
by Fujikawa.42

III. EXAMPLES

A. Be K edge

As mentioned above, the momentum transfer magnitude q
and directional q̂ dependence of the K edge in Be metal was
measured and analyzed by Sternemann et al.18 They found
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that the main changes in the spectra with increasing q could
be explained by the increasing contribution from monopole
�s-to-s�-type excitations. This leads to a net decreasing an-
isotropy, i.e., decreasing dependence on q̂ of the edge, since
s-type states naturally have no directional dependence. This
conclusion is supported by ground-state local density of
states calculations using full-potential linear-augmented
plane-wave and excited state calculations using the BSE
method of Ref. 32.

In Fig. 2 we compare the inelastic scattering spectra cal-
culated with the approach of this paper for the Be K edge
with the experimental results of Ref. 18. From this compari-
son it is clear that our present calculation is capable of re-
producing both the momentum transfer direction and magni-
tude dependence of the dynamic structure factor. However,
there are noticeable discrepancies in some fine details in the
spectra within the first 15 eV. For the momentum transfer
perpendicular to the c axis, the 120 eV features are more
pronounced in the RSMS calculation than in the experiment
for both the low- and high momentum transfer. However, the
main differences between these spectra are well reproduced
by the present calculation. In the middle panel of Fig. 2 we
show for comparison the results from the BSE method.18,32

Considering how sensitive the problem of calculating core
excitation is, the agreement between the two different theo-
retical methods is rather good. This serves to validate the
one-electron, final-state rule calculations, at least for this
case. As noted above, most of the differences occur rather
close to the edge, which is also the region most sensitive to
the details of the core hole-electron interaction and to the
nature of the scattering potentials. Beyond the first 15 eV the
agreement between the two methods is very good. For q
along the c axis, agreement between the two calculations
is also rather good for the energy range shown. For q per-
pendicular to the c axis, however, the comparison is
somewhat mixed. For the first peak in the spectra, it appears
that RSMS accurately predicts the experimental result.
The difference is that the first peak becomes a shoulder at
low momentum transfer and a peak at higher momentum

transfer. On the other hand, the details of the spectra between
120–130 eV appear to be slightly better reproduced by the
BSE.

As noted in Sec. II C, the momentum transfer-dependent
changes in the spectra can be understood in terms of the
changing weights of the different components of �L,L��E� in
the single-crystal case, and the LDOS �l�E� for polycrystal-
line systems. In Fig. 3 we show the s- p- and d-DOS for the
core-excited state at the site of the core hole in Be metal.
Also shown are the calculated inelastic scattering spectra for
two values of momentum transfer along the x axis. The cal-
culated spectra are shifted so that the Fermi energy is aligned
with that obtained in the LDOS calculation, where E=0 is
the vacuum level. On this scale the Fermi energy for Be as
calculated by our RSMS code is EF=−9.4 eV. The p-type
LDOS close to the Fermi energy is composed of two peaks at
−8 and +4 eV, and a broad shoulder at −4 eV. In the small
momentum transfer regime the dipole limit is reached, and
the general shape of the p-type LDOS is clearly shown in the
shape of the calculated spectrum.The s-type LDOS, on the
other hand, is composed of three sharp peaks at −8, −4, and
+3 eV. Compared to the low-q spectrum, the high momen-
tum transfer spectrum has sharp peaks at these same ener-
gies. The coincidence of the peaks is due to hybridization
between the various angular momentum components.
Clearly, the changes in the near-edge structure with increas-
ing q can be attributed partly to the increasing contribution
from the s-to-s-type transitions. Also, the changes due to the
matrix elements that weight the different excitations have to
be considered when comparing LDOS to experimental spec-
tra. This can clearly be seen when comparing low momen-
tum transfer spectra along either the x- or c axes. Although

FIG. 2. Comparison between experiment �Ref. 18� �top panels�
and inelastic loss spectra calculated using the BSE �middle panels�
and the RSMS method of this work �lower panels� for the Be K
edge. The spectra are shown for q perpendicular to the c axis �left
panels�, and q along the c axis �right panels�. Spectra are shown for
two values of momentum transfer q as indicated in the figure labels.
The theoretical spectra was shifted by 4.5 eV to align with the
experimental edge.

FIG. 3. Local projected DOS for Be together with inelastic scat-
tering spectra for two values of momentum transfer q along the x
axis. The Fermi level is at −9.4 eV.
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both exhibit a p-type LDOS structure, the weights of the
different features are strongly dependent on the magnitude
and direction of the momentum transfer. Also, the overlap of
the different types �s vs p� of LDOS is clearly demonstrated
in these results. The relative contributions to the sum of Eq.
�14� from monopole �s-to-s�, dipole �s-to-p�, and quadrupole
�s-to-d� transitions are illustrated in Fig. 4 for the higher
momentum transfer q=4.78 a.u. along the c axis. At lower
momentum transfer the contributions from the monopole
transitions and quadrupole transitions are negligible. At this
relatively high momentum transfer the dipole forbidden s-to-
s transition is comparable in magnitude to the dipole allowed
s-to-p transition. The s-to-d contribution is small at low en-
ergies but becomes increasingly important as the energy is
increased, again reflecting the energy-dependent weight of
different excitation channels.

The total spectrum changes also as function of the mag-
nitude of the momentum transfer because of the changes in
the channel-specific spectra. This change is due to the exci-
tation energy E dependence of the final state partial wave,
RL�r ,E�. As the momentum transfer changes, the matrix el-
ements ML�q ,E�= �RL�E��eiq·r�i	 make the channel �i.e.,
L�-specific spectra change at an energy E-dependent rate. In
Fig. 5 the momentum transfer dependence of the dipole
allowed and monopole �dipole forbidden� transitions is
examined separately. The spectra are scaled so that the
first peak for both momentum transfers is the same height.
Besides this energy-independent scaling factor there is also
a momentum transfer dependence on the shape of the chan-
nel specific spectra. At a qualitative level this change is
mostly visible in the central atom contribution. The momen-
tum transfer-dependent changes in the fine structure are less
noticeable.

B. Al L1 edge

As a final example we examine the core-excited states
in fcc Al. The calculated x-ray absorption cross section and
the dynamic structure factor for the L1 edge at different
momentum transfers are compared in Fig. 6. To make contact
with S�q ,��, the absorption cross section �abs��� was

divided by the excitation energy, since in the limit q→0
�Ref. 3�

�abs��� 	 �S�q,�� . �26�

Comparison of �abs��� /� and S�q ,�� for q=0.24 a.u.
clearly shows the well-known and experimentally verified4

FIG. 4. Comparison of contributions to the inelastic loss spectra
from monopole and dipole transitions, for momentum transfer
q=4.78 a.u. along the c axis.

FIG. 5. Changes in the shape of different contributions to the Be
K-edge spectra, as a function of the magnitude of the momentum
transfer along the c axis for two values of q listed in the figure
labels. The upper panel shows the changes for the monopole con-
tribution and the lower panel, those for the dipole allowed transi-
tions. The spectra were normalized so that the height of the first
peak is the same for both values of q.

FIG. 6. Comparison of inelastic scattering and x-ray absorption
spectra at the Al L1 edge using the path expansion for several values
of momentum transfer as indicated in the figure labels; the curve
���� /� is the result for q=0. For clarity, the inelastic scattering
spectra were slightly shifted vertically. All the spectra were scaled
to be shown on the same figure.
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fact that inelastic scattering results at low momentum trans-
fer can be used to obtain the same EXAFS information as in
XAS. Since we are interested in discussing the general trends
of the momentum transfer dependence of Si�q ,�� in the ex-
tended energy range, we have not included the Al L2,3 edge
�edge located at about 80 eV� in this theoretical demonstra-
tion. For comparison with momentum transfer-dependent ex-
periments for this energy range �we are not aware of such
experiments in any material�, one would need to include
these edges. As q is increased to q=1.5 and 4.5 a.u., the
overall shape of the spectra changes. As mentioned above,
this change is mostly due to changes in the central atom
contribution. Although the EXAFS-like oscillations appear to
diminish with higher momentum transfer, most of the broad
oscillatory structure remains.

In Fig. 7 we examine the momentum transfer dependence
of the q-dependent fine structure �q�k�. Here, we show the
XAS fine structure ��k�, together with �q�k� for several val-
ues of q at the Al L1 edge. Again, it is clear that for low q the
XAS result is reproduced. When the momentum transfer is
increased, however, the shape of the fine structure of the
spectra is modified in a way that cannot be explained by
simple scaling factors, due to the mixture between the vari-
ous angular momentum contributions. The changes are per-
haps strongest close to the edge �at small k�, but even the
high-k spectra are modified. This suggests that it may be
desirable to decompose the spectra into the various angular
momentum components �l�k� prior to additional analysis.
This is further illustrated in Fig. 8, which shows the Fourier
transform of the EXAFS �q in R space, phase corrected by
the dominant central atom p-wave phase shift exp�2i�1�.
Such Fourier transforms have peaks close to the near-
neighbor distances and provide a characterization of the
near-neighbor radial structure. Thus, they can be used for
quantitative fits of EXAFS in R space. Note that for small q
the transform is insensitive to q but becomes substantially
more complex for the larger values due to the overlapping
contributions from the various channels.

IV. CONCLUSIONS

We have shown how the real-space multiple-scattering
�RSMS� approach can be applied to model nonresonant in-
elastic scattering from deep core levels for arbitrary con-
densed systems over a broad spectral range. The approach is
a generalization to finite momentum transfer of that used to
model XAS based on the independent electron approxima-
tion and the final-state rule. In contrast to XAS, where dipole
selection rules apply, couplings to all angular momentum
components are important and hence can probe different
symmetries of the excited states. Comparison of our ap-
proach with earlier work18,32 based on the particle-hole BSE
for the case of Be K edge gives a good agreement between
these two methods. More generely the final-state rule ap-
proach used here and the BSE method have been compared
both theoretically and in terms of practical implementation in
Refs. 30 and 33. These studies and current results suggest
that an effective one-electron treatment that includes the core
hole via the final-state rule can often be adequate for calcu-
lations of inelastic scattering much the same way it is for
XAS. We have also discussed how the results may be used to
analyze the inelastic x-ray �XRS� or electron scattering
�EELS� from core electrons. In particular, we discussed the
relation between these spectra and the angular momentum
projected density of states �e.g., s-type and p-type LDOS�
and density matrix components �L,L��E�, and how these can
be extracted from a series of experimental measurements.
Our calculated spectra are compared with the experimental
XRS results18 for the case of the Be K edge, and give good
agreement over a wide energy range, both for the directional
and magnitude dependence of the momentum transfer. In ad-
dition, we have shown that the calculations reproduce the
well-known and demonstrated relationship between XAS
and nonresonant inelastic scattering at low momentum trans-
fers, i.e., the dipole limit �q→0�. An explicit example is
given for the case of the Al L1 edge. Finally, we have also
discussed the momentum transfer dependence of the fine
structure �q�k� in the EXAFS region, and suggested how this
might be exploited in structural studies.

FIG. 7. Fine structure �q�k� for Al at the L1 edge for different
values of momentum transfer as listed in the figure labels, together
with the x-ray absorption fine structure ��k�, i.e., q=0. The curves
are shifted for clarity.

FIG. 8. Fourier transform of Al fine structure for several values
of momentum transfer as listed in the figure labels. The differences
reflect the interference between different channels contributing to
the spectra.
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