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An approximate analytical scheme of the dynamical mean field theory �DMFT� is developed for the descrip-
tion of the electron �ion� lattice systems with Hubbard correlations within the asymmetric Hubbard model
where the chemical potentials and electron transfer parameters depend on an electron spin �a sort of ions�.
Considering a complexity of the problem we test the approximation in the limiting case of the infinite-U
spinless Falicov–Kimball model. Despite the fact that the Falicov–Kimball model can be solved exactly within
DMFT, the densities of states of localized particles have not been completely investigated off half filling. We
use the approximation to obtain the spectra of localized particles for various particle concentrations �chemical
potentials� and temperatures. The effect of a phase separation phenomenon on the spectral function is
considered.
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I. INTRODUCTION

The Falicov–Kimball model1 was introduced to describe
the thermodynamics of metal-insulator transitions in com-
pounds that contained both itinerant and localized quasipar-
ticles. The spinless Falicov–Kimball model is the simplest
example of an interacting fermionic system that displays nu-
merous phase transitions. Despite its relative simplicity, the
analysis of the model is very complex and still a lot of open
problems remain. The model can describe many phenomena
such as metal–insulator transition, ferromagnetism, antiferro-
magnetism, phase separations, etc.

In the dynamical mean-field theory2,3 which is exact in
infinite dimensions4 the Falicov–Kimball model can be
solved exactly by calculating the grand canonical potential
and the single-particle Green’s function.5–7 The thermody-
namics of the Falicov–Kimball model is well investigated.
The phase transitions between homogeneous phases or phase
separations are investigated using the mentioned exact
methods8,9 as well as using the effective Hamiltonian at the
large-U limit10 �see Ref. 11 for detailed review of the
Falicov–Kimball model�.

The problem of an evaluation of the spectral function of
localized particles is more complex than the investigation of
thermodynamics and the phase transitions. The f spectral
function related to the localized particles was calculated at
half-filling more than ten years ago.12 Recently, the exact
scheme has been extended to the case of different particle
concentrations,13 but due to computational difficulties the
densities of states of localized particles have not been com-
pletely investigated off half filling. So, we suggest here an
approximate analytical scheme within the dynamical mean-
field theory for calculating the f spectral function at different
particle concentrations and temperatures.

We consider the asymmetric Hubbard model describing
the dynamics of two types of particles �ions, electrons, or
quasiparticles� as a generalization of the Falicov–Kimball
model. The Hamiltonian of the asymmetric Hubbard model
in a second quantization has the following form

H = − �
i�

��ni� + U�
i

ni↑ni↓ + �
ij�

tij
�ai�

† aj�, �1�

where ni�=ai�
† ai� and the motion of particles is described by

the creation �ai�
† � and annihilation �ai�� operators. The

chemical potentials �� and the transfer parameters tij
� depend

on a sort of particles �an electron spin�. The value U de-
scribes the local on-site repulsion.

The asymmetric Hubbard model was proposed for the de-
scription of mixed-valence compounds.14 This model can
also be used for the investigation of the lattice systems hav-
ing an ionic conductivity with two types of ions. When a
single lattice site can be occupied only by one ion, the non-
trivial limit U→� should be considered. Is this case, various
thermodynamic regimes can be realized. The chemical po-
tentials or concentrations of particles of different sorts can be
fixed independently. In this context the model can be inves-
tigated in the presence of the external field corresponding to
the difference between the chemical potentials of different
sorts.

A number of methods for describing the strongly corre-
lated electron systems has been developed within the dy-
namical mean field theory. However, all these methods have
various restrictions. The quantum Monte Carlo method15–17

is numerically exact but has severe problems at low temp-
eratures and for high repulsion strength U. The exact diago-
nalization method18,19 is restricted to a small number of or-
bitals. Among the numerical techniques the most reliable one
at low temperatures is the numerical renormalization group
method.20 For example its extension was used for the de-
scription of the ground state of the standard Hubbard
model.21

Besides the numerical approaches the development of
analytical approximations for the infinite-dimensional model
still remains necessary. The Hubbard model in the large-U
limit was investigated using the noncrossing approx-
imation.22,23 Many approximations were developed for the
weak-coupling regime, for example, the Edwards–Hertz
approach.24–27 The alloy-analogy based approximations28–30

do not take into account the effect of scattering processes on
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forming the energy band and cannot be used for the investi-
gation of spectra of the asymmetric Hubbard model. In the
Falicov–Kimball limit, the alloy–analogy �AA� and modified
alloy–analogy �MAA� approximations give the density of
states of localized particles in the form of a delta function.
The scattering processes should be taken into account for a
correct description of the broadening of this peak. For ex-
ample, it was the Hubbard-III approximation31 that originally
included the electron scattering for the half-filled Hubbard
model into the theory.

We use and improve the approximate analytical approach
originally proposed for the Hubbard model32 and extended to
the asymmetric Hubbard model.8 In this method the single-
site problem is formulated in terms of the auxiliary Fermi
field. The approach is based on the equations of motion and
on the irreducible Green’s function technique with projecting
on the basis of Fermi operators. This approach gives DMFT
equations in the approximation which is a generalization of
Hubbard-III approximation and includes as simple specific
cases the AA and MAA approximations.

In the general case, the asymmetric Hubbard model in
large dimensions is a difficult problem. This problem is
much less investigated than its limiting cases: the Falicov–
Kimball model and the standard Hubbard model. In the
strong interaction limit U� tij

� some properties of the model
can be investigated using the effective anisotropic Heisen-
berg model.14 Also, there are some rigorous results. Thus, it
was proven that the ground state of the asymmetric Hubbard
model displays phase separations away from half-filling.33

However, the investigation of the spectral functions requires
approximate methods. In this paper we restrict our investiga-
tion to the Falicov–Kimball limit of the asymmetric Hubbard
model to estimate the applicability of our approximate
scheme and to obtain spectra of localized particles.

The approximation is tested on the infinite-U spinless
Falicov–Kimball model. We use the approximation to obtain
the densities of states of localized particles for various
chemical potentials �concentrations� and temperatures. The
dependencies of the chemical potentials on the particle con-
centrations are calculated using the densities of states as well
as thermodynamically by calculating the grand canonical
potential.34 To calculate the particle spectra at low tempera-
tures the phase separation should be taken into account.

In Sec. II, we review the formalism of DMFT with the use
of the auxiliary Fermi-field and the approximate analytical
scheme based on the projecting technique and the different-
time decoupling procedure. Details of the method are de-
scribed in Appendix A. In Sec. III and in Appendix B, the
exact relations between some Green’s functions are derived,
which allows us to find the projecting coefficients using only
the single particle Green’s function and the coherent poten-
tial. The results are discussed in Sec. IV, followed by our
conclusions in Sec. V.

II. FORMALISM

In the dynamical mean-field theory the infinite-
dimensional lattice model is mapped on the single-site prob-
lem

e−�H → e−�Heff = e−�H0T exp�− �
0

�

d��
0

�

d��

��
�

J��� − ���a�
†���a������ , �2�

with the coherent potential J���−��� which has to be self-
consistently determined from the conditions

G��	n� =
1


�
−1�	n� − J��	n�

, �3�

G��	n,k� =
1


�
−1�	n� − tk

� , �4�

G��	n� = Gii
��	n� =

1

N
�
k

G��	n,k� , �5�

where G� is the one-particle Green’s function, 
� is the total
irreducible part which does not depend on the wave vector k.
The sum over k in Eq. �5� is calculated by the integration
with the density of states �DOS� �a Gaussian DOS for an
infinite-dimensional hypercubic lattice and a semielliptic
DOS for a d=� Bethe lattice�.

It was shown in Ref. 32 that the single-site problem can
be formulated in terms of the auxiliary Fermi-operators ��

describing the creation and the annihilation of particles in the
effective environment. The problem is described by the fol-
lowing Hamiltonian

Heff = H0 + �
�

V��a�
†�� + ��

†a�� + H�. �6�

The approach does not require an explicit form of the envi-
ronment Hamiltonian H�. The environment is described by
the coherent potential given as the Green’s function for the
auxiliary Fermi field with the unperturbed Hamiltonian H�:

J��	� = 2�V�
2�������

†			
� . �7�

The particle creation and annihilation operators are ex-
pressed in terms of Hubbard operators

a� = X0� + X�̄2, �8�

on the basis of single-site states �nA ,nB	

�0	 = �0,0	, �A	 = �1,0	 ,

�2	 = �1,1	, �B	 = �0,1	 , �9�

where the following notations for sort indices are used: �̄
=B, =+ for �=A and �̄=A, =− for �=B. In this represen-
tation the local Hamiltonian H0 of the asymmetric Hubbard
model is

H0 = − �
�


���X�� + X22�� + UX22, �10�

and the two-time Green’s function G��	��2���a� �a�
†			 is

written as:
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G� = 2�
��X0��X�0			 + ��X0��X2�̄			 + ��X�̄2�X�0			

+ ��X�̄2�X2�̄			� . �11�

These Green’s functions are calculated using the equation of
motion approach. The technique of the projecting on the
Hubbard basis of Fermi operators with the different-time de-
coupling of the irreducible parts is used for the solution of
the problem �for details of the method see Appendix A�.

The approach used here for the approximate solution of
the single-site problem can be called as the generalized
Hubbard-III �GH3� approximation. It becomes the standard
Hubbard-III approximation in the case of the usual Hubbard
model at half-filling with spin degeneration �n↑=n↓
=1/2 ,�↑=�↓=U /2 , �X00	= �X22	 , �X��	= �X�̄�̄	�:


�
−1�	� =  1/2

	 + U/2 − 3J��	�
+

1/2

	 − U/2 − 3J��	��
−1

+ 3J��	� . �12�

The function R��	� describes band forming for particles
of sort � by the motion of particles of another sort �̄ �scat-
tering processes�. The neglect of this contribution 
R��	�
=0� gives MAA approximation. If we put R��	�=0 and ��

=0, the system is described within the simple AA approxi-
mation.

In the limit of infinite repulsion U the following solution
of the single-site problem is obtained:8

G��	� =
1 − n�̄

	 + �� −
V���

1 − n�̄

− J��	� +
R��	�
1 − n�̄

, �13�

R��	� = −
n� + n�̄

2
J�̄�	 + �� − ��̄�

−
n� − n�̄

2�
�

−�

+� Im J�̄�	� + i��d	�

	 − 	� − ��̄ + ��

tanh
�	�

2
.

�14�

The constant ��= ���̄X�̄0	+�X�2��̄
†	 can be calculated using

the exact relation given in the next section. The average par-
ticle concentrations are calculated using the imaginary part
of the Green’s functions �density of states�:

���	� = −
1

�
Im G��	 + i�� . �15�

The self-consistency conditions 
a set of equations.
�3�–�5�� relate the coherent potential J� to the Green’s func-
tion G�. For the Bethe lattice with a semielliptic density of
states

��
Bethe��� =

2

�W�
2
�W�

2 − �2, ��� � W� �16�

we have

J��	� =
W�

2

4
G��	� . �17�

In the case of the Falicov–Kimball model the unperturbed
bandwidth is zero 
2WB=0,JB�	�=0� for localized particles,
and the approach gives the exact equation for the Green’s
function of itinerant particles GA�	�. The density of state
�A�	� on the Bethe lattice is nonzero for �	+�A�
�WA

�1−nB:

�A�	� =
2

�WA
2
�WA

2�1 − nB� − �	 + �A�2. �18�

In this case Eqs. �13� and �14� give an explicit approximate
expression for the Green’s function of localized particles:

GB�	� =
1 − nA

	 + �B −
VB�B

1 − nA
+

RB�	�
1 − nA

, �19�

where

RB�	� = −
nB + nA

2
JA�	 + �B − �A�

−
nB − nA

2�
�

−�

+� Im JA�	� + i��d	�

	 − 	� − �A + �B
tanh

�	�

2
.

�20�

III. PROJECTING COEFFICIENTS IN EQUATIONS OF
MOTION FOR HUBBARD OPERATORS

The average values �Xpq��	 are calculated using corre-
sponding Green’s functions according to the spectral theorem

�Xpq��	 = �
−�

+� d	

e�	 + 1

− 2 Im�����Xpq			+i�� . �21�

These Green’s functions can be calculated using the exact
relation �B3� derived in Appendix B

V������Xpq			 = J��	���a��Xpq			. �22�

For the asymmetric Hubbard model we have to calculate
the coefficients V���:

�� = ���̄X�̄0	 + �X�2��̄
†	 = ���̄�X�̄0 + X2��	 �23�

which are expressed as

V��� = �
−�

+� d	

e�	 + 1
Im ��

��	 + i�� , �24�

��
��	� = 2J�̄�	���X0�̄ − X�2�X�̄0 + X2�			

= 2J�̄�	�
��X0�̄�X�̄0			 − ��X�2�X2�			� . �25�

In the limit of infinite on-site repulsion U the state with
double occupation is excluded and we have

��
��	� =

1

�
J�̄�	�G�̄�	� . �26�

For the Falicov–Kimball model it is possible to calculate the
exact Green’s functions for itinerant particles and it gives the
exact expression for VB�B.
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Let us note that previously this parameter was calculated
approximately using the Green’s functions obtained by
means of the linearized equations of motion and neglecting
the irreducible parts.8,32,34 In the model with infinite U this
approximate value is

�B
��	� =

1

�
JA�	�

1 − nB

	 + �B
, �27�

and it corresponds to the approximation of the series �B9�
where only the first term �the zero approximation for GA� is
taken into account.

There is shown a comparison between the approximate
and the exact values of �B in Fig. 1. The improvement given
by the exact relation �26� allows us to investigate the system
at low temperatures where summing up the whole series �B9�
is essential.

IV. RESULTS

Dependencies of chemical potentials �A and �B on the
particle concentrations are calculated using corresponding
densities of states. DOS of localized particles is obtained as
an imaginary part of the Green’s function

�B�	� = −
1

�
Im GB�	 + i�� . �28�

This Green’s function has the correct analytic properties �re-
lations between imaginary and real parts� within the consid-
ered approximations �GH3, MAA, and AA�. The approxi-
mate DOS always has the correct sign and the sum rule is
fulfilled: the integral of DOS over all frequency is equal to
unity for finite U and is equal to 1−n�̄ for U→� when the
upper band tends to infinity.

For the Falicov–Kimball model the density of states of
localized particles can be calculated exactly,11–13 but numeri-
cal results were obtained mostly at half-filling. The constant
�B is zero at half-filling �nA=nB=1/2� because of the
particle-hole symmetry. In this case we have the simple ap-
proximate solution of the single-site problem

GB�	� =
	 − 2JA�	�

	2 − U2/4 − 2	JA�	�
. �29�

This result at half-filling is independent of temperature, but
for high temperatures and large values of U the approximate
scheme reproduces the exact results �Fig. 2�.

For simplicity we restrict our investigation to the Falicov–
Kimball model with the infinite repulsion U on the Bethe
lattice. In this case the model describes the system with an
average site occupation no more than unity. There is a ho-
mogeneous state for temperatures larger than critical Tc
�0.060WA. For lower temperatures �T�Tc� there are vari-
ous types of phase transitions depending on a thermody-
namic regime.8–10

First, we consider a possibility of describing the phase
transitions using the approximate equations. For this reason,
the behavior of dependencies of the chemical potential �B on
the concentration of localized particles nB is investigated.
The phase transition is indicated by the thermodynamic un-
stable region where ��B /�nB�0. When the critical tempera-
ture is approached from below, the dependence �B�nB� be-
comes monotonic ���B /�nB�0�.

In Fig. 3 the approximate curves �B�nB� are compared
with the exact results obtained thermodynamically.8,34 The
alloy-analogy based approximations give the density of
states of localized particles in a form of a noninteracting
delta function, which is correct in the atomic limit tA=0.
Thus, the MAA approximation can give reasonable results
only when the chemical potential �A�0 �i.e., the concentra-
tion of itinerant particles tends to zero�. This approximation
shows the presence of a phase transition. However, it over-
estimates the critical temperature. In Fig. 3 the exact curve at
T=0.060 is already monotonic but the MAA approximation
shows the region with unstable concentration values, i.e.,
there is still a phase transition.

The GH3 approximation, unlike the MAA approximation,
incorporates the scattering processes forming the energy
band of localized particles. This is crucial for the calculation
of thermodynamic quantities. The approximate curves coin-

FIG. 1. Exact values of � �solid lines� are compared with the
approximate ones calculated using the relation �27� �dashed lines�
for various temperatures and nB. One can see that the approximation
is applicable only for very high temperatures.

FIG. 2. DOS of localized particles for the Falicov–Kimball
model on the hypercubic lattice with noninteracting DOS �A

hyp���
=�−1/2 exp�−�2� at half-filling �nA=nB=1/2�. Solid line—our ap-
proximation; dashed line—exact result �Ref. 12�.
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cide with the exact ones in a wide range of temperatures for
the concentrations larger than some value which depends on
�A. In Fig. 3 ��A=0� one can see a good agreement with the
exact result at �A=0 for concentrations nB�0.5. The similar
properties also remain when �A�0 corresponding to nA
�1/2 �Fig. 4�. At temperatures lower than the critical one
the approximation clearly indicates the phase transition and
gives the correct value for Tc�0.060.

Spectra of localized particles are plotted in Fig. 5. In this
case temperatures are higher than the critical one, so a ho-
mogeneous state is stable. The parameter values are chosen
so that the approximation gives the correct thermodynamic
�B�nB� relations. The energy band of itinerant particles �A�
depends only on a concentration nB and its width is
2WA

�1−nB. However, the band of localized particles �B� is
generated by scattering processes and its spectral shape de-
pends on the concentration nB, the chemical potential �A �or

the corresponding concentration nA� and temperature.
Depending on the values of the chemical potential of itin-

erant particles �A �or nA� there are two limiting cases with
different properties of the localized particle spectrum. For
very small nA �negative �A� the system is close by its behav-
ior to the atomic limit, i.e., the spectrum �B�	� is in the form
of a delta peak. The sharp peak is slightly broadened by the
scattering of itinerant particles 
Fig. 5�a�, �A=−0.4�. The
contrary case with the nearly filled bands is when the total
concentration of particles tends to unity, nA+nB→1 
Fig.
5�c�, �A=0.4�. In this case the peak vanishes because the
contribution of the coherent potential of mobile particles
JA�	� and the corresponding function RB�	� �20� becomes
larger and the simple pole in Eq. �19� disappears. The spec-
trum �B�	� corresponds by the form to the lower Hubbard
subband �or the lower subband for the half-filled Falicov–
Kimball model obtained in Ref. 12� with the chemical poten-
tial located in a gap in the strong coupling limit. The inter-
mediate case with the broad band superimposed by the sharp
peak is shown in Fig. 5�b�.

States with concentration values in some region �where
��� /�n��0� are thermodynamically unstable at low tem-
peratures. So, the presence of phase transitions should be
taken into consideration. There are phase transitions between
homogeneous phases with a concentration jump in the ther-
modynamic regime with the fixed chemical potentials ��A

=const,�B=const�. In this case the density of states changes
instantly as the concentration jumps. If one of the concentra-
tions �nA or nB� is fixed the homogeneous state is unstable
and the phase separation takes place. The phase transitions
for the Falicov–Kimball model were investigated in many
works �see Ref. 11�; the regimes mentioned above were in-
vestigated for the Falicov–Kimball model using the exact
thermodynamic equations in Ref. 8.

Let us consider the thermodynamic regime with fixed val-
ues of �A and nB. In the homogeneous state the spectral
function of itinerant particles �A depends on nB and �A 
Eq.
�18�� and is independent of temperature. However, in the
phase separated state the spectrum of the whole system can
be considered as a superposition of spectra of each compo-
nent. The homogeneous state is unstable for the concentra-
tion values nB� �nB1 ,nB2� and the system is separated into
two different phases with the concentrations of B particles
nB1�0.52 and nB2�0.78 at T=0.059WA. The concentrations

FIG. 3. Dependence of �B on nB in different approximations is
compared with the exact result obtained thermodynamically. The
parameter values: WA=1, WB=0, U=�. �1� exact result; �2� MAA;
�3� GH3.

FIG. 4. Dependence of �B on nB �WA=1,WB=0,U=��: �1�
exact result; �2� MAA; �3� GH3.
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of the components �nB1 ,nB2� depend on temperature.8 Thus,
the spectra �A and �B are temperature dependent in the seg-
regated phase. In Fig. 6�a� DOS of localized particles is plot-
ted at temperature T=0.059WA�Tc. In Fig. 6�b� the spec-
trum at various temperatures is compared. The bandwidth is
larger in the segregated state than in the homogeneous state
�T�Tc� and is temperature dependent.

V. CONCLUSIONS

The approximate analytic approach within DFMT for cal-
culating the single-particle Green’s functions of the asym-

metric Hubbard model is developed and improved. The
method is tested on the Falicov-Kimball model with the in-
finite on-site repulsion. It is shown that for high enough tem-
peratures or large concentrations of localized particles the
approach reproduces satisfactory the exact behavior of the
chemical potential and can correctly indicate the instability
of a homogenous state and the presence of phase transitions.
Although quantitative criteria of its applicability are not for-
mulated, the region of the good agreement is established
both at and away from half-filling. The approximation allows
one in the future to investigate the spectrum and thermody-
namics of the asymmetric Hubbard model for various con-
centration values.

Different-time decoupling in the simplest way takes into
account effects of the scattering on fluctuations of particle
and spin densities, as well as the scattering on fluctuations
related to the creation and annihilation of holes and doubly
occupied states for finite U.

Thus, the generalized Hubbard-III approximation �GH3�
partially includes into the theory the scattering of particles
and describes the formation of the band of localized par-
ticles. In the infinite-U limit the spectrum of localized par-
ticles is obtained for various particle concentrations and tem-
peratures. The form of this spectrum continuously changes
from a delta peak to the characteristic form of the lower
subband of the spectrum in the Hubbad-III approximation
when the chemical potential of itinerant particles increases.

FIG. 5. DOS of localized particles within the GH3 approxima-
tion for various �A and temperatures. WA=1; WB=0; U=�; �1� T
=0.06, �2� T=0.2.

FIG. 6. DOS of localized particles within the GH3 approxima-
tion �WA=1,WB=0�. �A� At temperatures below Tc �T=0.059� the
state is separated into two phases with different particle concentra-
tions: �1�, �2� the spectra of each component; �3� the superposition
of �1� and �2�, �B� DOS for various temperatures �1−T=0.059,2
−T=0.061,3−T=0.2,4−T=1.0�.
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APPENDIX A: DIFFERENT-TIME DECOUPLING OF
IRREDUCIBLE PARTS

The Green’s functions in Eq. �11� are calculated using the
equations of motion for Hubbard operators:

i
d

dt
X0���̄2��t� = 
X0���̄2�,Heff� . �A1�

The commutators �A1� are projected on the subspace formed
by operators X0� and X�̄2:


X�,Heff� = �1
�X0� + �2

�X�̄2 + Z�. �A2�

The operators Z0���̄2� are defined as orthogonal to the opera-
tors from the basic subspace:8,32,34

��Z0���̄2�,X0���̄2��	 = 0. �A3�

These equations determine the projecting coefficients �i
0���̄2�

which are expressed in terms of the mean value

�� = ���̄X�̄0	 + �X�2��̄
†	 . �A4�

Using this procedure by differentiating both with respect
to the left and to the right time arguments, we come to the
relations between the components of the Green’s function G�

and scattering matrix P̂�. In a matrix representation, we have

Ĝ� = Ĝ0
� + Ĝ0

�P̂�Ĝ0
�, �A5�

where

Ĝ� = 2���X0��X�0		 ��X0��X2�̄		
��X�̄2�X�0		 ��X�̄2�X2�̄		

� , �A6�

and nonperturbed Green’s function Ĝ0
� is

Ĝ0
� =

1

D�� 	 − b� − 
V�

A2�̄

��

− 
V�

A0�

�� 	 − a�
�A0� 0

0 A2�̄
� , �A7�

where

Apq = �Xpp + Xqq	, A0� = 1 − n�̄, A2�̄ = n�̄, �A8�

D� = �	 − a���	 − b�� −
V�

2

A0�A2�̄

��
2 , �A9�

a� = − �� +
V�

A0�

��, b� = U − �� +
V�

A2�̄

��. �A10�

The scattering matrix

P̂� = 2�A0�
−1 0

0 A2�̄
−1 ���Z0��Z�0		 ��Z0��Z2�̄		

��Z�̄2�Z�0		 ��Z�̄2�Z2�̄		
�

�A0�
−1 0

0 A2�̄
−1 � , �A11�

being expressed in terms of irreducible Green’s functions
contains the scattering corrections of the second and the
higher orders in powers of V�. The separation of the irreduc-

ible parts in P̂� enables us to obtain the mass

operator �M̂�= P̂��ir and the single-site Green’s function ex-
pressed as a solution of the Dyson equation:

Ĝ� = �1 − Ĝ0
�M̂��−1Ĝ0

�. �A12�

We restrict ourselves to the simple approximation in cal-

culating the mass operator M̂�, taking into account the scat-
tering processes of the second order in V�. In this case

M̂� = P̂�
�0�, �A13�

where the irreducible Green’s functions are calculated with-
out allowance for correlation between electron transition on
the given site and environment. It corresponds to the proce-
dure of different-time decoupling, which means in our case
an independent averaging of the products of X and � opera-
tors.

Let us illustrate this approximation on the example of
calculation of the following irreducible Green’s function:

I�	� � ���X00 + X��������
†�X00 + X���			

ir . �A14�

According to the spectral theorem, this Green’s function is
related to the corresponding time correlation function, and
according to the different-time decoupling �see Ref. 35 and
references therein� we have

���
†�t��X00 + X���t�X00 + X�����	ir

� ��X00 + X���t�X00 + X���	���
†�t���	 . �A15�

Such a decoupling reproduces the structure of the diagram
series for the mass operator �irreducible part� of interacting
particles within the approximation, where the propagators
connecting external vertices are independent. In the equation
of motion approach, the different-time decoupling corre-
sponds to the partial summation of the direct Wick’s theorem
expansion.

Calculation of these correlation functions in a zero ap-
proximation

��X00 + X���t�X00 + X���	 � ��X00 + X���2	 = A0�

�A16�

leads to the result
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I�	� = A0��������
†			

� =
A0�

2�V2J��	� . �A17�

Using the above procedure we can obtain the final expres-
sions for the total irreducible part:


�
−1�	� =  A0�

	 + �� − �̃��	�
+

A2�̄

	 + �� − U − �̃��	�
�−1

+ �̃��	� , �A18�

where

�̃��	� = J��	� −
R��	�
A0�A2�̄

+
V����	�
A0�A2�̄

, �A19�

and

R��	� = −
�X�� + X�̄�̄	

2
J�̄�	 + �� − ��̄�

−
�X�� − X�̄�̄	

2�
�

−�

+� d	� Im J�̄�	� + i��

	 − 	� − ��̄ + ��

tanh
�	�

2

+
�X00 + X22	

2
J�̄�U − �� − ��̄ − 	�

−
�X00 − X22	

2�
�

−�

+� d	� Im J�̄�− 	� − i��

	 − 	� + ��̄ + �� − U
tanh

�	�

2
.

�A20�

The used approach, where the scattering processes are
considered in the second order of V�, is an analog of the
known procedure of calculating the mass operator for Fermi-
particles interacting with bosons �when the loop-like renor-
malization of fermionic propagators due to the emission and
absorption of bosons is taken into account�.

APPENDIX B: EXACT RELATIONS BETWEEN GREEN’S
FUNCTIONS

Let us consider the effective single-site problem in terms
of the auxiliary Fermi field

Ĥeff = Ĥ0 + Ĥ� + �
�=1

m

V��a�
†�� + ��

†a�� , �B1�

Ĥ0 is a single-site Hamiltonian; Ĥ� is an auxiliary environ-
ment Hamiltonian. The number m of sorts of itinerant par-
ticles can be arbitrary �m=1,2,3, etc.�. So, the effective
Hamiltonian can describe the Falicov–Kimball model �m
=1� and the Hubbard model �m=2�. The algebra of � opera-
tors is defined by the anticommutation relations:

���,��� = ���
† ,��

†� = 0, ���
† ,��� = ��,�. �B2�

It can be proved that the following relations take place

V������Â			 = J��	���a��Â			, �B3�

2�V�
2�������

†			 = J��	� + 2�J�
2�	���a��a�

†			, �B4�

where Â is the arbitrary Fermi operator that anticommutates
with the � operators, and J��	� is the Green’s function for
the unperturbed Hamiltonian:

J��	� = 2�V�
2�������

†			
� .

Proof: Thermodynamic perturbation theory can be formu-
lated based on the interaction representation for the statistical
operator with the use of the H0+H� operator as the zero-
order Hamiltonian:

�̂ = e−�Heff = e−��H0+H���̂��� , �B5�

�̂��� = e−��H0+H��T� exp�− �
0

�

d�Ĥint���� . �B6�

The part of the interaction Hamiltonian describing one sort
��� of particles is separated off:

Ĥint = V��a�
†�� + ��

†a�� + B̂�. �B7�

The residue B̂� commutates with the operators of the chosen

sort �: 
B̂� ,���= 
B̂� ,��
†�=0. Thus, at the perturbation expan-

sion the operator ��
�†� does not have to be paired with the

operator B̂�. Here we introduce notations for the Green’s
functions

G��� − ��� = �T���
†���������	0,

G��� − ��� = �T�a�
†���a�����	 ,

���� − ��� = �T�Â����������	 ,

G�
A�� − ��� = �T�Â����a�����	 .

The perturbation theory expansion of the scattering matrix
�̂��� gives the following series for the Green’s function
����−���:
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�B8�

The averaging of T products is performed in the zero-order
Hamiltonian according to the Wick’s theorem by the con-
secutive pairing. We start the pairing procedure from the op-
erator ������ and it is performed only with the operators ��

† .
After the first pairing we have the following expression:

���� − ��� =
V�

2l+1

�����	0
�

0

�

d��G��� − ���

��
p=0

�

�
l=0

p
1

l!l!�2p − 2l�!�0

�

d�1 . . . d�2p�T�Â���

�a������a�
†���1 . . . �a�

†���l���
†a��l+1 . . . ���

†a��2l

�B̂���2l+1� . . . B̂���2p�	0. �B9�

Summing up the series in Eq. �B9� gives the Green’s func-
tion G�

A��−��� and we have

���� − ��� = V��
0

�

d��G�
A�� − ���G���� − ��� , �B10�

or in the Matsubara frequency representation:

���	n� = V�G�
A�	n�G��	n� . �B11�

Finally, in order to obtain the expression �B3�, an analytical
continuation of the Green’s functions from the imaginary
axis to the real one should be done �i	n→	+ i� ,G�

A�	n�
→2���a� � Â			 ,���	n�→2�V����� � Â			 , . . . �. If we put Â
=��

† , the pairing of the operator ������ with ��
†��� gives the

first term in Eq. �B4�. The second term is obtained using the
procedure the same as at deriving the relation Eq. �B3�.
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