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Photonic crystals �PCs� have many potential applications because of their ability to control light-wave
propagation. We have investigated the tunable band gap in a photonic crystal modulated by a nematic liquid
crystal. Numerical simulations show that the band gaps can be continuously tuned in two-dimensional square
and triangular lattices of cylinders by infiltrating nematic liquid crystals. Then we can control the band gap in
a PC structure. We also analyzed the gap maps of tunable band gap by considering various indices modulation
of liquid crystals. These results can be used as tunable field-sensitive polarizer in photonic integrated circuits.
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I. INTRODUCTION

Photonic crystals �PCs� are artificial dielectric or metallic
structures in which the refractive index modulation gives rise
to stop bands for optical waves within a certain frequency.1,2

These crystals have many potential applications because of
their ability to control light-wave propagation. The periodic-
ity is broken by introduction of some defects into the crys-
tals. It has been shown that doped PCs permit the guiding of
waves in two different geometric paths for two distinct
wavelength ranges.3 Such structures can be use to design
highly efficient optical devices. Optical waveguides in two-
dimensional �2D� PCs produced by insertion of linear defects
into PC structures had been proposed4 and experimentally
proved.5 PCs had attracted much attention in the fabrication
of high-Q microcavities. The introduction of a local defect
inside a perfect 2D periodic dielectric structure may give rise
to a sharp resonant state inside the crystal in the vicinity of
the defect. Villeneuve et al. investigated the properties of a
tunable single-mode waveguide microcavity that is well
studied for frequency modulation and switching.6,7 Planar PC
circuits consist of devices, such as splitters,8 filters,9 and
multichannel drop filters,10 by controlling the interaction be-
tween static devices, such as waveguides, cavities, or horns.
However, for many wavelength division multiplexing appli-
cations, it would prove advantageous to tune these devices,
to some degree, to enable wavelength selectivity.

Recently, it was found that the anisotropy in atom dielec-
tricity can break the degeneracy of photonic bands such that
partial band gaps can be created in fcc, bcc, and simple cubic
�sc� lattices.11 It was also demonstrated that an anisotropy in
dielectricity can remarkably increase absolute band gaps in
2D PC structures.12,13 More recently, Kushwaha and Mar-
tinez were concerned with a 2D periodic system of semicon-
ductor cylinders embedded in a dielectric background.14

It is important, however, to obtain tunable PC waveguides
for applications in optical devices. Tunable PC waveguides
that utilize synthetic opals and inverse opals infiltrated with
functional materials have been proposed.15,16 One can con-
trol the refractive indices of opals by adjusting various fac-
tors and fields. For example, one can change the refractive
indices of conducting polymers and liquid crystals �LCs� by
changing the temperature and the electric field of the poly-
mer or crystal. Therefore one can change the optical proper-

ties of tunable PC waveguides composed of such materials
by changing the temperature and the electric field in the
same way. Recently, the propagation of tunable light in
Y-shaped waveguides in 2D PCs by use of LCs as linear
defects was proposed.17,18 The tunable PC waveguide cou-
pler based on nematic LCs was presented by the authors.19

In this paper, we theoretically demonstrated the tunable
band gaps of transversal electric �TE� and transversal mag-
netic �TM� modes in 2D PC structure with nematic LCs. The
2D PC structures are assumed to be composed of Si circular
rods with square or triangular lattices surrounded by the LC.
The band gaps can be controlled by rotating directors of LCs
under the influence of the applied electric field. We also pre-
sented a field-sensitive polarizer to explain how to use this
tunable PC structure.

II. NUMERICAL METHOD

Following discussion of Busch and John,20 we can ex-
press the light-wave equation that is satisfied by the magnetic
field for 2D planes in order to determine the photonic band-
gaps of 2D periodic structures utilizing nematic LCs
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��r�
� � H�r�� = ��

c
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H�r� , �1�

where �H�r�=0. The dielectric tensor ��r�=��r+R� is peri-
odic with respect to lattice vector R generated by primitive
translation, and it may be expanded in a Fourier series on G,
the reciprocal lattice vector as

�ij�r� = �
G

�ij�G�exp�iG · r� �i, j = x,y� �2�

Generally LCs possess two kinds of dielectric index. One
is ordinary dielectric index �o, and the other is extraordinary
dielectric index �e. Light waves with electric fields perpen-
dicular and parallel to the director of the LC have ordinary
and extraordinary refractive indices, respectively. Extended
Jones matrix method21 is a simple and powerful approach for
dealing with the light transmission problem of a LC device at
normal incidence. In the 2D plane, the components of the
dielectric tensor of the nematic LC are represented as

�xx�r� = �o�r�sin2� + �e�r�cos2� , �3�
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�yy�r� = �o�r�cos2� + �e�r�sin2� , �4�

�xy�r� = �yx�r� = ��e�r� − �o�r�	cos �sin � , �5�

where � is the rotation angle of the director of the LCs and
n= �cos � , sin �� is the director of the LC, as shown in Fig.
1.

Equation �1� comprises a set of three coupled differential
equations with periodic coefficients. We define eG as the di-
rection that is perpendicular to the 2D plane. Using Bloch’s
theorem, we may expand the magnetic field as

H�r� = �
G

h�G�eGexp�i�k + G� · r	 . �6�

We could insert Eq. �2�–�6� into Eq. �1� and multiply by
the eG result in the following infinite matrix eigenvalue prob-
lem:

�
G�

HG,G�h�G�� = ��

c
�2

h�G� . �7�

We assume the TE and TM modes in the cases of director
of LCs parallel and perpendicular to 2D planes. The main
numerical problem in obtaining the eigenvalue is the evalu-
ation of the Fourier coefficients of the inverse dielectric ten-
sors. The best method is to calculate the matrix of Fourier
coefficients of real-space tensors and take its inverse in order
to obtain the required Fourier coefficients. This method was
shown by Ho et al. �HCS�.22 The eigenvalues computed with
the HCS method for 441 plane waves are estimated to be in
error �1%.

The ordinary and extraordinary refractive indices of liquid
crystals �5CB type� are nLC

o =1.522 and nLC
e =1.706, respec-

tively. The inset in Fig. 1 indicates the director n of a liquid
crystal and the rotation angle � of the director to the x axis.
The mesogenic temperature range of a single LC substance is
usually quite limited.21 For example, 5CB melts at 24 °C and
clears at 35.3 °C. 5CB is a nice material to work with be-
cause it exhibits a nematic phase at room temperature and its
nematic range is �10°. We assume that the operating tem-
perature is at a constant room temperature and that the ab-
sorption loss is negligible.

III. PC SURROUNDED BY LC

We consider that a 2D PC composed of square-lattice di-
electric cylinders surrounded by LC 5CB, as shown in Fig. 1.
The lattice constant is a and the radius of cylinders is r. The
refractive index of cylinders is taken as n0=3.4 �Si�. The
material is homogeneous in the z direction and periodic
along x and y with lattice constant. In Fig. 2, we show the
photonic band structures of 2D square lattice of dielectric
cylinders in the air �left�, in the nematic liquid crystal at �
=0° �center�, and in the nematic liquid crystal at �=90°
�right�, respectively. We have chosen r=0.2a, since the 2D
square lattice of cylinders in the air shows the largest band-
gap for TM mode. The perfect PC structure in air has two
band gaps for TM mode. One is a large band gap between the
first and second bands ��a /2�c=0.2856–0.4207�, and the
other is a small band gap between the fourth and fifth bands
��a /2�c=0.7191–0.7480�, where � is the angular fre-
quency and c is the light velocity in the free space. It is also
clear that the infiltration of LC makes the second band gap
disappear and the upper edge of the first band gap moves
down drastically with little decrease of bottom edge. The
infiltration of LC can shift the band gap to 0.2737–0.3109 at
�=0° and 0.2685–0.2819 at �=90°.

The gap maps for a square lattice of dielectric cylinders
are shown in Fig. 3. At a glance, the gap map reveals some
interesting regularities. First, the gaps all decrease in fre-
quency as r /a increases. Second, the gaps all decrease in
frequency as � increases. The third, the gaps at higher fre-
quencies disappear as � increases. The fourth, all of the gaps
seal up at r /a=0.5. At that value, the dielectric cylinders
begin to touch one another. The dielectric cylinders fill space
at r /a=0.7. The fifth, there are no significant TE gaps at all
for square lattice in the frequency range displayed. The re-
sults mean that the bandgaps of PCs can be actively modu-
lated by infiltrating nematic LCs.

Such a concept is also applicable to other lattice types and
atom configurations. We consider that a 2D PC composed of

FIG. 1. Photonic crystal structure with square lattices. The
shaded region is infiltrated with liquid crystals. The left inset indi-
cates the director of a liquid crystal.

FIG. 2. Calculated photonic band structures of the 2D square
array of Si cylinders for TM mode �solid line� and TE mode �dotted
lines� in the air �left�, in the nematic liquid crystal at �=0° �center�,
and in the nematic liquid crystal at �=90° �right�. The radius of
cylinders is taken as r=0.2a. The hatched areas represent photonic
band gaps for TM mode.
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triangular-lattice dielectric cylinders surrounded by LC 5CB.
We calculated the photonic band structure of 2D triangular
arrays using the same parameters as those employed in the
square lattice. In Fig. 4, we show the photonic band struc-
tures of 2D triangular lattice of dielectric cylinders in the air
�left�, in the nematic liquid crystal at �=0° �center�, and in
the nematic liquid crystal at �=90° �right�. The perfect PC
structure in air has two photonic band gaps for TM and TE
modes, respectively. One is a large band gap between the
first and second bands ��a /2�c=0.2792–0.4501� for TM
mode, and the other is a small one between the fourth and
fifth bands ��a /2�c=0.8251–0.8738� for TE mode. It is also
clear that the infiltration of LC makes the band gaps for TM
and TE modes shifted to 0.2661–0.3488 and 0.6525–0.6789
at �=0°. We can see from Fig. 4 that the band gap shifted to
0.2602–0.3189 at �=90° for TM mode, and disappeared at
�=90° for TE mode.

The gap maps for a triangular lattice of dielectric cylin-
ders are shown in Fig. 5. The remarkable self-similarity of
Fig. 3, which was for TM mode of the square lattice of
dielectric cylinders, is mirrored here. The successive gaps are
similar in shape and orientation, and stack regularly upon
one another. The dielectric cylinders begin touching one an-
other at r /a=0.5 and fill space at r /a=0.58. The cutoff at

r /a=0.45 is once again near the cylinder-touching condition.
The gap maps for TE mode is almost as sparse as the corre-
sponding case of the square lattice. Only a few slivers are
noticeable. The gaps decrease in frequency as � increases.

Figure 6 shows the variation of band gap due to the
change of the rotation angle of LC. The colored areas repre-
sent tunable band gaps. They all decrease in frequency as �
increases. The band gap of the triangular lattice for TE mode
sealed up at �=70°. The results show that the band gaps
could be actively modulated after infiltrating nematic LCs.
This tunable PC can act as a tunable planar lightwave com-
ponent. An example of tunable field-sensitive polarizer de-
sign is discussed in Sec. IV.

IV. TUNABLE FIELD-SENSITIVE POLARIZER

We see then that the band gap can be continuously tuned
by relatively electric fields. This tunable PC can act as a

FIG. 4. Calculated photonic band structures of the 2D triangular
array of Si cylinders for TM mode �solid line� and TE mode �dotted
lines� in the air �left�, in the nematic liquid crystal at �=0° �center�,
and in the nematic liquid crystal at �=90° �right�. The radius of
cylinders is taken as r=0.2a. The hatched areas represent photonic
bandgaps for TM mode �gray region� and TE mode �crosshatched
region�.

FIG. 5. �Color online� Gap maps for a triangular lattice of dielectric cylinders.

FIG. 3. �Color online� Gap maps for a square lattice of dielectric
cylinders.
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field-sensitive polarizer. For example, unpolarized light of
frequency �a / �2�c�=0.34 will be transmitted if �=90°;
however, only the TE-polarized component will be transmit-
ted if �=0°, as can be seen from Fig. 6. This is because there
is no complete band gap for the TE mode.

We propose the hybrid integration of conventional index-
guided waveguides and PC structure with LC. The schematic
model of tunable planar field-sensitive polarizer is shown in
Fig. 7. The conventional waveguide has core and clad refrac-
tive indices of n1=1.5 and n2=1.465, respectively. The con-
ventional waveguide has a width of 2 �m so it supports a
single-guided mode for wavelength in the telecommunica-
tion band near 1.55 �m. The PC lattice is composed of a
triangular array of silicon posts with a lattice constant a
=500 nm, and a post radius r=0.2a.

In nematic LCs the directors of the LCs depend on the
direction of the electric field in 2D planes. Indium tin oxide
�ITO� layers can be attached to the top and bottom of the PC
structure. Then we can apply the electric field that sums up
the electric fields in the x and the y directions in arbitrary
directions in 2D planes by adjusting the magnitudes of the
electric field in the x and y directions, respectively, making it
possible to rotate the directors of the LCs. Figure 8 shows
the computer simulations of the rotation angle � as a func-

tion of normalized voltage. The director can be reoriented by
an electric field when the field strength exceeds the Fréeder-
icksz transition threshold.21 When the applied voltage V ex-
ceeds the Fréedericksz transition threshold �Vth�, the direc-
tors begin to tilt. Vth is the threshold voltage that is found to
be 0.699 Vrms at 1 kHz sinusoidal frequency. Figure 9 shows
the computer simulations of the band gap as a function of
normalized voltage. The applied electric field is in the small
voltage region. The colored areas represent tunable band
gaps. The band gaps decrease in frequency as applied voltage
increases.

In general, the response time of a LC is of the order of a
millisecond. However, it has been reported that the response
time of LCs in nanoscale voids becomes of the order of
100 �s.23 The orientational relaxation times calculated by

FIG. 7. A tunable field-sensitive polarizer constructed with hy-
brid conventional waveguide and PC structures.

FIG. 9. �Color online� Calculated photonic band gap as a func-
tion of normalized voltage. The applied electric field is in the small
voltage region. The radius of cylinders is taken as r=0.2a. The
colored areas represent tunable band gaps.

FIG. 6. �Color online� Photonic bandgap as a function of rota-
tion angle �. The radius of cylinders is taken as r=0.2a. The col-
ored areas represent photonic band gaps.

FIG. 8. Calculated rotation angle � as a function of normalized
voltage. Vth is the threshold voltage.
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the molecular dynamics formalism, and the experimental
data determined by nuclear magnetic resonance spectroscopy
for the nematic phase of 5CB crystal at 300 K were pre-
sented in Ref. 24. Therefore our tunable PC structure with
LCs can be used as a fast field-sensitive polarizer in planar
photonic integrated circuits.

V. CONCLUSION

We have demonstrated, numerically, from the photonic
band calculation, the effects of LC infiltration on the band

gaps of 2D square and triangular lattices of dielectric cylin-
ders. It is also demonstrated that the band gap can be con-
trolled by rotating directors of LCs under the influence of
applied electric field. We analyzed the gap maps by consid-
ering various indices modulation of liquid crystals. Because
of large varieties of anisotropic materials in LC, this opens
up a scope for designing the tunable devices in photonic
integrated circuits. Further theoretical investigations and
many experimental efforts are needed to bring the tunable
band gap into reality.
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