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Spin, charge, and orbital fluctuations in a multiorbital Mott insulator
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The two-orbital degenerate Hubbard model with distinct hopping integrals is studied by combining dynami-
cal mean-field theory with quantum Monte Carlo simulations. The role of orbital fluctuations for the nature of
the Mott transition is elucidated by examining the temperature dependence of spin, charge, and orbital suscep-
tibilities as well as the one-particle spectral function. We also consider the effect of the hybridization between
the two orbitals, which is important particularly close to the Mott transition points. The introduction of the
hybridization induces orbital fluctuations, resulting in the formation of a Kondo-like heavy-fermion behavior,
similarly to f-electron systems, but involving electrons in bands of comparable width.
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I. INTRODUCTION

Strongly correlated electron systems with multiorbital
bands pose a variety of intriguing problems. One of the re-
cently debated topics is the orbital-selective Mott transition
(OSMT) in highly correlated d-electron systems.!=® It is a
fundamental issue of multiorbital systems whether Mott tran-
sitions would take place in sequence or simultaneously for
all bands, if correlation would gradually be turned on. There
are, however, also specific materials which have been dis-
cussed in this context such as calcium-doped single-layer
strontium ruthenate Ca,_,Sr,RuO, (Ref. 7) and the ternary
nickel oxide La,,,Ni,Os,,; (Refs. 8 and 9) where the chemi-
cal substitution (or the change in the temperature) may trig-
ger the OSMT in the 1,, (e,) orbitals in the former (latter)
case.

The extensive studies on the Mott transition in the mul-
tiorbital systems clarified that the competition between the
intraorbital and interorbital interactions as well as the Hund
coupling plays a key role to determine the nature of the Mott
transition.* It was found that under special conditions in a
two-band system the Mott transitions may merge to a single
one, but would split for a generic form of the model. In
particular, the presence of Hund coupling seems to be essen-
tial to observe distinct transitions. These conclusions were
drawn from the analysis of the quasiparticle weights com-
puted at zero temperature. In order to characterize the tran-
sitions the behavior of the spin, charge, and orbital fluctua-
tions provides additional valuable information. A systematic
study of the temperature dependence of certain susceptibili-
ties will give us the necessary insight to analyze in particular
the electronic degrees of freedom which are localized
through the Mott transition.

The above discussions on the Mott transition are restricted
so far to systems for which the bands do not hybridize, but
are coupled to each other only through electron-electron in-
teractions. However, the hybridization between the bands
may be important in some compounds.'? In particular, this
effect could give rise to a qualitative change in the phase
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diagram, when there occurs the OSMT, for which the inter-
mediate phase appears with one orbital localized and the
other itinerant. One thus naively wonders whether Kondo-
like heavy-fermion states would be induced by the hybrid-
ization between the orbitals. In fact, certain observed features
can possibly be attributed to Kondo-like behavior in the
compound Ca,_,Sr,RuO, (0.2<x<0.5),” where the hybrid-
ization between orbitals is induced by the tilting of RuOgq
octahedra.!! It is surprising that this behavior emerges from
electrons which originate from bands of comparable width.
These interesting observations naturally motivate us to ex-
plore the effect of hybridization in more detail.

In this paper, we study a two-orbital Hubbard model with
the distinct hopping integrals by combining dynamical mean-
field theory'>"'> (DMFT) with quantum Monte Carlo (QMC)
simulations.'®!7 We examine the spin, charge, and orbital
fluctuations which give insight into the electronic properties
in the regime of the OSMT. We further consider the effect of
hybridization, which may be important in real materials, and
show that heavy-fermion-like behavior emerges upon the in-
troduction of hybridization. The paper is organized as fol-
lows. In Sec. II, we introduce the model Hamiltonian for the
two-orbital system and briefly explain the framework of
DMFT. We discuss how the spin and orbital fluctuations af-
fect the metal-insulator transition in Sec. III. A brief sum-
mary is given in the last section.

II. MODEL AND METHOD

We consider the two-orbital Hubbard Hamiltonian
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where claa(c,m,) creates (annihilates) an electron with spin
o (=7,]) and orbital index « (=1,2) at the ith site and
Migo=C1oCiae U (U') represents the intraband (interband)

Coulomb interaction and J the Hund coupling. For electron
hopping, we introduce

1P =108,5+ VS, ()

with the orbital-dependent nearest-neighbor hopping IEJ‘.I) and
the hybridization V between two orbitals. By this generalized
model, we can study several different models in the same
framework. For V=0, the system is reduced to the multior-
bital Hubbard model with the same (t t;;) or distinct
orbitals.** On the other hand, for t(J)—O the system is re-
duced to a correlated electron system coupled to localized
electrons, such as the periodic Anderson model (J=0) for
heavy-fermion systems'8-?? or the double-exchange model
(J>0) for some transition-metal oxides.>>?° For general
choices of the parameters, we expect a variety of character-
istic properties inherent in these limiting models to appear
naturally.

To investigate the above degenerate Hubbard model, we
make use of DMFT,!>1> which has successfully been applied
to various electron systems such as the single-band Hubbard
model,2’3* the multiorbital Hubbard model,3*6:17-35-40 and
the periodic Anderson model.*'~#¢ In DMFT, the lattice
model is mapped to an effective impurity model, where local
electron correlations are taken into account precisely. The
lattice Green function is then obtained via self-consistent
conditions imposed on the impurity problem.

In DMFT for the multiorbital model, the Green function
in the lattice system is given as

Gk,2) ' =Gylk,2) ™' = 2(2), (3)
with
L (zre—al -V )
Gy(k,2) —( v A (4)
and
(202 212(1))
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where u is the chemical potential and €,(k) is the bare dis-
persion relation for the ath orbital. In terms of the density of
states p(x) rescaled by the bandwidth D,, the local Green
function is expressed as

G(2) = de oL ()z )
&(z,x) - <
&(z,x)

v(2)p(x)
&(z,%)&(z,x) —v(2)*

G12(Z)=fd/t
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Gx(2) = f dx plx) 5 s (6)
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where
gl(za-x) =Z+u- 211 —Dlx,
§2(Z,X) =Z+u- 222 - sz,
v(2)=V+3,(). (7)

In the follow ﬁg we use the semicircular density of states
p(x)=2/m1-x%

There are various numerical methods to solve the effec-
tive impurity problem. Note that the explicit model Hamil-
tonian for the impurity system is not obtained straightfor-
wardly in our case, since the lattice Green function has a
frequency-dependent term in the nondiagonal element when
the system has the hybridization V and finite bandwidth in
both orbitals. Therefore, it is not necessarily the most effi-
cient to apply the exact diagonalization®® or the two-site
DMEFT (Ref. 32) methods as impurity solvers, because these
methods require knowledge of the explicit form of the
Hamiltonian. Furthermore, self-consistent perturbation theo-
ries such as the iterative perturbation method and the non-
crossing approximation are not appropriate to discuss orbital
fluctuations in the vicinity of the critical point. In the present
study, we make use of the QMC method to treat the impurity
model at finite temperatures.16 In this connection, we note
here that the Hund coupling plays a key role in controlling
the nature of the Mott transition in the multiorbital system.®
Therefore, it is important to carefully analyze the effect of
the Hund coupling in the framework of QMC simulations. To
this end, we use the algorithm proposed by Sakai et al.,'”
where the Hund coupling is represented in terms of discrete
auxiliary fields. When we solve the effective impurity model
by means of the QMC method, we use the Trotter time slices
Ar=(TL)"'<1/6, where T is the temperature and L is the
Trotter number.

In the following, we fix the bandwidths as (D,,D,)
=(1.0,2.0) and the chemical potential as u=-U/2-U'
+J/4 to discuss the metal-insulator transitions at half-filling.

III. RESULTS
A. Nonhybridizing bands

Before presenting the results computed at finite tempera-
tures, we briefly summarize the nature of the zero-
temperature phase diagram for V=0 obtained by DMFT to-
gether with the exact diagonalization,* which is shown in
Fig. 1. There are three distinct phases depending on the
strength of the interactions. It is seen that the metallic phase
(i) remains stable up to large Coulomb interaction U along
the line U~ U’ (small J), where the Mott transitions merge
to a single transition. Away from the symmetric limit—i.e.,
U>U' with 2J=U-U'—we find two separate Mott transi-
tions in general. In between the intermediate metallic phase
(iii) appears with one band localized and the other itinerant.
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FIG. 1. (Color online) Phase diagram for the two-orbital Hub-
bard model with D;=1 and D,=2. Note that the condition of rota-
tional symmetry, U=U’"+2J, is imposed (only the region of U
= U’ is relevant). In the phase (i) [phase (ii)], both bands are me-
tallic [insulating], whereas in the phase (iii) the metallic state coex-
ists with the Mott insulating state. Two lines along U=U" with J
=0 and U'/U=3/4 with J/U=1/8 are shown, for which thermo-
dynamic properties at finite temperatures are examined in the text.

We now analyze the temperature dependence of the
charge, spin, and orbital fluctuations by combining DMFT
with QMC simulations. We still restrict ourselves here to the
case of nonhybridized bands (V=0). Two typical sets of the
parameters are considered, which satisfy the conditions
(U'1U,J1U)=(3/4,1/8) and (1,0). As seen from Fig. 1,
the Mott transitions occur at two different critical points
U, ~3 and U, ~4 in the former case, while in the latter
case they are merged to a single Mott transition at the critical
point U,~7 for zero temperature. The charge (c), spin (s),
and orbital (o) susceptibilities are defined as

B
Xyzf dTX'y(T)’ (8)

0

with y=c,s,0, and

X(7= 1) =(T|[n(7) - 2][n(7") - 2]),
X(7= 1) =(T[n(7) = n | (D][ny(7) = n (7)]),
Xo(7= 1) =(T|[n(7) = ny(D][ny (7') = mp(7)]), (9)

where T is the time-ordering operator, n(7)=2,,71,,(7),
N (7) =2 70o(7), Ne(T)=2nae(7), and 7 is an imaginary
time.

We first turn to the orbital fluctuations. The temperature-
dependent orbital susceptibility is shown in Fig. 2. In the
noninteracting system, the orbital susceptibility increases
with decreasing temperature and reaches a constant value at
zero temperature. If we now turn on the interactions (fixing
the ratios U'/U=3/4 and J/U=1/8), the orbital susceptibil-
ity is suppressed at low temperatures. This implies that
electrons tend to localize in each band independently such
that on-site fluctuations are unfavorable. Eventually, for
U=U, ~3, one of the orbitals is entirely localized, so that
orbital fluctuations are suppressed completely, giving x,=0
at T=0.
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FIG. 2. (Color online) Orbital susceptibility as a function of the
temperature T for V=0. Open (solid) symbols represent the results
in the case U=U' and J=0 (U'/U=3/4 and J/U=1/8) and dashed
lines those for the noninteracting case.

On the other hand, very different behavior can be seen
along the line U'=U in Fig. 1. In this case, the orbital sus-
ceptibility is increased with growing interactions even at low
temperatures. Interpreting this result in the context of the
phase diagram in Fig. 1, we can say that the enhanced orbital
fluctuations are relevant for stabilizing the metallic phase in
the strong-correlation regime. While such behavior is natu-
rally expected for models with two equivalent orbitals, it
appears even in systems with nonequivalent bands.*’

To examine whether the system shows metallic or insulat-
ing properties at finite temperatures, we calculate the charge
susceptibility (compressibility). The obtained results are
shown in Fig. 3. In the case U'/U=3/4 and J/U=1/8, the
system with U=3 is located near the critical point between
the metallic phase (i) and the intermediate phase (iii). With
decreasing temperature the charge susceptibility decreases
below T~ 1. The appearance of a pseudogap feature in an
intermediate-temperature range gives rise to a depletion of
the density of states at the Fermi energy for both bands.
Upon further lowering of the temperature the charge suscep-
tibility converges to a finite value, since the system still re-
mains in a metallic phase, at least for one of the two orbitals.
For U=4, which corresponds to the boundary between
phases (ii) and (iii), the charge susceptibility at low tempera-
tures is almost zero, suggesting that the system has become
completely insulating, corresponding to phase (ii). In con-
trast for U'=U we observe in an intermediate range of U that
with lowering temperature a decrease of the charge suscep-
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FIG. 3. (Color online) Charge susceptibility as a function of the
temperature 7" for V=0. Dashed lines represent the results for the
noninteracting case.
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FIG. 4. (Color online) The effective Curie constant y,T as a
function of the temperatures 7 for U'/U=3/4 and J/U=1/8. The
inset shows the results in the case U'=U and J=0. Dashed lines
represent the results for the noninteracting case.

tibility is followed by an eventual increase at the lowest tem-
peratures (Fig. 3). Comparing this with Fig. 2, we see that
the enhanced orbital fluctuations indeed have a tendency to
stabilize the metallic state.

We now move to the spin susceptibility. In Fig. 4, we plot
the effective Curie constant y,7 as a function of the tempera-
ture. We first look at the case of U'/U=3/4 and J/U=1/8.
At high temperatures, all the spin configurations are equally
populated, so that the effective Curie constant takes the value
1/2 for each orbital in our units, yielding x,7~1. When
electron correlations are weak (U=1), the system is still in
the metallic phase, so that the Pauli paramagnetic behavior
with a constant y, emerges, leading to x,7—0 as T—0. It is
seen that the increase of the interactions enhances the spin
susceptibility at low temperatures, as a result of the progres-
sive trend to localize the electrons. The effective Curie con-
stant is x,7=2 when a free spin is realized in each orbital. It
is seen that the Curie constant increases beyond the value of
2 with an increase of the interactions (U=3,4). This means
that ferromagnetic correlations due to the Hund coupling ap-
pear here.

When U’ =U (inset of Fig. 4), both spin and orbital fluc-
tuations are enhanced in the presence of the interactions.
Accordingly, both spin and orbital susceptibilities increase at
low temperatures, forming heavy-fermion states as far as the
system stays in the metallic phase (see also Fig. 2). Note that
for U=6, at which the system is close to the Mott transition
point, the spin susceptibility is enhanced with the effective
Curie constant y,7~4/3 down to very low temperatures, as
seen in the inset of Fig. 4. The value of 4/3 immediately
follows if one takes into account two additional configura-
tions of doubly occupied orbitals besides four magnetic con-
figurations, which are all degenerate at the metal-insulator
transition point. Although not clearly observed in the tem-
perature range shown, x,7 should vanish at zero temperature
for U=U'=6, since the system is still in the metallic phase,
as seen from Fig. 1.

To see the above characteristic properties more clearly,
we show the density of states for each orbital in Fig. 5,
which is computed by the maximum-entropy method.*’-*°
When the interactions increase along the line U’/ U=3/4 and
J/U=1/8, the OSMT should occur. Such tendency indeed
appears at low temperatures in Fig. 5(a). Although both or-
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FIG. 5. (Color online) Density of states for the degenerate Hub-

bard model (D,D,)=(1.0,2.0). The data are for the temperatures
T=2,1,1/2, and 1/6 from the top to the bottom.

bitals stay in metallic states down to low temperatures
(T=1/6) for U=1, the OSMT seems to occur for U=2;
namely, one of the bands develops the Mott Hubbard gap,
while the other band still remains metallic. At a first glance,
this result is slightly different from the ground-state phase
diagram shown in Fig. 1, where the system is in the phase (i)
even at U=2. However, this deviation is naturally understood
if we take into account the fact that for U=2, the narrower
band is already in a highly correlated metallic state, so that
the sharp quasiparticle peak immediately disappears as the
temperature increases beyond the small characteristic energy
scale. This explains the behavior observed in the density of
states at T=1/6. For U=3, both bands are insulating at
T=1/6 [the system is almost on the boundary between
phases (ii) and (iii) at zero temperature].

In the case U'=U, as expected we encounter the qualita-
tively different behavior shown in Fig. 5. In this case,
both bands gradually develop quasiparticle peaks as the
interactions increase, and they still remain metallic even at
U=U'=3. As mentioned above, all these features, which are
in contrast to the situation for U’ # U, are caused by the
special symmetry for U=U’, which gives rise to equally en-
hanced spin and orbital fluctuations.

B. Hybridization between distinct orbitals

We have so far treated the degenerate Hubbard model, in
which two types of orbitals do not mix with each other. In
our treatment with DMFT, the Mott insulating phase (ii) as
well as the intermediate phase (iii) may be unstable against
certain perturbations. There may be several possible mecha-
nisms that stabilize such insulating phases. One of the
mechanisms, which may play an important role in real ma-
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FIG. 6. (Color online) Solid (dashed) lines represent the density
of states for the orbital @=1 (a=2) when (D,D,)=(1.0,2.0) at T
=1/6 with fixed parameters of U'/U=3/4 and J/U=1/8. The data
are plotted for V=0.0, 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 from top to
bottom.

terials, is the hybridization between the two distinct orbitals.
We address the effect in this section.

This hybridization effect is relevant in some real materi-
als. For instance, in the compound Ca,_,Sr,Ru0,,’ the hy-
bridization between {a, 8} and v orbitals is induced by the
tilting of RuOg octahedra in the region of Ca doping,
0.2<x<0.5."' This leads to a Kondo-lattice-like effective
model and may be connected with the reported heavy-
fermion behavior,” similar to some f-electron systems. This
interesting aspect motivates us to study the mixing effect
between the localized and itinerant electrons in the interme-
diate phase (iii). Moreover, the compound La, ;Ni,Os,,;
(Ref. 8) possesses hybridization between dj.2_,2 and d2_p»
orbitals in the e, subshell. The OSMT may lead to the me-
tallic but the less-conducting state is realized below the criti-
cal temperature 7,=550 K.° Consequently we would like
also to explore how the hybridization of different type d
bands affects electronic properties especially around the
OSMT.

We study the general case with U’ # U and J#0 in the
presence of the hybridization V. In Fig. 6, the density of
states calculated by the maximum-entropy method is shown
for different choices of V. We start with the weak-coupling
case U=1, where the metallic states are realized in both or-
bitals at V=0. Although the introduction of small V does not
alter the nature of the ground state, a further increase of V
splits the density of states (V=1.5), signaling the formation
of the band insulator: namely, all kinds of elementary exci-
tations possess a gap. In contrast, we encounter different be-
havior when electron interactions are increased up to U=2
and 3. In these parameters, the system at V=0 shows the
intermediate or Mott-insulating properties at 7=1/6. It is
seen that the density of states around the Fermi level in-
creases as V increases. For U=2, the intermediate state is
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FIG. 7. (Color online) Charge, spin, and orbital susceptibilities
as a function of the hybridization V at the temperature 7=1/6.

first changed to a metallic state, where the quasiparticle
peaks appear in both orbitals (V=0.75,1.0). For fairly large
V, both bands fall into the renormalized band insulator
(V=1.5). Similarly, for U=3, the hybridization first drives
the Mott-insulating state to an intermediate one, as is clearly
seen at V=0.75, which is followed by two successive transi-
tions as is the case for U=2.

The above characteristic properties also emerge in the
charge, spin, and orbital susceptibilities at low temperature,
as shown in Fig. 7. For weak interactions (U=1), the charge
susceptibility y,. monotonically decreases with the increase
of V. When electron correlations become strong, nonmono-
tonic behavior appears in y,: the charge fluctuations, which
are suppressed at V=0, are somewhat recovered by the hy-
bridization, which leads to metallic behavior. For large V, x.
is again suppressed since the system turns into a band insu-
lator. We can see that the orbital susceptibility exhibits non-
monotonic behavior similar to the charge susceptibility, the
origin of which is essentially the same as in x,; the orbital
fluctuations suppressed at V=0 are recovered by V, and then
the formation of the band insulator causes a gradual decrease
of x,. In contrast, the spin susceptibility monotonically de-
creases with the increase of V irrespective of the strength of
the interactions. As discussed for V=0, the effective spin is
enhanced by ferromagnetic fluctuations due to the Hund cou-
pling in the insulating and intermediate phases. Upon intro-
ducing hybridization in these phases, the ferromagnetic fluc-
tuations are suppressed, leading to a monotonic decrease of a
effective Curie constant.

From the above observations, we can say that the
introduction of appropriate hybridization induces heavy-
fermion metallic behavior. In fact, this tendency can be ob-
served more clearly in an extreme choice of bandwidths
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FIG. 8. (Color online) (a) Effective Curie constant as a function
of the temperature and (b) density of states in the narrower band
(a=1) at T=1/4 for an extreme choice of bandwidths [(D,D,)
=(1.0,10.0)]. The density of states for the wider band is not shown
here. The other parameters are U=4.0, U'=3.0, and J=0.5.

[(D;,D,)=(1.0,10.0)] shown in Fig. 8. At V=0.0, the system
is in the intermediate phase, so that the completely localized
states [Fig. 8(b)] appear in the narrower band in the back-
ground of the nearly free bands. This double structure in the
system gives rise to two peaks in the temperature-dependent
effective Curie constant, as shown in Fig. 8(a). Since the
completely localized state plays a role of the f state in the
Anderson lattice model,'® a “heavy-fermion” peak appears at
the Fermi energy in the presence of V, which is essentially
the same as that observed in Fig. 6.

Finally, some comments are in order on the phase diagram
at zero temperature. In our approach, it is not easy to deal
with the system at very low temperatures, since QMC simu-
lations suffer from minus sign problems. Nevertheless, we
may give some qualitative arguments on the expected phase
diagram at zero temperature. As discussed above, the metal-
lic phase (i) is not so sensitive to V as far as it is small. This
is also the case for the completely insulating phase (ii). In
contrast, a more subtle situation appears in the intermediate
phase (iii). As mentioned above, the intermediate phase ex-
hibits Kondo-like heavy-fermion behavior at low tempera-
tures in the presence of V. Recall, however, that we are now
concerned with the half-filled band. Therefore, this Kondo-
like metallic phase should acquire a Kondo-insulating gap
due to commensurability at zero temperature. We would thus
say that the intermediate phase (iii) is changed into a Kondo
insulator with a tiny excitation gap in the presence of V at
zero temperature. Accordingly, the sharp transition between
the phases (ii) and (iii) at V=0 may be smeared and changed
to crossover behavior. These considerations lead us to a sche-
matic description of the phase diagram for the two-orbital
model with mixing between distinct orbitals, as shown in
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FIG. 9. (Color online) Schematic phase diagram for the two-
orbital Hubbard model with finite hybridization between two orbit-
als. Solid lines represent the phase boundaries between the metallic
and insulating phases. The dashed line indicates the crossover be-
tween the Mott insulator and the Kondo insulator.

Fig. 9. On the line of V=0, the OSMT, which may occur in
general choices of the parameters, separates the phase at
V=0 into three regions. The metallic phase for small U is
simply driven to the band insulator (iv) beyond a certain
critical value of hybridization. The intermediate phase at
V=0 is changed to a Kondo insulator in the presence of any
finite V. This insulating state first undergoes a phase transi-
tion to the metallic phase and eventually enters the
band insulator as V increases. The completely Mott insulat-
ing phase first shows a crossover to the Kondo insulator,
which is further driven to the metallic phase and then to
the band-insulating phase. Note that at finite temperatures
above the Kondo-insulating gap, we can observe a Kondo-
type heavy-fermion behavior in the intermediate phase with
finite V.

IV. SUMMARY

We have investigated the degenerate Hubbard model with
distinct hopping integrals by combining DMFT with QMC
simulations. By examining the spin, charge, and orbital sus-
ceptibilities calculated at finite temperatures, we have clari-
fied that equally enhanced spin and orbital fluctuations play a
vital role on stabilizing the metallic states in multiorbital
systems. This remarkable effect is responsible for whether
the system undergoes a single Mott transition or OSMT’s.
Also, we have discussed how the phase diagram at
finite temperatures slightly deviates from the ground-state
one because of the smearing effect of the narrow quasiparti-
cle peak.

We have further explored the effect of the hybridization
between the distinct orbitals and have found that it plays a
crucial role especially around the OSMT. The introduction of
hybridization in the intermediate phase enhances the charge
and orbital fluctuations, inducing the metallic phase with a
sharp quasiparticle peak. Accordingly, Kondo-like heavy-
fermion states show up at finite temperatures, which eventu-
ally drop in the Kondo-insulating phase for our half-filled
bands. We have also pointed out that the hybridization effect
smears the sharp OSMT at zero temperature and changes it
to a crossover behavior. Nevertheless, we can still observe
the OSMT at finite temperatures.
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In this paper, we have used the QMC method as an im-
purity solver in DMFT, which is not powerful enough to treat
properties at very low temperatures. Therefore, it is desirable
to exploit a complementary approach to study such low-
temperature properties more precisely, although we have ar-
rived at a reasonable phase diagram at zero temperature.
Various remaining open problems could not be addressed in
the present study. One of the most important issues to ex-
plore is the magnetism of the system, which has not been
seen here, since we have restricted our attention to the para-
magnetic phase. This problem is under consideration.
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