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We calculate the phase diagram of a ladder system, with a Hubbard interaction and an interchain coupling
t�. We use a renormalization-group method, in a one loop expansion, introducing an original method to include
k� dependence of couplings. We also classify the order parameters corresponding to ladder instabilities. We
obtain different results, depending on whether we include k� dependence or not. When we do so, we observe
a region with large antiferromagnetic fluctuations, in the vicinity of small t�, followed by a superconducting
region with a simultaneous divergence of the spin density waves channel. We also investigate the effect of a
nonlocal backward interchain scattering: we observe, on one hand, the suppression of singlet superconductivity
and of spin density waves, and, on the other hand, the increase of charge density waves and, for some values
of t�, of triplet superconductivity. Our results eventually show that k� is an influential variable in the
renormalization-group flow, for this kind of system.
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I. INTRODUCTION

The physics of ladder systems remains a source of con-
siderable interest. In the past decades, many conductors were
found, with anisotropic two-leg electronic structure, such as
SrCu2O3 �Ref. 1� or Sr14−xCaxCu24O41 �Ref. 2� compounds.
The structure of La2Cu2O5 �Ref. 3� can also be analyzed as
weakly coupled ladders, and is therefore very similar. The
phase diagram of these compounds is very rich; it is now
well established that these systems behave like Luttinger liq-
uids at high temperature, while they can behave like Fermi
liquids when T decreases; they exhibit superconducting �SC�
phases of type II, which can also be mixed with antiferro-
magnetic fluctuations. In some case, the SC phase is found to
be spin-gapped, while spinless phases are also reported.4

From a theoretical point of view, the ladder �or two-
coupled chain� model is the simplest quasi-one-dimensional
one. Although all its properties are not entirely elucidated, it
has been used by many authors as a toy model, to build and
explore new approaches �two-leaf dispersion models calcu-
lated by a Kadanoff-Wilson renormalization method5 or by a
bosonization method;6 transition between commensurate and
incommensurate filling,7 in particular close to the half-filing
case;8,9 dimensional transition,10 etc.�. These systems have
been intensively used to investigate nonconventional SC pro-
cess �with singlet11–13 or triplet14 pairing�.

This paper is devoted to the study of a ladder model, with
a Hubbard interaction �U is the Hubbard constant� and an
interband coupling �t� is the interaction factor�, at zero tem-
perature. We investigate the phase diagram in the range of
parameter 0�U�8�t�� and suppose that the electronic fill-
ing � is incommensurate. Although there is yet no evidence
for the existence of compounds lying in this range of param-
eter, we have hopes that some of these will indeed be found
and confirm the theoretical predictions that we present here.

The phase diagram of this system has been partially stud-
ied by several authors. In particular, Fabrizio has used a
renormalization group �RG� method, in a two-loop expan-
sion from the Fermi liquid solution.12 He includes interband
backward scattering gb, and, within the range of parameter

that we have investigated, finds a SC phase, named “phase
I,” which he clearly points out not to be singlet s, although
he did not elucidate the symmetry of the condensate. In his
calculations, the RG flow of susceptibilities shows several
divergences: the spin density wave �SDW� channel coexists
with the superconducting one. This author did alternatively
cut the flow before the divergences and bozonize the effec-
tive Hamiltonian; then, SDW modes disappear and are re-
placed by charge density wave �CDW� instabilities.

These results are more or less compatible with that of
other methods, using a one-loop expansion,15,16 or bozoniz-
ing the Hamiltonian of the bare system17–20 �see also Ref.
13�, or using quantum Monte Carlo method.21 These authors
generally find a singlet superconducting condensate of sym-
metry d, which coexists with SDW or CDW instabilities.
This complicated phase has also been related to the RVB
phase.22 One of the central questions is whether the SC
modes are spin-gapped or not, and receives various and even
contradictory answers. Using a two-loop expansion,
Kishine23 observes a spin gap, which is suppressed when
t�→0. This is also the result found with a density matrix RG
method by Park.24

We give a new insight into these questions, using a RG
method, in a perturbative expansion in U. This kind of
method has been used in many recent and very complete
works.25–27 Here, we calculate RG equations with one loop
diagrams, including gb couplings, as in Ref. 12, as well as all
parallel momentum dependence.

Let us emphasize that, although we begin from the Fermi
liquid solution, we find a phase with only SDW fluctuations,
for small enough interband interaction t�� t�c�U�, contrary
to all previous results obtained by RG methods, which al-
ways indicate SC instabilities as soon as t��0 �see for in-
stance Lin et al.15 �. However, this phase is different from the
one-dimension limit. This is a very remarkable result, since
k� is known to be an irrelevant variable of the RG flow.28

However, we will prove in this paper that it is indeed influ-
ential in the very case of a ladder.

When t� is increased, we observe a transition at t�c to a
superconducting phase, where singlet SC instabilities of
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symmetry d coexist with SDW ones. This phase is found by
many authors �see Refs. 12, 15, and 16 and other articles
already quoted�.

Recently, Bourbonnais et al.29,30 have examined the effect
of interchain Coulomb interactions for an infinite number of
coupled chains, using RG method. Interchain backward scat-
tering was found to enhance CDW fluctuations and favor
triplet instead of singlet SC. Here we investigated the effect
of a Coulomb interchain backward interaction Cback for the
ladder problem. We find that this interaction favors triplet SC
instabilities instead of singlet ones and CDW instabilities
instead of SDW ones in a ladder system too. Indeed, both the
singlet SC and SDW instabilities �if any� are suppressed
when Cback is increased, and we observe triplet SC as well as
CDW instabilities. The triplet SC existence region is how-
ever very narrow and lies inside the region t�� t�c�U�. For
large values of Cback �Cback�U�, CDW is always dominant;
this is consistent with what Lin et al. find.15

On the contrary, when a Coulombian interchain forward
interaction Cfor is added, all SC instabilities are depressed,
and we only observe SDW and CDW fluctuations.

We also present a detailed classification of the pair opera-
tors in a ladder, which are connected to the order parameters.
It proves a very powerful tool in these sophisticated RG
methods.

So, we will first give a short description of the model �in
Sec. II�, then present the classification of the pair operators
�in Sec. III, the symmetries are explained in Appendix C�,
then we explain the RG formulation and techniques that are
used here �in Sec. IV�. Results concerning only initially local
interactions are presented in Sec. V, while those concerning
the influence of additional interchain interactions are given
in Sec. VI. In Sec. VII we conclude.

II. MODEL

The Hubbard model of a ladder has been studied in vari-
ous articles. We give here a brief presentation of this model
�see Refs. 12 or 31 with similar notations�.

A. Kinetic Hamiltonian

1. The model in a 1D representation

The dispersion curve separates into two bands �0 and ��,
so the Fermi surface splits into four points �−kf0, −kf�, kf�,
kf0 in the � direction, � corresponds to right moving particles
and � to left moving ones�. The bands are linearized around
the Fermi vectors32 with a single Fermi velocity v f �cf. Fig.
1�. We write R the right moving particles and L the left
moving ones. Then, the kinetic Hamiltonian writes

Hcin = �
�

v f��
K

�K − kf0�R0�
† �K�R0��K�

+ �
K

�K − kf��R��
† �K�R���K�

+ �
K

�K + kf0�L0�
† �K�L0��K�

+ �
K

�K + kf��L��
† �K�L���K�� . �1�

We define the Fermi surface gap �kf =kf0−kf�. One then gets
�kf =2t� /v f. The discretization step in � direction is a, and
the reciprocal vector in this direction is defined modulo
2� /a. The distance between the chains in � direction is b.

In order to give a clear representation of all instability
processes that will be discussed afterwards, it is worth show-
ing how this model can be embedded in a 2D representation,
which we present now.

2. The model in a 2D representation

The general 2D dispersion law writes

	�k� = − 2t� cos�k�a� − 2t� cos�k�b�

as represented in Fig. 2; if one writes approximately kf
�kf0�kf�, one gets v f �2at�sin�kfa�. In real space, y� cor-
responds to the axis along the chains, and y� takes only two
values, y�= ±1, corresponding to which chain one refers to.
The � axis is then discretized, y� =1. . .N, where 4N is the
total number of states. The Fourier transformation from real
space functions to reciprocal space ones is detailed in Ap-
pendix D.

FIG. 1. The 2-band dispersion in � direction.

FIG. 2. Two-dimensional representation of the states. The physi-
cal space, for a ladder, is restricted to the hatched bands at k�=0
and k�= ±� /b. The curves correspond to the Fermi surface of a 2D
system, with an infinite number of chains. The four Fermi points, in
the ladder system, are the intersections of these curves with the

physical bands. The symmetry C̃ that maps point M onto M� is the
point symmetry around the affine point, corresponding to �kf0

+kf�� /2. The symmetry C” is the translation by the vector kf0−kf�,
which is also represented by a plain arrow.
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From y�= ±1, one gets k�=0 or ±� /b �k�=� /b and
k�=−� /b are identified�. Therefore, the physical states are
limited to the four horizontal bands, shown in Fig. 2, which
are centered on each of the four Fermi points. The two bands
centered on �±kf0 ,0� are the left and right bands 0 �L0 or R0�,
the two bands centered on �±kf� ,� /b� are the left and right
bands � �L� or R��.

B. Interaction Hamiltonian

The most general interaction Hamiltonian can be written,
with Lk�=L0��K� for k= �K ,0�, Lk�=L���K� for k= �K ,��
and idem for R,

Hint =
1

N
�

k1,k2,k1�,k2�

k1+k2=k1�+k2�

�
�1,�2

G1�k1,k2,k2�,k1��


Rk1��1

† Lk2��2

† Rk1�2
Lk2�1

+ G2�k1,k2,k2�,k1��


Rk1��1

† Lk2��2

† Lk2�2
Rk1�1

, �2�

where G� is the two-particle coupling, and we have used the
g-ology representation. We do not include umklapp interac-
tions G3 �LLRR or RRLL� nor G4 terms �LLLL or RRRR�. We
will alternatively use the singlet-triplet representation, where
� takes values �=s , t, or the Charge-Spin representation,
where �=C ,S. If not necessary, we will omit the spin depen-
dence �. Equations �A1� and �A2� give, in Appendix A 1, the
usual relations between these different representations.

We distinguish, following Fabrizio,12 g0, which
corresponds to R0

†L0
†L0R0 process, g��↔R�

† L�
† L�R��,

gf0�↔R0
†L�

† L�R0�, gf��↔R�
† L0

†L0R��, gt0�↔R0
†L0

†L�R��,
gt��↔R�

† L�
† L0R0�, gb0�↔R0

†L�
† L0R�� and gb��↔R�

† L0
†L�R0�.

The definitions of these couplings, including the k� depen-
dence are detailed in Appendix A 1 and Fig. 18; from sym-
metry considerations, one only needs g0, g�, gf0, gt0 and gb0;
in fact, we will see that even g� can be deduced from g0 in
the very case of a ladder, so that we only deal with four
couplings.

Bare couplings. Of course, in the initial Hubbard model,
the two-particle couplings do not depend on the momenta.

We will define Ũ=Ua / ��v f� and g̃=ga / ��v f�, to get rid of
the physical dimensions. Then, the bare couplings values are

simply g̃i= Ũ.
Additional Coulombian interchain interactions. The

above Hamiltonian Hint corresponds to local interactions. We
have also studied the effect of additional Coulombian inter-
chain interactions.

In order to implement a backward interchain interaction,
we need to modulate the bare parameters, which simply

writes, in this case, g̃01= Ũ+ C̃back, g̃f01= Ũ− C̃back, g̃t01= Ũ

− C̃back and g̃b01= Ũ+ C̃back, where C̃back=Cbacka / ��v f� is the
corresponding interaction factor.

When we include instead a forward interchain interaction,

of parameter C̃for=Cfora / ��v f�, the modulation of the bare

parameters writes g̃02= Ũ+ C̃for, g̃f02= Ũ+ C̃for, g̃t02= Ũ− C̃for

and g̃b02= Ũ− C̃for.

Eventually, if we include both interactions, we only need
to add the two modulations.

C. External excitation fields

We note Z the three-legged couplings to external excita-
tion fields. We will write Z�

DW, ��=C ,S� for Charge or spin
density waves, and Z�

SC���, ��=s , t� for singlet or triplet su-
perconducting states of symmetry �=s , p ,d , f ,g. Again, we
will omit index � as soon as it is not necessary, and distin-
guish z0

DW, which corresponds to L0
†R0 process,

z�
DW�↔L�

† R��, z+
DW�↔L�

† R0� and z−
DW�↔L0

†R��. The first pro-
cess corresponds to an intraband mapping that relates 0-band
states �horizontally in the 2D representation of Fig. 2�, idem
for the second one with �-band ones, while the last ones are
interband mappings �biased in Fig. 2�; the same applies to
ZSC, except that the processes now write L0R0, L�R�, L0R�,
and L�R0. The definitions of all these couplings are detailed
in Appendix A 2 and Fig. 19; from symmetry considerations,
one only needs z0, z� and z+; again, in the very case of a
ladder, we will see that z� can also be deduced from z0, so
we only deal with two couplings per instability.

With our specific choice, the initial values of the cou-
plings to external fields are all zi=1.

After this brief presentation of the model, we will now
expound the classification of the different instabilities, ac-
cording to their symmetries, which we will study afterwards.

III. RESPONSE FUNCTIONS

To each external excitation field corresponds a suscepti-
bility, which is the response function of a pair operator. The
corresponding order parameter is the mean value of this op-
erator. In order to classify the different instabilities, one just
needs to classify the pair operators. Their symmetries are
detailed in Appendix C.

We will first begin with SC instabilities.

A. Superconducting instabilities

1. SC Hamiltonian

Let us define the superconducting order parameters
��

����X�= 	O�
����X�
, where the electron-electron pair operator

writes O�
���=�X����X,���X ,X��X�,������

� , with �s= i�y for
singlet states, �tx = i�x�y =−�z, �ty = i�y�y = iI and �tz = i�z�y
=�x for triplet states ��i are the Pauli matrix, I is the 2
2
identity matrix and i is the imaginary number�. X,� is a real
space wave function; since electrons occupy discrete posi-
tions X= �ia ,bj /2� �i=1. . .N, j= ±1�, we will rather write
ij�. The corresponding Hamiltonian writes, in reciprocal
space variables,

HSC = �
P1,P2

�1,�2

Z̄SC�P1,P2,Q������Q�P1�1
�P2�2

+ ZSC�P1,P2,Q��̄����Q
† �P2�2

† �P1�1

† , �3�

where Q= �Q� ,Q��=P1+P2 is the interaction momentum.
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In order to simplify our expressions in this section, we
write Lp,�,�=L�,��p−kf�� and Rp,�,�=L�,��p+kf��, where �
=0,�. Notation �L stands for the half band integration
�kf0−�/a

kf0 or �kf�−�/a
kf� , in which case we will not need to be

precise, since what takes place at the band limit is not physi-
cally relevant, in this system.

To each order parameter ��X� corresponds to an infinite
number of Fourier componants, depending on the reciprocal
space variable Q. We will only keep components Q= �0,0�
and Q= �±�kf ,� /b�, so that 	�k� and 	�Q−k� both lie in the
physical band, close to the Fermi points. We will write, in
short, O�0� and O��±� as the corresponding pair operators.

Let us now classify the different operators, according to
their symmetry, by choosing the adequate �. The principles
of the calculation and some details are given in Appendix D.

2. Singlet s condensates

The local pairing ��X ,X��=�ii�� j j� gives singlet conden-
sates of s symmetry. The pair operator reduces to

Os
�s��X� = 2X↑X↓ = 2ij↑ij↓.

O�0� component corresponds to an intraband pairing,
named 0-condensate �Q=0, corresponding to z0

SC, see Appen-
dix A 2 and writes

Os
�s��0� = 2�

i

i,1↑i,1↓ + i,−1↑i,−1↓

= �
L

adp

2�
Lp,0↑R−p,0↓ + Lp,�↑R−p,�↓ + R−p,0↑Lp,0↓

+ R−p,�↑Lp,�↓.

O��±� component corresponds to an interband pairing,
named � condensate Q= �±�kf ,� /b�, corresponding to z+

SC,
see Appendix A 2� and writes

Os
�s���±� = − 2i�

i

e�i�kfia�i,1↑i,1↓ − i,−1↑i,−1↓�

= − i�
L

adp

2�
Lp,0↑R�kf�1±1�−p,�↓ + Lp,�↑R�kf�−1±1�−p,0↓

+ R�kf�−1±1�−p,0↑Lp,�↓ + R�kf�1±1�−p,�↑Lp,0↓.

It is however antisymmetric with parity POs
�s��� /b�

=−Os
�s��� /b��; this comes from the e−iQ�jb/2 factor in the

Fourier calculation; see details in Appendix D.
The s condensates are local in real space; see Fig. 3�a�.
If � is replaced by �i,i��m� j j�, one gets extended s states

�in reciprocal space variables, the components are multiplied

by cos�mPa� or some similar factor; see some examples in
Appendix D�. However, we did not include these in our cal-
culations.

3. Singlet d and g condensates

There are also two singlet condensates of d and g sym-
metry.

With �=�i,i�� j,−j� �interchain pairing, with equal positions
on each chain�, one gets another pair operator. Os��� com-
ponent is zero for singlet condensate, while O�0� component
corresponds to an intraband pairing �0 condensate� of d sym-
metry, and writes

Os
�d��0� = 2�

i

i,1↑i,−1↓ + i,−1↑i,1↓

= �
L

adp

2�
Lp,0↑R−p,0↓ − Lp,�↑R−p,�↓ + R−p,0↑Lp,0↓

− R−p,�↑Lp,�↓.

With �=�i,i��1� j,−j�, one gets a more complicated pair
operator. O��� component corresponds to an interband pair-
ing �� condensate� of g symmetry, and writes

Os
�g���±� = − 2i�

i

e�i�kfia�i,1↑i+1,−1↓ − i,−1↑i+1,1↓�

= − e±i��kfa/2��
L

adp

2�
sin�a�p − kf0 �

�kf

2
��


�Lp−�kf,�↑R±�kf−p,0↓ + R±�kf−p,0↑Lp−�kf,�↓

− Lp,0↑R�kf�1±1�−p,�↓ − R�kf�1±1�−p,�↑Lp,0↓� .

Be careful that the symmetry of the 0 condensate is dx2−y2

�i.e., it changes sign with C̃; see the definition afterwards�,
while that of the � condensate is both dxy �i.e., it changes
sign with px and py� and dx2−y2; moreover, dx2−y2 is imperfect
on the � condensate for instance, it maps a factor sin(a�p
−kf0+�kf /2�) onto sin(a�−p−kf0+�kf /2�), which slightly
differs�; however, the signs change according to g symmetry.
A real space representation of the different condensate of
singlet symmetry is given in Fig. 3.

If the components, in reciprocal variables, are multiplied
by cos�mPa� �or some similar factor�, one gets extended d
condensates �this corresponds to the harmonic classification�.

4. Triplet condensates

One also finds triplet instabilities.
�=�i,i��1� j j� corresponds to the px symmetry; Ot

�px��0�
corresponds to an intraband pairing �0 condensate�, and
writes

Ot
�px��0� = �

i

���

�i,1�i+1,1�� + i,−1�i+1,−1�������
�

= − i�
L

adp

2�
�
���

�Lp,0�R−p,0��

+ Lp−�kf,��R�kf−p,����sin�a�p − kf0������
� .

FIG. 3. Real space representation of SC condensate of singlet s
symmetry �a�, d �b�, and g �c�.
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Ot
�px���±� corresponds to an interband pairing �� conden-

sate�, and writes

Ot
�px���±� = − i�

i

���

e�i�kfia�i,1�i+1,1�� − i,−1�i+1,−1�������
�

= − e±i��kfa/2��
L

adp

2�
�
���

�Lp,0�R�kf�1±1�−p,���

+ Lp−�kf,��R±�kf−p,0���sin„a�p

− kf0 � �kf/2�…����
� .

Be careful that, because of the factor e−iQ�jb/2 in the Fourier
transform, this condensate is invariant under P.

With �=�i,i��1� j,−j�, one gets an intraband pairing �0 con-
densate� of symmetry fx, given by the Ot

�fx��0� component

Ot
�fx��0� = �

i

���

�i,1�i+1,−1�� + i,−1�i+1,1�������
�

= i�
L

adp

2�
�
���

�Lp−�kf,��R�kf−p,���

− Lp,0�R−p,0���sin„a�p − kf0�…����
� .

Note that dx2−y2 is again imperfect.
With �=�i,i�� j,−j�, one gets an interband pairing �� con-

densate� of symmetry fy, given by the Ot
�fy���±� component

Ot
�fy���±� = − i�

i

���

e�i�kfia�i,1�i,−1�� − i,−1�i,1�������

= i�
L

adp

2�
�
���

�Lp,0�R�kf�1±1�−p,���

− Lp,��R�kf�−1±1�−p,0�������.

Note that py antisymmetry is an internal one and does not
account on the exponential factor, in the Fourier transform. A
real space representation of the different condensate of triplet
symmetry is given in Fig. 4.

Extended states of the same symmetries can be obtained
exactly the same way as for singlet superconducting opera-
tors.

B. Density wave instabilities

1. DW Hamiltonian

We have also investigated site density wave instabilities,
defined by the order parameter �site

DW�X�
=����	X,�

† X,��
����
� , with �C= I for CDW, and �Sx =�x,

�Sy =�y and �Sz =�z, for SDW, as well as bond density wave
instabilities, defined by the order parameter �bond

DW �X�
=����	X,�

† X+1�,��
����
� , where 1� = �1,0�. These couplings

are intrachain, we distinguish intraband and interband ones.
We also investigated interchain couplings, defined by the or-
der parameters �site

DW�X�=����	X,�
† X+G,��
����

� and
�bond

DW �X�=����	X,�
† X+G�,��
����

� , where G or G�� �1� ,1�

+1�� and 1�= �0,1�.
The corresponding Hamiltonian writes, in reciprocal

space variables,

HDW = �
P1,P2

�1,�2

Z̄DW�P1,P2,Q������Q
† �P1�1

† �P2�2

+ ZDW�P1,P2,Q��̄����Q�P2�2

† �P1�1
. �4�

The construction of the response functions for these instabili-
ties is very similar to that of the superconducting instabili-
ties. So, we will only give the Fourier components of the
electron-hole pair operator for Q= �−2kf0 ,0�, Q= �−2kf� ,0�,
and Q= �−kf0−kf� ,� /b�.

SDW and CDW operators only differ by the spin factor
�matrix � or I�, so we will also omit this factor.

2. DW response function

The intraband response functions write then

Osite�− 2kf0,0� = �
L

adp

2�
Rp,0�

† Lp,0�� + Rp+�kf,��
† Lp−�kf,���,

Obond�− 2kf0,0� = i�
L

adp

2�
sin�ap�e−ikf0a�Rp,0�

† Lp,0��

+ Rp+�kf,��
† Lp−�kf,����

and

Osite�− 2kf�,0� = �
L

adp

2�
Rp−�kf,0�

† Lp+�kf,0�� + Rp,��
† Lp,���,

Obond�− 2kf�,0� = i�
L

adp

2�
sin�ap�e−ikf�a�Rp−�kf,0�

† Lp+�kf,0��

+ Rp,��
† Lp,���� .

The interband response function writes

Osite�− kf0 − kf�,
�

b
� = i�

L

adp

2�
Rp,0�

† Lp,��� + Rp,��
† Lp,0��,

FIG. 4. Real space representation of SC condensate of triplet
symmetry px �a�, fx �b�, and fy �c�.
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Obond�− kf0 − kf�,
�

b
� = − �

L

adp

2�
eakf0+kf�/2sin„a�p − �kf/2�…


�Rp,��
† Lp,0�� + Rp+�kf,0�

† Lp+�kf,���� .

The above response functions are intrachain ones. The
way we have written them one just needs to add a minus sign
before the first �or second� term of all intrachain operators, to
obtain all interchain ones.

IV. RENORMALIZATION GROUP EQUATIONS

A. Choice of the RG scheme

We have used the one particle irreducible �OPI� scheme
�Refs. 26, 33, and 34�, to calculate all diagrams, in a one-
loop expansion. We use the flow parameter �=�oe−�. We do
not renormalize v f nor kf0 or kf�.

B. k¸-dependent equations

1. k¸ dependence of the couplings

In this system, the interband backward scattering gb plays
a particular role. Due to momentum conservation, it is not
possible to put all its arguments onto the Fermi points. This
indicates that gb is not a low energy process. However, it
intervenes in the renormalization of low energy processes.
For instance, in the renormalization of g0, dg0 /d� gives a
contribution containing a gb0 scattering, with a factor � / ��
+v f�kf�. This contribution is exponentially suppressed, as
��v f�kf =2t�. It can thus be neglected as soon as v f�kf is
of the order or bigger than the initial bandwidth 2�0. On the
other hand, as shown by Fabrizio,12 the gb process has to be
taken into account if v f�kf is much smaller than �0.

Thereupon, in order to calculate the renormalization of
gb0 properly, couplings g0, gf or gt with specific k� depen-
dence are needed. For instance, dgb0 /d� gives a Peierls
diagram:

including coupling g0�kf0 ,−kf0+2�kf ,−kf0+2�kf ,kf0�, with
arguments that remain separated from the Fermi points, even
in the limit �→0, let us write it g01. This coupling separates
from coupling g0�kf0 ,−kf0 ,−kf0 ,kf0�, with all arguments at
the Fermi points, which we will write g00; therefore k� de-
pendence is influential. This can be proved by comparing
their renormalization, in the Cooper channel. For instance,
dg00/d� gives, in the Cooper channel, a term proportional to
g0

2+gt
2 with a constant factor, which is present all the way

down to �→0. On the contrary, dg01/d� gives, in the Coo-
per channel, a term with a factor 2� / �2�+v f�P1+ P2��
=� / ��+v f�kf�; the renormalization of g01 in the Cooper
channel is thus exponentially suppressed, when �→0 �for

g00, the total incoming momentum is P1+ P2=0�.
We have proved that different g0 couplings separate dur-

ing the flow, so the k� dependence is hence capable to have
an effect during the flow, when it is taken into account. This
generalizes for gf, gt and even gb couplings.

All this differs completely from the one-dimensional case,
where the renormalization of the coupling with all momenta
on the Fermi points is only governed by processes with mo-
menta ±kf ±� /v f, which always fall on the Fermi points
when �→0. In our case, it is not possible to apply the same
argument as soon as t���o. Indeed, we will see, in the
following, that one gets different results, depending on
whether we take the k� dependence of the couplings into
account or not.

The k� dependence can be observed, when � is large �and
until ��v f�kf�, by the separation of the different scattering
couplings g0, gf0 and gt0. On the contrary, if one puts gb=0 at
�=0, this dependence is suppressed, and the system becomes
purely one dimensional for small values of t� �in that case,
gb remains 0 for all � and the RG equations simplify dras-
tically, although they differ from the one-dimension case�.

2. k¸ representation of the couplings g

In order to write explicit k�-dependent RG equations, one
needs to define a consistent and detailed k� representation of
the couplings g.

Let us first note that G�P1 , P2 , P2� , P1�� corresponds to
R†�P1�L†�P2�L�P2��R�P1��, where Pi are the absolute mo-
menta in the � direction. We then define the relative momenta
p1= P1−kf�1

, p2= P2+kf�2
, p3= P3+kf�3

, and p4= P4−kf�4
,

and write, correspondingly, g�p1 , p2 , p2� , p1��. We also intro-
duce variables c= p1+ p2= p1�+ p2�+d, l= p1− p1�= p2�− p2+d,
and p= p1− p2�= p1�− p2+d, where d=−2�kf for gb0, d=2�kf
for gb�, and d is zero otherwise, and then write, correspond-
ingly, g�c , l , p� �d is implicit�.

At the beginning of this section, we have found in a dia-
gram a particular coupling g0�� /v f ,2�kf ,0 ,2�kf +� /v f�.
When �→0, we get g0�0,2�kf ,0 ,2�kf� which also writes
g0�2�kf ,−2�kf ,0� in �c , l , p� notation�. Note that some argu-
ments are shifted by ±2�kf, compared to the coupling
g0�0,0 ,0 ,0� with all momenta on the Fermi points.

This could easily be generalized for all couplings g. So, in
order to get a reasonable number of couplings, we have done
the following approximation: all terms ±� /v f, in all dia-
grams, are replaced by their 2�kf part �i.e., by
2�kf� /2�kfv f�, where x� is the biggest integer �x�. Then,
it follows that we only get couplings g�p1 , p2 , p2� , p1�� or
g�c , l , p��, where all variables pi �or c , l , p� are multiples of
2�kf.

3. k¸ representation of the couplings z

All the preceding procedures generalize to the couplings z
as well. We first introduce a �k ,c , p� representation, similarly,
with c= p1+ p2, p= p2− p1, and k= p1, where p1 and p2 are
defined in Fig. 19 and write, correspondingly, zSC�c ,k� or
zDW�p ,k�.

Then, we apply the same approximation in order to get
couplings, where all variables �k ,c , p� are multiples of 2�kf.
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The same conclusion applies to these couplings, proving that
their k� dependence is also influential.

4. RG equations

Finally, we calculate the RG flow of the separated
following couplings: g0�0,0 ,0 ,0�, g0�−2�kf ,0 ,0 ,−2�kf�,
g0�0,2�kf ,0 ,2�kf�, etc. as well as z�0,0�, z�2�kf ,0�, etc.
The exact RG equations, including all � components, are
given in Appendix B 1, for the g�c , l , p�, and in Appendix B
2, for the zSC�c ,k� and zDW�p ,k�. In order not to solve an
infinite number of equations, we have reduced the effective
bandwidth of the renormalized couplings to 4nmax�kf, where
nmax is an integer, by projecting all momenta lying out of the
permitted band, back into it, according to a specific trunca-
tion procedure that will be explained after.

We have performed our calculations with nmax=2, 3 or 4,
and the results rapidly converge as nmax is increased.

5. Susceptibility equations

To each instability corresponds a susceptibility. We will
write ��

SC��� the different SC ones and ��
DW the different

SDW or CDW ones. The susceptibilities have no k� depen-
dence. However, couplings z with different k� variables ap-
pear in their RG equations, which we give in Appendix B 3.

Referring to the transverse component of the interaction
vectors, we will write ��0� the instabilities corresponding to
intraband processes, and ��� /b� those corresponding to in-
terband ones. We use several symmetries, to reduce the num-
ber of couplings. Because of the k� dependence, it is not as
easy to apply them as in ordinary cases. We give here some
indications, which are completed in the Appendixes.

C. Symmetries

1. Ordinary symmetries

We apply C the conjugation symmetry �C :r→r ,
p→−p ,�→−��, A the �antisymmetrical� exchange between
incoming particles, A� the exchange between outgoing par-
ticles, P the space parity �P :r→−r ,p→−p ,�→��, and S
the spin rotation �S :�→−��. We will also use px, py �the
mirror symmetries in the � and � directions�, fx and fy. Note
that P= pxpy.

Hcin Eq. �1�� and Hint Eq. �2�� satisfy all these symme-
tries, whereas SC instabilities, governed by HSC Eq. �3��, are
not invariant under S or C, which allows a natural classifi-
cation of the states, and DW instabilities, governed by HDW
Eq. �4��, do satisfy CS, AS or A�S, but not C, A, A�, nor S
symmetries.

All the relations satisfied by G or Z couplings are detailed
in Appendix C 1. From what precedes, one will not be sur-
prised that those for G couplings are simpler and less sophis-
ticated than those for Z ones.

Relations of couplings g. We are not interested here in the
symmetries that relate, for instance, a LRLR coupling to a
RLLR one. Instead, we only keep RLLR couplings and de-
duce all the symmetries that keep this order.

We then apply them to every coupling g0, g�, etc., and
find, altogether, exactly two independent relations for each
one, which write, in �c , l , p� notation,

gi�c,l,p� = gi�− c,l,p� i = 0,�,t0,t� ,

gf��c,l,p� = gf0�− c,l,p� ,

gb��c,l,p� = gb0�− c,l − 2�kf,p − 2�kf� , �5�

gi�c,l,p� = gi�c,− l,p� i = 0,�, f0, f� ,

gt��c,l,p� = gt0�c,− l,p� ,

gb��c,l,p� = gb0�c − 2�kf,− l,p − 2�kf� . �6�

One observes that �5� relates gf0 to gf� and gb0 to gb�,
while �6� relates gt0 to gt� and gb0 to gb�. The combination of
�5� and �6� thus relates gf0 to gf� and gt0 to gt�.

Relations of couplings z. We similarly deduce all symme-
tries that keep the LR order; we apply them to every coupling
z0, z�, etc., and find only one relation for each one, which
writes, in �k ,c , p� notation,

zs�
SC�c,k� = zs�

SC�− c,k − c� � = 0,� ,

zt0
SC�c,k� = zt�

SC�− c,k − c� ,

zs−
SC�c,k� = ± zs+

SC�− c,k − c� ,

zt−
SC�c,k� = ± zt+

SC�− c,k − c� , �7�

where � reads � for �=s or �= px and � for �=g or �
= fy. Note that z0

SC or s�
SC correspond to intraband conden-

sates, while z+
SC or s−

SC correspond to interband ones.

z�
DW�p,k� = ± z�

DW�p,− p − c� � = 0,� ,

z−
DW�p,k� = ± z+

DW�p,− p − c� , �8�

where � reads � for site ordering and � for bond ordering.
One observes that �7� and �8� relate z+ to z−.

2. Supplementary symmetry

As we already noted, ordinary symmetries do not relate g0
to g�, nor z0 to z�. However, since we choose identical bare
values at �=0, and since the RG equations are symmetrical,
we observe an effective symmetry between these couplings:
we will show here that this does not occur by chance, but

that it follows a specific symmetry C̃, which only applies to
the ladder system.

C̃ is a kind of conjugation: it generalizes the electron-hole
symmetry as follows.

Let us first consider the case of a single band one-
dimensional system; we find an electron-hole symmetry, de-
scribed in Fig. 5�a�.

For R particles, it conjugates an electron with momentum
kf + p and a hole with momentum kf − p. In the momentum

space, it is a symmetry around kf. One can write C̃p

=2kf−p
† and C̃p

† =2kf−p. For L particles, the same relation
applies if one simply changes kf into −kf.

Let us now return to the two-band system. This symmetry
generalizes by turning the momenta around the isobarycenter
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of the Fermi points, as shown in � space in Fig. 5�b�. For R
particles, �kf0+kf�� /2 points to the isobarycenter and you

now get C̃p=kf0+kf�−p
† etc.

In the two-dimensional representation, C̃-symmetry is a
point symmetry around �±�kf0+kf�� /2 ,� /2b�, as shown in
Fig. 2 �the sign depends on whether it is a R or L momen-
tum�.

Actually, there is an alternative symmetry, which we write
C” , which also maps the band k�=0 onto the band �: it is a
translation by the vector ±�kf�−kf0� ,� /b�, as shown in Fig.
2. Some of the bare couplings satisfy this C” symmetry �g0,
gf, gt, z0 or z��, but some do not �gb ,z+ ,z−�. Since interac-
tions are mixing all couplings as soon as the flow parameter
��0, the renormalized couplings will break the C” symmetry.
Therefore, we cannot use it.

On the contrary, one verifies that Hcin, Hint, HSC and HDW

are invariant under C̃. The induced relations satisfied by G or
Z couplings are detailed in Appendix C 2.

In fact, C̃ and C” weakly correspond to the dx2−y2 symme-
try in two dimensions.

Supplementary relation of couplings g. It is straightfor-

ward that C̃ keeps the RLLR order when one applies it to any
coupling gi; so we find a new relation for each one, which
writes, in �c , l , p� notation,

g��c,l,p� = g0�− c,− l,− p� ,

gf��c,l,p� = gf0�− c,− l,− p� ,

gt��c,l,p� = gt0�− c,− l,− p� ,

gb��c,l,p� = gb0�− c,− l,− p� . �9�

One verifies that g0 and g� are related; in fact, �9� relates all
0 couplings to � couplings.

Supplementary relation of couplings z. Similarly, C̃ keeps
LR order when we apply it to any coupling zi; so we find a
new relation for each one, which writes, in �k ,c , p� notations,

z�
SC�c,k� = ± z0

SC�− c,− k� ,

z−
SC�c,k� = ± z+

SC�− c,− k� , �10�

where � reads � for �=s or �= px and � for �=d, g or
�= fx , fy,

z�
DW�p,k� = ± z0

DW�− p,− k� ,

z−
DW�p,k� = ± z+

DW�− p,− k� , �11�

where � reads � for site ordering and � for bond ordering.
Again, one verifies that z0 and z� are related �as well as z+

and z−�.

D. Truncation

Understanding symmetry relations does not only help us
to reduce drastically the number of couplings, it is also an
essential tool to make a proper truncation procedure, as we
will explain now.

1. Triplet notation

Let us first introduce a useful notation for the k� depen-
dence.

We have already defined the relative momentum represen-
tation g�p1 , p2 , p2� , p1��, as well as the g�c , l , p� notation, and
explained how to keep only couplings, the arguments of
which are all multiples of 2�kf. We will focus on the �c , l , p�
notation and write c=2n1�kf, l=2n2�kf, p=2n3�kf, with
�n1 ,n2 ,n3��Z3.

In short, we can write gi�n1 ,n2 ,n3� �i=0, f0, t0,b0�,
where �n1 ,n2 ,n3� is called a triplet. Mind that, using symme-
try relations, two triplets �n1 ,n2 ,n3� and �n1� ,n2� ,n3�� can rep-
resent the same coupling. One says that these triplets belong
to the same symmetry orbit �or symmetry class�. Mind also
that the orbits are different for each coupling g0, gf0, gt0, and
gb0.

It would take too long to give an exhausted list of these
orbits. Let us just observe that �0,0,0�’s orbit has only one
element �itself�, except for gb, the orbits of which we detailed
in Appendix C 3.

2. Choice of the truncation procedure

Obviously, one needs only renormalize one coupling per
orbit. From the fundamental rules, explained in Sec. IV B 2,
it follows that, even if one starts with only g0�0,0 ,0�,
gf0�0,0 ,0�, and gt0�0,0 ,0�, the RG equations will generate
an infinite number of orbits. So, we will only keep couplings
which satisfy �ni��nmax �for a given nmax�; but even so, in the
RG equations of some orbits intervene couplings, with argu-
ments lying outside of the permitted band �i.e., the distance
of the corresponding momentum to the Fermi point exceeds
2nmax�kf�. In order to get a consistent closed set of differen-
tial equations, one needs to put these extra couplings back,
inside the set of allowed couplings.

For instance, imagine that nmax=2, and that g�3,2 ,2� cou-
pling intervenes in a RG equation. One cannot, unfortu-
nately, just map �3,2 ,2�� �2,2 ,2�, because these triplets do
not belong to the same symmetry orbit. In doing so, one
would get a very poor k� dependence; we have actually
proved, in the case of a �p1 , p2 , p2�� representation, that all
orbits of g0 except �0,0,0� would collapse into one single
orbit.

Therefore, the truncation procedure must be compatible
with all the symmetries of the system. We have used the
�c , l , p� notation, which is very convenient. One can check

FIG. 5. Symmetry around the Fermi points: �a� in a 1-band
system; �b� in a 2-band system
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that all the symmetries conserve c+ l+ p modulo 4�kf. This
explains why ni�ni±1 cannot be compatible with the sym-
metries. On the contrary, ni�ni±2 is completely compat-
ible, i.e., it maps a triplet onto on an already defined orbit;
hence we have used this mapping for the extra couplings.

With nmax=2, for each coupling g we find 63 different
couplings that are ��i , j ,k� , i , j ,k=−2,0 ,2�� ��±1, ±1, i� ,
i=−2,0 ,2� � ��±1, i , ±1� , i=−2,0 ,2� � ��i , ±1 , ±1� ,
=−2,0 ,2��, which separate into 23 orbits �having 1, 2, or 4
elements�, except for the gb couplings. For these, the enu-
meration is more tedious, we eventually find 8 orbits �of 4
elements, see Appendix C 3�. There are altogether 3
23
+8=77 different orbits; if we include the spin separation, we
thus need to calculate 154 coupled differential equations.
nmax=3 gives 390, while nmax=4 gives 806.

E. Divergences of the susceptibilities

In the range of values for U that we have investigated, the
RG flow is always diverging.

When the initial interaction Hamiltonian Hint is purely
local, i.e., when the interchain scatterings are discarded
�Cback=Cfor=0�, the interband SDW susceptibility �S

DW�� /b�
is always divergent. In the superconducting phase, the SC
singlet d susceptibility �s

SC�d��0� is also divergent, at the same
critical scale �c=�0e�c. A third susceptibility �S

DW�0� in-
creases and reaches a high plateau �see Fig. 6�. Almost all
other susceptibilities remain negligible.

When the parameters Cback or Cfor are increased, both
�S

DW�� /b� and �s
SC�d� decrease; they are progressively re-

placed by the divergence of the CDW susceptibility
�C

DW�� /b�, and, in the case of backward scattering, of the
triplet SC susceptibility �t

SC�f��0�.
One finds at most four divergent susceptibilities

�s
SC�d��0�, �C

DW�� /b�, �t
SC�f��0�, and �S

DW�� /b�� at a time.
Since the RG flow is diverging, we cannot further calcu-

late the renormalized couplings. To deduce a phase diagram,
we must find out which mechanism dominates; we used two
different criteria: according to the first one, we simply take
the susceptibility which reaches the highest value ��� at �c;

according to the second one, we take the susceptibility which
has the highest slope.

These two criteria bring nonequal results. Although the
first one is a poorer criterion, its conclusions remain stable
when either the precision or nmax are changed. The second is
however preferred, as we will see its conclusions are physi-
cally consistent, contrary to the first one.

V. PHASE DIAGRAM WITH INITIALLY
LOCAL INTERACTIONS

Let us first discuss the case of initially local interactions
�Cback=Cfor=0, no interchain scattering�. Of course, we can
only fix Hint at �=0, and the flow will develop nonlocal
interactions.

FIG. 7. Flow of the couplings g̃01 and g̃02 at �a� t�� t�c�U�, �b�
t�= t�c�U�, and �c� t�� t�c�U�.

FIG. 6. Flow of the susceptibilities �s
SC�d� and �S

DW �intra or

interband�, at Ũ=1 and 2t� /�0=1.94: �a� usual RG procedure; �b�
including k� dependence. You observe that �S

DW�0� does not diverge
but only reaches a plateau.
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A. Results

We begin with the phase diagram obtained when the k�

dependence is neglected.

1. Phase diagram with no k¸ dependence

In the region of the phase diagram that we have investi-

gated �0� Ũ�2�, the SC susceptibility �s
SC�d��0� is always

divergent, as well as the SDW susceptibility �S
DW�� /b� �see

Fig. 6�.
According to the slope criterion, �s

SC�d��0� always domi-
nates. We induce that this region is superconducting �this is
consistent with the conclusions of Fabrizio12�, and that the
pairing is of symmetry d; however, the presence of SDW
instabilities, developing in the same region, makes a detailed
determination of this phase very uneasy and beyond the pos-
sibilities of our approach. We will call it SC phase.

2. Phase diagram with k¸ dependence

SC phase. When t� is large, we find similar results. For

instance, with Ũ=1, there are no significant differences for
2t� /�0�1.94 �see Fig. 6�.

SDW phase. On the contrary, the superconducting suscep-
tibility is almost suppressed when t� is small enough. For

Ũ=1 and 2t� /�0=0.016, �s
SC�d��0� is 5 orders of magnitude

smaller than �S
DW�� /b�, at �c; see Fig. 8. In this phase, the

SDW’s instability develops so rapidly that it overwhelms all
other processes. This indicates indeed a pure SDW phase.

Hence, this result differs drastically from those obtained
when the k� dependence is neglected.

Moreover, we observe a transition between the SDW
phase and the SC one, at a critical parameter t�c�U�.

Critical behavior. We characterize this transition in differ-
ent ways.

First of all, the behavior of the renormalized two-particle
couplings changes very rapidly, at t�c�U�: as t� decreases,

�g̃01��c�� and �g̃02��c�� shrink suddenly, then, after a little

interval, g̃01��c� and g̃02��c� become positive �and even �Ũ;
see Fig. 7�. We also observe changes, though less significant,
for the other couplings g̃ for instance, �g̃f01��c�� decreases
and g̃b1��c� becomes negative when t� increases�.

Moreover, we observe �in Fig. 9� a marked site or bond
separation of the SDW susceptibility, at t�c�U�. The site and
bond SDW susceptibilities are degenerate for t�� t�c�U� �in
the SDW phase�, which is consistent with the fact they
should be equal at t�=0 �where the system is purely one-
dimensional, see Ref. 35�, while they smoothly separate after
the transition. The same site or bond separation occurs for
the CDW susceptibility.

Transition region. The behavior of most of the parameters
that we have examined indicates the same critical value
t�c�U�, which we have determined exactly, using the slope
criterion.

However, ��s
SC�d��0��� ��S

DW�� /b�� holds until t� reaches a
value t�c2�U�; this second critical value, which corresponds
to the height criterion, is confirmed by minor modifications
of behavior, which occur in the interval t�c�U�� t�

� t�c2�U� and are very smooth for instance, g̃b1��c� and
g̃b2��c� cross�.

The numerical determination of t�c2�U� is very stable �see
Fig. 10�, and the complete behavior, from the SDW phase to
the SC phase, is clear on Fig. 9, which shows the absolute
values of the susceptibilities at �c.

The region t�c�U�� t�� t�c2�U� is called transition re-
gion; we believe it is a superconducting phase, where SDW
instabilities seem however to dominate. The SDW are pre-
cursor manifestations of the pure SDW phase, which is next
to the transition region.

As already stated, our results converge very rapidly when
the band width on which we project the momenta is in-
creased. The complete phase diagram �for Cback=Cfor=0� is
shown in Fig. 10, for nmax=2, 3, and 4.

Moreover, it is most interesting to note that, contrary to
the pure SDW phase, the transition region can be detected
when the k� dependence is neglected the value of t�c2�U� is

FIG. 8. Flow of some susceptibilities, at Ũ=1 and 2t� /�0

=0.016. �s
SC�d��0� is almost suppressed at �c.

FIG. 9. Curves of �s
SC�d���c� and �S

DW��c� versus 2t� /�0.
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lowered�. This can be seen, for instance, in Fig. 11, which
corresponds to Fig. 9 with no k� dependence.

SC critical temperature. The critical energy �c at which
SC susceptibility diverges gives an approximate indication of
the SC critical temperature. We give a plot of �c /�0 versus
2t� /�0; as seen in Fig. 12, �c is roughly decreasing with t�.
The band gap parameter t� is also increasing with pressure;
therefore, this behavior is compatible with the experimental
data, which show that Tc is decreasing with pressure in
quasi-one-dimensional organic compounds.

B. Discussion

As already mentioned, as soon as the dependence of k� is
included, we observe two separated phases, one purely SDW,

the other one a SC phase with competing SDW instabilities.
On the other hand, for t��1, i.e., when the initial band-

width lies inside kf� ,kf0�, the k� dependence has no observ-
able influence on the susceptibilities.

In the SDW phase, our results prove the existence of large
antiferromagnetic fluctuations. We believe that these SDW
instabilities are not the signature of a localized antiferromag-
netic ground state, but of antiferromagnetic itinerant elec-
trons, as it is indeed observed in Bechgaard salts. Actually,
the flow is driving towards a fixed point, which does not
seem to be the one-dimensional solution: for instance, the
renormalized couplings g̃1 and g̃2 of the 1D solution are 0
and 1/2 and differ from the values which we obtain when the
flow is diverging, in the SDW phase see Fig. 7�a��.

We induce that the spin-gap should disappear in this SDW
region, which is consistent with what Park and Kishine23,24

claim.
In the SC phase, the SC divergence is due to the Cooper

channel, while that of density waves is due to the Peierls one
�see, in the case of a single band model, Refs. 32 and 36�.
The appearance of d-wave superconductivity in ladder sys-
tems is well understood within a strong coupling scenario,
where a spin gap leads to interchain Cooper pairing. How-
ever, in our calculations, we see that superconducting corre-
lations are always enhanced by SDW fluctuations. Contrary
to what Lee et al. claimed first,37 there is an itinerant electron
mechanism in this case, which is the weak coupling equiva-
lent of the localized electron mechanism in the strong elec-
tron scenario. It was proposed by Emery,38 and is essentially
the spin analog of Kohn-Luttinger superconductivity. The
mutual enhancement of the two channels is also discussed in
Refs. 33 and 39.

As a consequence of this mutual enhancement, the spin-
gap should not appear with the first appearance of SC insta-
bilities, but for somehow larger values of t�.

Moreover, we observe that the SC pairing is a Q=0
mechanism, while the SDW are excited by Q= �2�kf ,� /b�
vectors. This can be explained by the symmetry of each
channel. The Green function of the Cooper channel gives a
factor 1 / 	�k�+	�−k�� and is minimized with the k�−k

FIG. 10. Phase diagram when the k� dependence is included.

FIG. 11. Curves of �s
�d���c� and �S

DW��c� versus 2t� /�0 when
k� is neglected.

FIG. 12. Curves of �c /�0=e−�c versus 2t� /�0 with nmax=2 �a�,
nmax=3 �b�, and nmax=4 �c�.
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symmetry, which corresponds to an intraband process. The
Green function of the Peierls channel gives a factor
1 / 	�k�+	�k+Q�� and is minimized with the k�k+Q sym-
metry, which corresponds to an interband process.

This can also be seen in the RG equations.
d ln(zSC�0�) /d� depends only on g0 and gt, whereas
d ln(zSC�� /b�) /d� depends on gf and gb. Since gb processes
are depressed as soon as ��2t�, 0 condensate are favored.
Moreover, this predominance is stabilized by the dgt /d�
equations, in which the Cooper term depends on g0, and by
the dgb /d� equations, in which the Cooper term depends on
gf.

The same argument applies for DW instabilities.
d ln(zDW�0�) /d� depends on g0 and gb, whereas
d ln(zDW�� /b�) /d� depends on gf and gt. So, � processes are
favored. Again, this is stabilized by the dgt /d� equations, in
which the Peierls term depends on gf, and by the dgb /d�
equations, in which the Peierls term depends on g0.

The critical temperature, in the SC phases, is indicated in

Fig. 12. We chose Ũ=0.6 in order to avoid the SDW phase.
The general trend is that of a quasi-one-dimensional system;
the increasing curve, for small values of t�, can be related to
transition effect and to the furthered influence of the SDW
fluctuations.

VI. PHASE DIAGRAM WITH INITIAL
COULOMBIAN INTERCHAIN SCATTERING

A. Results

1. Influence of a backward interchain scattering

Let us now study the effect of a backward interchain scat-
tering. This type of coupling has been investigated by Bour-
bonnais et al.29 in the context of correlated quasi-one-
dimensional metals, for which CDW correlations are
enhanced and triplet superconducting instabilities can occur.

When the parameter C̃back is increased, the behavior of the

susceptibilities depends on the parameters �t� , Ũ�.
Appearance of triplet SC and CDW. For t�� t�c�U�, the

SDW phase exists for C̃back small enough. As C̃back is further
increased, the SDW instabilities are replaced by CDW ones.
The transition is smooth, and there is a narrow region where
both SDW and CDW coexist �region 3 in Fig. 16�. We show
a 2t� /�0=0.01 section of the susceptibilities at �c in
Fig. 13.

For t�� t�c�U�, the SC phase �with SC singlet d and

SDW instabilities� exists for C̃back small enough. As C̃back is
further increased, the singlet SC modes are replaced by trip-
let ones, while SDW are replaced by CDW. Singlet and trip-
let SC appear to be antagonistic, and the transition is very
pronounced; in the coexistence line between them, one also
finds SDW and CDW divergences �see Fig. 14�. On the con-
trary, the transition between SDW and CDW is very smooth,
although the coexistence region is still narrow �region 2 in
Fig. 16�. We show a 2t� /�0=0.1 section of the susceptibili-
ties at �c on Fig. 13.

FIG. 13. Curves of the ���c�
versus C̃back, at Ũ=1 and �a�
2t� /�0=0.01; �b� 2t� /�0=0.1.

FIG. 14. Flow of the susceptibilities for 2t� /�0=0.32 and

C̃back=0.18.
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The triplet SC condensate has fx symmetry. The corre-
sponding susceptibility is mostly divergent in a region of
coexistence with SDW and CDW �region 2 in Fig. 16�, but it
is also divergent in a region of coexistence with only CDW
�region 1 in Fig. 16�.

When C̃back is large enough, the triplet SC modes are sup-
pressed, and the region is a pure CDW phase. We show a

section of the susceptibilities at �c, for C̃back=0.2 and C̃back
=0.3, on Fig. 15, which clearly indicates the domain of ex-
istence of the triplet SC.

Site or bond separation. As we have already observed it,
in the case of Cback=Cfor=0, for small values of t�, site and
bond SDW susceptibilities are degenerate, as well as site and
bond CDW ones.

This generalizes for all values of C̃back. The site or bond
separation line is an increasing function t�g�Cback� of Cback,
shown in Fig. 16; For small values of U, this line crosses the

SC domain, but for Ũ=1 it is already disconnected from the
SC frontier �although it remains close to it�.

2. Influence of a forward interchain scattering

The phase diagram when Cfor is included is very rich, and
beyond the scope of this article.

We would like to emphasize only the fact that all SC
instabilities are suppressed when Cfor is increased. Figure 17

gives a typical flow of the susceptibilities, with a large C̃for.

B. Discussion

Let us analyze these behaviors, which follow simple
trends.

The CDW instabilities are enhanced when gC is increased,
whereas SDW ones are enhanced when gS is increased �this
can be verified in the corresponding RG equations of Appen-
dix B 2�. Similarly, singlet SC instabilities are enhanced
when gs is increased, whereas triplet ones are enhanced when
gt is increased.

So, an increase of Cback implies an increase of the real
space coupling g1, and thus, from Eq. �A2�, it favors CDW

instabilities against SDW ones, and from Eq. �A1�, it favors
triplet SC instabilities and depresses singlet SC ones.

Similarly, an increase of Cfor implies an increase of the
real space coupling g2, and thus, from Eq. �A2�, it favors
CDW and SDW instabilities, and from Eq. �A1�, it depresses
SC ones.

Of course, we examine here the influence of parameters
Cback and Cback on the bare couplings. However, we believe
that the flow could not just simply reverse this influence,
even if the renormalized values of the couplings differ a lot
from their bare values. Moreover, one verifies that these con-
clusions exactly correspond to the observed behavior.

The density wave interactions are on site, whereas the SC
pairing are intersite �except for singlet s one�, so we believe

FIG. 15. Curves of the suscep-
tibilities ���c� versus 2t� /�0, for

�a� C̃back=0.4; �b� C̃back=0.6.

FIG. 16. Phase diagram for Ũ=1. The shaded area indicates the
divergence of the triplet susceptibility. The dashed line separates
site or bond degenerated states �below� and nondegenerated ones
�above�. Other lines and domains are explained in the legend or in
the text.
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that the DW instabilities appear first, and then enhance the
SC ones. This is not true of the DW bond correlations, but
we observed no divergences of these, and we have not stud-
ied any other sophisticated intersite DW excitation response.

From this point of view, the fact that � DW processes are
favored, as we already discussed before, implies a � dephas-
ing between both chains of the ladder. The � dephasing of
the SDW thus fits perfectly singlet d condensate which con-
sists in a pairing of two electrons on a rung, with opposite
spins, see Fig. 3�b��. This accounts nicely for the appearance
of singlet SC instability, induced by SDW one.

In the same trend of ideas, the � dephasing of the CDW
fits triplet fx condensate which consists in a pairing of two
electrons on each chain, one stepped by unity from the other,
see Fig. 4�a�� and accounts for the appearance of triplet SC
instability, induced by CDW one.

On the contrary, the triplet px condensate consists in two
following electrons on one chain see Fig. 4�b��, this pairing
is not enhanced by CDW instabilities; in fact, it is the analog
of singlet s condensate, which is not either enhanced by
SDW instabilities, and is therefore disadvantaged, compared
to d pairing.

As can be observed on Fig. 4, triplet fx condensate are not
incompatible with CDW. For instance, one could easily fig-
ure out a succession of condensate, with alternate spins, in-
ducing back a global modulation of the chains. A similar
scenario is not possible with triplet p condensate.

One should be aware that the symmetry classification we
have used is very specific of the ladder system, and could not
be extended to an infinite number of chains. The difference
between p and f condensate is very subtle and the situation
could reveal quite different in the general quasi-one-
dimensional systems.

VII. CONCLUSION

We have investigated the phase diagram of a ladder sys-
tem, in the Hubbard model, with an interchain coupling t�,

using functional RG method, in the OPI scheme. We have
introduced an original parametrization of the k� dependence,
and obtained rather new results; in particular, we have
proved the existence of a new phase with only SDW fluctua-
tions, for small enough values of t�. From the divergences of
the scattering couplings, we induce that this phase is differ-
ent from the one-dimensional solution. However, for very
small values of t� �t���010−4�, we find the usual one-
dimensional behavior.

Our results altogether prove that the k� dependence is im-
portant and must be taken into account in such a ladder sys-
tem. The fact that this variable became influential in a ladder
does not mean that the corresponding couplings g�2�kf ,
−2�kf ,0�, etc., are relevant. In fact, if the cutoff �→0, these
couplings are left out of the integrated band, so they could
only be marginal.28 However, the divergence takes place at
�c, which is of the order of �kf, and this explains why these
couplings, which are shifted by ±2�kf from the Fermi points,
have a nontrivial behavior and have to be taken into account.
Moreover, as already explained in Section IV B 1, during the
flow, these couplings influence those, with all momenta at
the Fermi points, until �=2�kf. This influence is still sensi-
tive, when the divergence takes place. This explains why we
could distinguish a new phase, which has not yet been ob-
served by usual methods.

When t� is very large, however �for instance, t���0�,
the flow continues up to �c�v f�kf �otherwise, the inte-
grated band would not vary much and the renormalized cou-
plings neither differ much from their bare values�, and the
above argument applies, proving that couplings g�2�kf ,
−2�kf ,0�, etc., are marginal or irrelevant. In that case, k� are
not influential, and our results coincide indeed with former
calculations.

We have also given a detailed classification of the re-
sponse function, which provides a convenient tool for the
determination of order parameters and of related susceptibili-
ties, corresponding to different instability processes.

We are proceeding now to a complete study of the long
range correlations, and in particular, of the uniform suscep-
tibility. This task however proves quite difficult, because of
the k� dependence, which has to be carefully taken into ac-
count. We expect that the spin-gap will indeed disappear in
the SDW phase we have brought to evidence.

We have also investigated the influence of interchain scat-
tering, and showed that a backward interchain scattering can
raise triplet superconductivity, a result consistent with the
conclusions of a previous work by Bourbonnais et al.29,30 on
correlated quasi-one-dimensional metals. The appearance of
triplet SC in a ladder is a very exciting and promising result,
since various authors40,41 claim to have found experimental
evidence of these instabilities. Even the narrowness of the
triplet SC existence region seems to fit the experimental data,
which report high sensitivity of these fluctuations to some
key parameters. This work gains to be compared with the
previous work of Varma et al., who did similar
investigations.42
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APPENDIX A: COUPLINGS

1. Two-particle couplings

Here are the definitions of the different couplings g, from
the two-particle parameter G �also see Fig. 18�:

g0�p1,p2,p2�,p1�� = G�kf0 + p1,− kf0 + p2,− kf0 + p2�,kf0 + p1�� ,

g��p1,p2,p2�,p1�� = G�kf� + p1,− kf� + p2,− kf� + p2�,kf� + p1�� ,

gf0�p1,p2,p2�,p1�� = G�kf0 + p1,− kf� + p2,− kf� + p2�,kf0 + p1�� ,

gf��p1,p2,p2�,p1�� = G�kf� + p1,− kf0 + p2,− kf0 + p2�,kf� + p1�� ,

gt0�p1,p2,p2�,p1�� = G�kf0 + p1,− kf0 + p2,− kf� + p2�,kf� + p1�� ,

gt��p1,p2,p2�,p1�� = G�kf� + p1,− kf� + p2,− kf0 + p2�,kf0 + p1�� ,

gb0�p1,p2,p2�,p1�� = G�kf0 + p1,− kf� + p2,− kf0 + p2�,kf� + p1�� ,

gb��p1,p2,p2�,p1�� = G�kf� + p1,− kf0 + p2,− kf� + p2�,kf0 + p1�� .

The relations between the different representations can be
found in Refs. 27 or 43. Here, they reduce to

gs = − g1 − g2,

gt = g1 − g2, �A1�

gC = g2 − 2g1,

gS = g2. �A2�

2. Other couplings

Here are the definitions of the different couplings z, from
the couplings to external fields Z. �See also Fig. 19.�

We omit the spin index � and the symmetry index �, and
use the notation explained further in Appendix C 1. Remem-
ber that �=s ,d ,g for �=s �singlet� and �= p , f for �= t �trip-
let�. The symmetry �s, dx2−y2, g, px, fx, or fy� applying to each
one is detailed in the main text:

z0
SC�p1,p2,q� = ZSC

„− kf0 + p1,kf0 + p2,�q,0�,0… ,

z�
SC�p1,p2,q� = ZSC

„− kf� + p1,kf� + p2,�q,0�,�… ,

z+
SC�p1,p2,q� = ZSC�− kf� + p1,kf0 + p2,�q,

�

b
�,0� ,

z−
SC�p1,p2,q� = ZSC�− kf0 + p1,kf� + p2,�q,

�

b
�,�� ,

z0
DW�p1,p2,q� = ZDW

„− kf0 + p1,kf0 + p2,�q − 2kf0,0�,0… ,

FIG. 18. Schematic definitions of the couplings g.

FIG. 19. Schematic definitions of the couplings z.
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z�
DW�p1,p2,q� = ZDW

„− kf� + p1,kf� + p2,�q − 2kf�,0�,�… ,

z+
DW�p1,p2,q�

= ZDW�− kf� + p1,kf0 + p2,�q − kf0 − kf�,
�

b
�,0� ,

z−
DW�p1,p2,q�

= ZDW�− kf0 + p1,kf� + p2,�q − kf0 − kf�,
�

b
�,�� .

APPENDIX B: RG EQUATIONS

We give here the detailed RG equations.

1. g couplings

Here are the RG equations for the couplings g, in �c , l , p�
representation. The spin dependence is given, for all terms,
by

dg�

d�
= �

�,�
g��C�

�� + P�
���g�,

where C and P correspond, respectively, to the Cooper and
Peierls channels, and are given, in the g-ology representa-
tion, by

C1 = − �0 1

1 0
�, C2 = − �1 0

0 1
� ,

P1 = � 2 − 1

− 1 0
�, P2 = �0 0

0 − 1
� ,

see, for instance, Refs. 27, 43, and 44. In the following equa-
tions, all two first terms are Cooper ones, whereas all two
last terms are Peierls ones; so, we omit the spin dependence,
which is given by the above equations, for each term. One
gets

dg̃0

d�
�c,l,p� =

�

8� + 4�c���
±

g̃0�c, ± �� +
�c�
2
� +

l + p

2
, � �� +

�c�
2
� +

l + p

2
�g̃0�c, � �� +

�c�
2
� +

l − p

2
, � �� +

�c�
2
� −

l − p

2
�

+ �
±

g̃t0�c, ± �� +
�c�
2
� +

l + p

2
, � �� +

�c�
2
� +

l + p

2
�g̃t��c, � �� +

�c�
2
� +

l − p

2
, � �� +

�c�
2
� −

l − p

2
��

+
�

8� + 4�p���
±

g̃0���� +
�p�
2
� +

c + l

2
, ± �� +

�p�
2
� +

c + l

2
,p�g̃0���� +

�p�
2
� +

c − l

2
, � �� +

�p�
2
�

−
c − l

2
,p�� +

�

8� + 4�p + 2�kf�
��

±
g̃b0���� +

�p + 2�kf�
2

� +
c + l

2
− �kf, ± �� +

�p + 2�kf�
2

� +
c + l

2

− �kf,p�g̃b����� +
�p + 2�kf�

2
� +

c − l

2
+ �kf, � �� +

�p + 2�kf�
2

� −
c − l

2
+ �kf,p + 2�kf�� ,

dg̃f0

d�
�c,l,p� =

�

8� + 4�c���
±

g̃f0�c, ± �� +
�c�
2
� +

l + p

2
, � �� +

�c�
2
� +

l + p

2
�g̃f0�c, � �� +

�c�
2
� +

l − p

2
, � �� +

�c�
2
�

−
l − p

2
�� +

�

8� + 4�c + 2�kf�
��

±
g̃b0�c, ± �� +

�c + 2�kf�
2

� +
l + p

2
− �kf, � �c� +

�c + 2�kf�
2

� +
l + p

2

− �kf�g̃b��c + 2�kf, � �� +
�c + 2�kf�

2
� +

l − p

2
+ �kf, � �� +

�c + 2�kf�
2

� −
l − p

2
+ �kf��

+
�

8� + 4�p���
±

g̃f0���� +
�p�
2
� +

c + l

2
, ± �� +

�p�
2
� +

c + l

2
,p�g̃f0���� +

�p�
2
� +

c − l

2
, � �� +

�p�
2
�

−
c − l

2
,p� + �

±
g̃t0���� +

�p�
2
� +

c + l

2
, ± �� +

�p�
2
� +

c + l

2
,p�g̃t����� +

�p�
2
� +

c − l

2
, � �� +

�p�
2
�

−
c − l

2
,p�� ,
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dg̃t0

d�
�c,l,p� =

�

8� + 4�c���
±

g̃0�c, ± �� +
�c�
2
� +

l + p

2
, � �� +

�c�
2
� +

l + p

2
�g̃t0�c, � �� +

�c�
2
� +

l − p

2
, � �� +

�c�
2
� −

l − p

2
�

+ �
±

g̃t0�c, ± �� +
�c�
2
� +

l + p

2
, � �� +

�c�
2
� +

l + p

2
�g̃��c, � �� +

�c�
2
� +

l − p

2
, � �� +

�c�
2
� −

l − p

2
��

+
�

8� + 4�p���
±

g̃t0���� +
�p�
2
� +

c + l

2
, ± �� +

�p�
2
� +

c + l

2
,p�g̃f����� +

�p�
2
� +

c − l

2
, � �� +

�p�
2
�

−
c − l

2
,p� + �

±
g̃f0���� +

�p�
2
� +

c + l

2
, ± �� +

�p�
2
� +

c + l

2
,p�g̃t0���� +

�p�
2
� +

c − l

2
, � �� +

�p�
2
�

−
c − l

2
,p�� ,

dg̃b0

d�
�c,l,p� =

�

8� + 4�c���
±

g̃f0�c, ± �� +
�c�
2
� +

l + p

2
+ �kf, � �� +

�c�
2
� +

l + p

2
+ �kf�g̃b0�c, � �� +

�c�
2
� +

l − p

2

− �kf, � �� +
�c�
2
� −

l − p

2
− �kf�� +

�

8� + 4�c + 2�kf�
��

±
g̃b0�c, ± �� +

�c + 2�kf�
2

� +
l + p

2
, � ��

+
�c + 2�kf�

2
� +

l + p

2
�g̃f��c + 2�kf, � �� +

�c + 2�kf�
2

� l − p

2
, � �� +

�c + 2�kf�
2

� −
l − p

2
��

+
�

8� + 4�p���
±

g̃0���� +
�p�
2
� +

c + l

2
+ �kf, ± �� +

�p�
2
� +

c + l

2
+ �kf,p�g̃b0���� +

�p�
2
� +

c − l

2

− �kf, � �� +
�p�
2
� −

c − l

2
− �kf,p�� +

�

8� + 4�p + 2�kf�
��

±
g̃b0���� +

�p + 2�kf�
2

� +
c + l

2
, ± ��

+
�p + 2�kf�

2
� +

c + l

2
,p�g̃����� +

�p + 2�kf�
2

� +
c − l

2
, � �� +

�p + 2�kf�
2

� −
c − l

2
,p + 2�kf�� .

2. z couplings

Here are the RG equations for the couplings z, in �k ,c , p�
representation. The zSC couplings should be written in the
singlet or triplet representation ��=s , t�, and the zDW cou-
plings should be written in the charge/spin representation
��=C ,S�. Then, the spin dependence simply writes, for each
one

dz�

d�
= g�z�

and will therefore be again omitted. One gets

dz0
SC

d�
�c,k� =

�

4� + 2�c���
±

g̃0�c, ± �� +
�c�
2
� +

c

2
− k,

� �� +
�c�
2
� +

c

2
− k�z0

SC�c, ± �� +
�c�
2
� +

c

2
�

+ �
±

g̃t0�c, ± �� +
�c�
2
� +

c

2
− k, � �� +

�c�
2
�

+
c

2
− k�z�

SC�c, ± �� +
�c�
2
� +

c

2
�� ,

dz+
SC

d�
�c,k� =

�

4� + 2�c��±
g̃f0�c, ± �� +

�c�
2
� +

c

2
− k,

� �� +
�c�
2
� +

c

2
− k�z+

SC�c, ± �� +
�c�
2
� +

c

2
�

+
�

4� + 2�c + 2�kf�
�
±

g̃b0�c, ± �� +
�c + 2�kf�

2
�

+
c

2
− �kf − k, � �� +

�c + 2�kf�
2

�
+

c

2
− �kf − k�z−

SC�c + 2�kf, ± �� +
�c + 2�kf�

2
�

+
c

2
+ �kf� ,
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dz0
DW

d�
�p,k� =

�

4� + 2�p��±
g̃0�±�� +

�p�
2
� +

p

2
+ k,

± �� +
�p�
2
� −

p

2
− k,p�z0

DW�p, ± �� +
�p�
2
�

−
p

2
� +

�

4� + 2�p + 2�kf�
�
±

g̃b��±��

+
�p + 2�kf�

2
� +

p

2
+ �kf + k, ± ��

+
�p + 2�kf�

2
�

−
p

2
+ �kf − k,p + 2�kf�z�

DW�p + 2�kf,

± �� +
�p + 2�kf�

2
� −

p

2
− �kf� ,

dz+
DW

d�
�p,k� =

�

4� + 2�p���
±

g̃f0�±�� +
�p�
2
� +

p

2
+ k,

± �� +
�p�
2
� −

p

2
− k,p�z+

DW�p, ± �� +
�p�
2
�

−
p

2
� + �

±
g̃t��±�� +

�p�
2
�

+
p

2
+ k, ± �� +

�p�
2
�

−
p

2
− k,p�z−

DW�p, ± �� +
�p�
2
� −

p

2
�� .

3. � couplings

Here are the RG equations for the susceptibilities �, with
the same spin dependence as the corresponding z couplings,
which is again omitted,

d�0
SC

d�
�q� = −

�

4� + 2�q���
±

z0
SC�q, ± �� +

�q�
2
� +

q

2
�2

+ �
±

z�
SC�q, ± �� +

�q�
2
� +

q

2
�2� ,

d�+
SC

d�
�q� = −

�

4� + 2�q��±
z+

SC�q, ± �� +
�q�
2
� +

q

2
�2

−
�

4� + 2�q + 2�kf�
�
±

z−
SC�q + 2�kf, ± ��

+
�q + 2�kf�

2
� +

q

2
+ �kf�2

,

d�0
DW

d�
�q� = −

�

4� + 2�q��±
z0

DW�− q, ± �� +
�q�
2
� +

q

2
�2

−
�

4� + 2�q − 2�kf�
�
±

z�
DW�− q + 2�kf, ± ��

+
�q − 2�kf�

2
� +

q

2
− �kf�2

,

d�+
DW

d�
�q� = −

�

4� + 2�q���
±

z+
DW�− q, ± �� +

�q�
2
� +

q

2
�2

+ �
±

z−
DW�− q, ± �� +

�q�
2
� +

q

2
�2� .

APPENDIX C: SYMMETRIES

1. Ordinary symmetries

If we apply the conjugation symmetry C to the two-
particle coupling G, we get

G�P1�,P2�,P2,P1� = G�− P1,− P2,− P2�,− P1�� .

If we apply A, we get

GC�P2,P1,P2�,P1�� = − 2GC�P1,P2,P2�,P1��

− 3GS�P1,P2,P2�,P1�� ,

GS�P2,P1,P2�,P1�� = GC�P1,P2,P2�,P1�� + 2GS�P1,P2,P2�,P1�� .

If we apply A�, we get

GC�P1,P2,P1�,P2�� = − 2GC�P1,P2,P2�,P1��

− 3GS�P1,P2,P2�,P1�� ,

GS�P1,P2,P1�,P2�� = GC�P1,P2,P2�,P1�� + 2GS�P1,P2,P2�,P1�� .

Finally, from parity P conservation, we get

G�P1,P2,P2�,P1�� = G�− P1,− P2,− P2�,− P1�� .

Note that AA� simply gives G�P2 , P1 , P1� , P2��
=G�P1 , P2 , P2� , P1��.

For the SC instability coupling, we will write the two-
dimensional interaction vector Q= �Q� ,Q��, and add a dis-
crete variable �=0,�, which indicates whether the R particle
is on the 0 band ��=0� or the � band ��=��; this way, one
can distinguish 0-0, 0-�, �-0 or �-� processes �use Fig. 2
for help�.

If we apply P, we get

ZSC
„− P1,− P2,�− Q�,Q��,�… = ZSC

„P1,P2,�Q�,Q��,�… .

If we apply A or A� �note that in HSC, the term with incoming
momenta P1 and P2 is conjugate to that with outgoing mo-
menta P1 and P2�, we get

Z�
SC
„P2,P1,�Q�,0�,�… = Z�

SC
„P1,P2,�Q�,0�,�…, � = s,t ,
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Zs
SC�s��P2,P1,�Q�,

�

b
− Q��,��

= Zs
SC�s�

„P1,P2,�Q�,Q��,� − �… ,

Zs
SC�g��P2,P1,�Q�,

�

b
− Q��,��

= − Zs
SC�g�

„P1,P2,�Q�,Q��,� − �… ,

Zt
SC�px��P2,P1,�Q�,

�

b
− Q��,��

= Zt
SC�px�

„P1,P2,�Q�,Q��,� − �… ,

Zt
SC�fy��P2,P1,�Q�,

�

b
− Q��,��

= − Zt
SC�fy�

„P1,P2,�Q�,Q��,� − �… .

Finally, it is interesting to note that Zs
SC �singlet� and Ztx

SC

�triplet� change sign under S and are invariant under C, while
Zty

SC and Ztz
SC �both triplet� do the opposite.

For the DW instability coupling, we use the same nota-
tion. Note that Q� writes −�p1− p2+2kf�� for intraband pro-
cesses, and −�p1− p2+kf0+kf�� for interband ones. If we ap-
ply CS, we get

ZDW
„− P1,− P2,�2kf� − Q�,Q��,�…

= ZDW
„P1,P2,�− 2kf� + Q�,Q��,�… ,

and if we apply AS, we get

ZDW
„P2,P1,�2kf� − Q�,Q��,�…

= ± ZDW
„P1,P2,�− 2kf� + Q�,Q��,�… ,

ZDW�P2,P1,�kf0 + kf� − Q�,
�

b
− Q��,��

= � ZDW
„P1,P2,�− kf0 − kf� + Q�,Q��,� − �… ,

where � reads � for site ordering, and � for bond ordering.

2. Supplementary symmetry

When we apply the special symmetry C̃ to two-particle
couplings G, we get

G�kf0 + kf� − P1,kf0 + kf� − P2,kf0 + kf� − P2�,kf0 + kf� − P1��

= G�P1,P2,P2�,P1�� .

When we apply the special symmetry C̃ to SC instabilities
ZSC, we get

Z�
SC���

„− kf0 − kf� − P1,kf0 + kf� − P2,�− Q�,0�,�…

= ± Z�
SC���

„P1,P2,�Q�,0�,� − �… ,

Z�
SC����− kf0 − kf� − P1,kf0 + kf� − P2,�− Q�,

�

b
− Q��,��

= ± Z�
SC���

„P1,P2,�Q�,Q��,� − �… ,

where � reads � for �=s, �=s or for �= t, �= px, and � for
�=s, �=d ,g or for �= t, �= fx , fy.

When we apply the special symmetry C̃ to DW instabili-
ties ZDW, we get

ZDW
„− kf0 − kf� − P1,kf0 + kf� − P2,�2kf� − Q�,0�,�…

= ± ZDW
„P1,P2,�− 2kf�−�� + Q�,0�,� − �… ,

ZDW�− kf0 − kf� − P1,kf0 + kf�

− P2,�− kf0 − kf� − Q�,
�

b
− Q��,��

= ± ZDW
„P1,P2,�− kf0 − kf� + Q�,Q��,� − �… ,

where � reads � for site ordering, and � for bond ordering.

3. gb orbits

Here are the 8 first orbits of the gb0 coefficient, in �c , l , p�
representation:

��0,0,− 2�kf,0�,�0,− 2�kf,0�,�− 2�kf,0,0�,

�− 2�kf,− 2�kf,− 2�kf�� are sym. equiv.,

��− 4�kf,− 4�kf,− 2�kf�,�− 4�kf,2�kf,0�,

�2�kf,− 4�kf,0�,

�2�kf,2�kf,− 2�kf�� id.,

��0,− 4�kf,2�kf�,�0,2�kf,− 4�kf�,�− 2�kf,− 4�kf,− 4�kf�,

�− 2�kf,2�kf,2�kf�� id.,

��− 4�kf,0,2�kf�,�− 4�kf,− 2�kf,− 4�kf�,�2�kf,0,− 4�kf�,

�2�kf,− 2�kf,2�kf�� id.,

��0,− 4�kf,− 2�kf�,�0,2�kf,0�,�− 2�kf,− 4�kf,0�,

�− 2�kf,2�kf,− 2�kf�� id.,

��− 4�kf,0,− 2�kf�,�− 4�kf,− 2�kf,0�,�2�kf,0,0�,

�2�kf,− 2�kf,− 2�kf�� id.,

��0,0,2�kf�,�0,− 2�kf,− 4�kf�,

�− 2�kf,0,− 4�kf�,�− 2�kf,− 2�kf,2�kf�� id.,

��− 4�kf,− 4�kf,2�kf�,�− 4�kf,2�kf,− 4�kf�,

�2�kf,− 4�kf,− 4�kf�,�2�kf,2�kf,2�kf�� id.

APPENDIX D: FOURIER TRANSFORM

Creation and annihilation operators. If one writes ij�
† the

creator of a particle of spin �, located in real space at posi-
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tion i �i� �1, . . . ,N��, on chain j �j= ±1�, the representation
in the momentum space writes

Lp,0,� = ��−kf0+p,0�� = �
ij

ij�e−i�p−kf0�ia,

Lp,�,� = ��−kf�+p,�/b�� = �
ij

jij�e−i�p−kf��ia,

Rp,0,� = ��kf0+p,0�� = �
ij

ij�e−i�p+kf0�ia,

Rp,�,� = ��kf�+p,�/b�� = �
ij

jij�e−i�p+kf��ia,

with the notations of the text. �k� stands for the absolute
momentum representation, while L and R stand for the rela-
tive momentum representation. These relations are given for
annihilation operators; one must take the complex conjuga-
tion to obtain those for the creation operators.

The reverse relations simply write, in terms of the � op-
erators,

ij� = �
−�/a

�/a adP

4�
eiaip���P,0�,� + j��P,�/b�,�� ,

but one can also express them in terms of the L and R op-
erators. Then, one can check that this transformation is the
inverse of the first one.

Electron-electron pair operator. In real space, the SC or-
der parameters are the mean value of the electron-electron
pair operator, which writes

O��X� = �
X�

���

X�X�����X,X������
� .

To each Q= �Q� ,Q�� corresponds a Fourier component

O��Q� = �
X

e−Q·XO��X� = �
ij

e−i�aQ�i+bQ�j/2�O��X� .

We only keep the components Q which lead to singulari-
ties; as explained in the main text, they are �0,0� and
�±�kf ,� /b�. So, using the short notation 0 for the first and
�± for the second, one gets

O��0� = �
i

O��ai,1� + O��ai,− 1�

and

O���±� = �
i

− ie�i�kfa
„O��ai,1� − O��ai,− 1�… ,

where the main factor O��ai ,1�±O��ai ,−1�
=� j j�

���
�±1� jij��i�j����(a�i− i�� ,b�j− j�� /2)����

� is the mixed

representation of the pair operator.45

Eventually, the ij� can be expressed in terms of the �P�,
so that the components write

O��Q� = �
−�/a

�/a adP

4�
�

�=0,�
zQ�p��

���

�p,��Q−p,������
� ,

where p= �P ,� /b� and we will also use Q= �Q� ,Q��. Be
careful that, for instance, with Q= ��kf ,� /b� and p
= �p−kf0 ,0�, and thus �p,�=Lp,0�, the calculation of �Q−p,��
is not immediate; one gets �Q−p,��=���kf−p+kf0,�/b�,��
=R2�kf−p,�,��.

With ��X ,X��=�ii�� j j�, one finds z0�p�=1 �singlet 0 con-
densate of s symmetry�, and z�±

�p�=−i �singlet � condensate
of s symmetry�. With ��X ,X��=�ii�� j,−j�, one finds z0�p�
=cos��� �singlet 0 condensate of d symmetry� and z�±

�p�
= i cos��� �triplet � condensate of fy symmetry�. With
��X ,X��=�i,i��1� j,−j�, one finds z0�p�=cos�aP�cos��� �sin-
glet 0 condensate of extended d symmetry�, as well as
z0�p�=−i sin�aP�cos��� �triplet 0 condensate of fx symme-
try�, and z�±

�p�=sin(a�P��kf /2�)cos��� �singlet � conden-
sate of g symmetry� or z�±

�p�
= ie±i��kfa/2�cos(a�P��kf /2�)cos��� �triplet � condensate of
extended fy symmetry�. With ��X ,X��=�i,i��1� j j�, one finds
z0�p�=cos�aP� �singlet 0 condensate of extended s symme-
try� or z0�p�=−i sin�aP� �triplet 0-condensate of px symme-
try�, and z�±

�p�=−ie±i��kfa/2�cos(a�P��kf /2�) �singlet �
condensate of extended s symmetry� or z�±

�p�=
−e±i��kfa/2�sin(a�P��kf /2�) �triplet � condensate of px sym-
metry�.

Electron-hole pair operator. It is almost the same, with
the product of a creation and an annihilation operators; be
careful, however, that, in reciprocal space, one gets

�
���
�

−�/a

�/a adP

4�
�p�

† �Q+p��z�p�����
� .

1 M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka, Phys.
Rev. Lett. 73, 3463 �1994�.

2 E. M. McCarron, Mater. Res. Bull. 23, 1355 �1988�; M. Sigrist,
ibid. 23, 1429 �1988�.

3 Z. Hiroi and M. Takano, Nature �London� 377, 41 �1995�.
4 For a review of experimental results, see E. Dagotto, Rep. Prog.

Phys. 62, 1525 �1999�.
5 K. Penc and J. Sólyom, Phys. Rev. B 41, 704 �1990�.
6 T. Giamarchi and H. J. Schulz, J. Phys. �France� 49, 819 �1988�.

7 M. Tsuchiizu, P. Donohue, Y. Suzumura, and T. Giamarchi, Eur.
Phys. J. B 19, 185 �2001�.

8 J. I. Kishine and K. Yonemitsu, J. Phys. Soc. Jpn. 67, 1714
�1998�.

9 K. Le Hur, Phys. Rev. B 63, 165110 �2001�.
10 S. Haddad, S. Charfi-Kaddour, M. Heritier, and R. Bennaceur, J.

Phys. IV 10, 3 �2000�.
11 E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B 45, 5744

�1992�.

ABRAMOVICI, NICKEL, AND HÉRITIER PHYSICAL REVIEW B 72, 045120 �2005�

045120-20



12 M. Fabrizio, Phys. Rev. B 48, 15838 �1993�.
13 D. V. Khveshchenko and T. M. Rice, Phys. Rev. B 50, 252

�1993�.
14 T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Phys. Rev. B

47, 3196 �1993�.
15 H.-H. Lin, L. Balents, and M. P. A. Fisher, Phys. Rev. B 56, 6569

�1997�.
16 A. M. Finkel’stein and A. I. Larkin, Phys. Rev. B 47, 10461

�1993�.
17 H. J. Schulz, Phys. Rev. B 53, R2959 �1996�.
18 E. Orignac and T. Giamarchi, Phys. Rev. B 56, 7167 �1997�.
19 K. Kuroki and H. Aoki, Phys. Rev. Lett. 72, 2947 �1994�.
20 D. V. Khveshchenko, Phys. Rev. B 50, 380 �1993�.
21 D. J. Scalapino, J. Low Temp. Phys. 117, 179 �1999�.
22 R. M. Noack, S. R. White, and D. J. Scalapino, Phys. Rev. Lett.

73, 882 �1994�.
23 J. I. Kishine and K. Yonemitsu, J. Phys. Soc. Jpn. 67, 2590

�1998�.
24 Y. Park, S. Liang, and T. K. Lee, Phys. Rev. B 59, 2587 �1999�.
25 W. Metzner, C. Castellani, and C. Di Castro, Adv. Phys. 47, 317

�1998�.
26 C. Honerkamp, Ph.D. thesis, Naturwissenschaften ETH Zürich,

Nr. 13868, 2000.
27 C. Halboth, Ph.D. thesis, RWTH Aachen, 1999.
28 R. Shankar, Rev. Mod. Phys. 66, 129 �1994�.
29 C. Bourbonnais and R. Duprat, Bull. Am. Phys. Soc. 49, 179

�2004�.
30 J. C. Nickel, R. Duprat, C. Bourbonnais, and N. Dupuis, cond-

mat/0502614.
31 S. Dusuel, F. V. de Abreu, and B. Douçot, Phys. Rev. B 65,

094505 �2002�.
32 J. Sólyom, Adv. Phys. 28, 201 �1979�.
33 C. Honerkamp, M. Salmhofer, N. Furukawa, and T. M. Rice,

Phys. Rev. B 63, 035109 �2001�.
34 B. Binz, D. Baeriswyl, and B. Douçot, Ann. Phys. �N.Y.� 12, 704

�2003�.
35 C. Bourbonnais, in Strongly Interacting Fermions and High-Tc

Superconductivity, edited by B. Douçot and J. Zinn-Justin, Les
Houches LVI, 1991 �Elsevier Science, Amsterdam, 1995�.

36 V. N. Prigodin and Y. A. Firsov, Sov. Phys. JETP 49, 813 �1979�.
37 P. A. Lee, T. M. Rice, and R. A. Klemm, Phys. Rev. B 15, 2984

�1977�.
38 V. J. Emery, Synth. Met. 13, 21 �1986�.
39 N. Furukawa, T. M. Rice, and M. Salmhofer, Phys. Rev. Lett. 81,

3195 �1998�.
40 I. J. Lee, P. M. Chaikin, and M. J. Naughton, Phys. Rev. B 62,

R14669 �2000�; I. J. Lee, S. E. Brown, W. G. Clark, M. J.
Strouse, M. J. Naughton, W. Kang, and P. M. Chaikin, Phys.
Rev. Lett. 88, 17004 �2002�; I. J. Lee, D. S. Chow, W. G. Clark,
M. J. Strouse, M. J. Naughton, P. M. Chaikin, and S. E. Brown,
Phys. Rev. B 68, 092510 �2003�.

41 R. W. Cherng and C. A. R. Sá de Melo, Phys. Rev. B 67, 212505
�2002�.

42 C. M. Varma and A. Zawadowski, Phys. Rev. B 32, 7399 �1985�.
43 J. C. Nickel, Thèse de troisième cycle, Université Paris 11, Paris,

2004.
44 D. Zanchi, Europhys. Lett. 55, 376 �2001�.
45 See, for instance, D. Poilblanc, M. Heritier, G. Montambaux, and

P. Lederer, J. Phys. C 19, L321 �1986�.

RENORMALIZATION-GROUP CALCULATIONS WITH… PHYSICAL REVIEW B 72, 045120 �2005�

045120-21


