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Effects of short-range order on the electronic structure of disordered metallic systems
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For many years the Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA) has been widely
used to describe the electronic structure of disordered systems based upon a first-principles description of the
crystal potential. However, as a single-site theory the KKR-CPA is unable to account for important environ-
mental effects such as short-range order (SRO) in alloys and spin fluctuations in magnets, among others. Using
the recently devised KKR-NLCPA (where NL stands for nonlocal), we show how to remedy this by presenting
explicit calculations for the effects of SRO on the electronic structure of the bcc CusyZnsg solid solution.
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I. INTRODUCTION

Currently, the first-principles theory of electrons in disor-
dered metals is based upon density functional theory (DFT)
and either the Korringa-Kohn-Rostoker coherent-potential
spproximation (KKR-CPA)'= or its stripped down version,
the linear muffin-tin orbital (LMTO)-CPA,* for averaging
over the random configurations. This approach has been suc-
cessfully applied to cases where the disorder is internal as
well as external. Examples of the latter are metallic solid
solutions such as Cu.Zn(;_. and Cu.Pd(,_.) above their or-

dering temperatures 7). Examples of the former are Fe or Ni
above their Curie temperatures 7, where randomness in the
crystal potential seen by an electron is the consequence of
disordered local moments (DLM)> and secondly valence
fluctuating systems such as Ce.® Despite significant
achievements,”® this methodology suffers from the short-
coming of not describing correlations in the fluctuations of
the crystal potential. However a generalization of the KKR-
CPA theory has recently been proposed, the KKR-NLCPA
(where NL stands for nonlocal),”!® which systematically
takes into account such correlations, enabling environmental
effects such as short-range order (SRO) to be taken into ac-
count. Although the full three-dimensional (3D) KKR-
NLCPA formalism was given in Refs. 9 and 10, in this paper
we present the first realistic 3D implementation of the
theory!! by illustrating the effects of SRO on the CusyZns,
system.

The physics of the above SRO plays a particularly impor-
tant role near phase transitions where it is frequently a pre-
cursor for long-range order and can be said to be driving the
ordering process. For example, in the ordering of the
CusyZns solid solution into an intermetallic compound of
B2 symmetry, the system lowers its free energy by having
unlike neighbors more frequently than like neighbors even in
the disordered state, thereby lowering the temperature 7,
where the system must finally order. Such SRO is also cen-
tral to the understanding of electronic transport in general
and in K-state alloys in particular.'>!3 Moreover, the forma-
tion of the moment in the DLM state of Ni (Ref. 5) and the
creation of y-like Ce atoms near the y-a transition® will be
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materially affected by the SRO. The KKR-NLCPA method to
be illustrated here will enable these important problems to be
tackled in a parameter-independent and material-specific
way. However, before getting on with the task, we comment
briefly on efforts addressing the same problem as we do by
adopting alternative strategies.

There have been several attempts to develop cluster gen-
eralizations of the single-site CPA. As with the CPA, the
main construct is an effective medium so that the motion of
an electron through it approximates the motion, on the aver-
age, of the electron in the disordered system. An early ex-
ample, the molecular CPA (MCPA),'# introduces a supercell
so that the medium has the unsatisfactory attribute of broken
translational symmetry. The embedded cluster method
(ECM)'>16 refers to the non-self-consistent embedding of a
cluster with all the relevant disorder configurations into the
CPA medium. The travelling cluster approximation (TCA)!7
based on diagrammatic methods and the cluster-CPA
(C-CPA)'®1° based on the augmented space formalism
(ASF)?02! are, like the NLCPA, satisfactory on account of
their translationally invariant, self-consistently determined
effective media and herglotz analytic properties. Both the
TCA and C-CPA become rapidly computationally intractable,
however, and a KKR version of the latter has been applied
only to model systems.'®?? A reasonably good alternative
starting point for the electronic structure of some disordered
alloys is the tight-binding (TB)-LMTO method* combined
with the CPA, which can include an approximate treatment
of the charge self-consistency needed for a DFT. Mookerjee
and Prasad®® have developed a generalized ASF with corre-
lated variables to describe SRO, which has been combined
with the TB-LMTO and real-space recursion technique.’*
This approach has been used successfully to describe effects
of SRO on the densities of states of several alloy
systems.?>?% Nonetheless it is desirable to develop a compu-
tationally tractable generalization of the CPA within the
KKR method, the KKR-NLCPA, with fewer approximations
and superiority with regards to accuracy and reliability over
LMTO methods. It will also be amenable for incorporation
into a full DFT description of disordered materials with
SRO.”’
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This paper is organized as follows. In Sec. II we briefly
summarize the idea of the KKR-NLCPA (for the full deriva-
tion, see Refs. 9 and 10), and in particular we clearly explain
how to carry out the fundamental “coarse-graining” proce-
dure for general lattices. Our aim is to show how current
KKR-based computational codes can be straightforwardly
adapted to include the KKR-NLCPA with its capability of
dealing with disordered systems with SRO. In Sec. III we
present results including SRO calculations for the CusyZns,
system, and we conclude in Sec. IV.

II. FORMALISM

The first step is to define the scattering path matrix 7
describing the motion of an electron in an effective medium,
which ideally should be determined so that it would describe
the average properties of an electron exactly. It is a quantity
that describes the full effects of the coherent potential and is
given by

#1=18;+ 2 H(G(Ry) + 5G(R) 7. (1)
K#i

Here a circumflex symbol denotes an effective medium
quantity and an underscore denotes a matrix in angular mo-
mentum space. In addition to effective local ¢ matrices 7 and
the usual free-space KKR structure constants G(R,-j) that ac-
count for the lattice structure, we also have effective struc-

ture constant corrections @(Rij) that take into account all
nonlocal scattering correlations due to the disorder configu-
rations (labelled &V in Ref. 10). Since the effective medium
is translationally invariant, the matrix elements 77 are also
given by the Brillouin zone (BZ) integral

1

— | dk(' - G(K) - 5G(K)) 'R RR) - (2)
QBZ

QBZ

2=

Since it is not feasible to solve the problem exactly, the key
idea, based upon concepts from the dynamical cluster
approximation,?®?° is to perform a consistent coarse graining
in both real and reciprocal space in order to appropriately
deal with @(RU) and 8G(Kk), respectively. The construction
for carrying out this coarse graining, which must retain the
translational invariance and point-group symmetry of the un-
derlying lattice, has been given by Jarrell and
Krishnamurthy?® for a 2D square lattice in connection with a
simple tight-binding model Hamiltonian. We have general-
ized this construction for realistic 3D body-centered cubic
(bec), face-centered cubic (fcc), and simple cubic (sc)
lattices,” ! which we implement for the first time here.

First we summarize the construction for a general lattice.
Technically, the task is to find an appropriate set of N, real-
space cluster sites {I,J} and corresponding set of “cluster
momenta” {K,}, satisfying the relation

1 .

—_ lKn(RI—RJ) = 5 3
e .

NC% T 3)

This may be accomplished as follows:
(1) Choose a real-space cluster of N, sites that can be
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FIG. 1. Example (bcc lattice): (a) Cross section of the conven-
tional real-space tiling with Wigner-Seitz cells. The shaded sites lie
outside of the page. (b) Cross section of the conventional
reciprocal-space tiling with Brillouin zones. The shaded sites lie
outside of the page. (c) Cross section of the real-space tiling
(dashed lines) with N.=2. (d) Cross section of the reciprocal lattice
points and reciprocal-space tiles (dashed lines) of the coarse-
grained system. (e) Cross section of a real-space tile (dashed line)
for a N.=2 cluster containing the points R;=(0,0,0) and R,
=(al/2,al2,al?2). The shaded sites lie outside of the page. (f) Cross
section of the corresponding reciprocal-space tiles (dashed lines) for
the N.=2 cluster, with K;=(0,0,0) and K,=(27/a,0,0) at their
centers. The shaded points lie outside of the page and the solid line
denotes a cross section of the first BZ in the (k,,k,) plane. The BZ
can be visualized as a cube with a pyramid attached to each of the
six faces, and the dotted line shows a projection of such a pyramid
into the k, plane.

surrounded by a file that (a) preserves the point-group sym-
metry of the underlying lattice and (b) can be periodically
repeated to fill out all space. For N.=1, the tiles are the
conventional Wigner-Seitz cells surrounding each lattice
point, as shown for the bec lattice in Fig. 1(a). For N,> 1
there may only be solutions to the problem for particular
values of N, for any given lattice. For the bcc lattice the next
allowed cluster sizes are N.=2 and 16, where the tiles are

045101-2



EFFECTS OF SHORT-RANGE ORDER ON THE...

(@) z (b)

FIG. 2. (a) Cross section of a real-space tile (dashed line) for a
N_.=4 cluster on the fcc lattice containing the points R;=(0,0,0),
R,=(a/2,0,a/2), R3=(a/2,a/2,0), and R4=(0,a/2,a/2). The
shaded sites lie outside of the page. (b) Cross section of the corre-
sponding reciprocal-space tiles (dashed lines) for the N.=4 cluster,
with K;=(0,0,0), K,=(27/a,0,0), and K3=(0,27/a,0) shown as
the I' point and the two X points. The fourth tile is centered at the X
point K,=(0,0,27/a) and is situated out of the page vertically
above I'. Again the shaded points lie outside of the page and the
solid line denotes a cross section of the first BZ in the (k,,k,) plane.

simple cubes of volume a® and (2a)?, respectively, surround-
ing each cluster [see Fig. 1(c) for N,=2].

(2) Label the sites of the original lattice by the set of
vectors {R;”ig}, and the centers of the coarse-graining tiles by
the set of vectors {R{*}.

(3) Label the reciprocal lattice corresponding to {R?"} by
the set of vectors {K?"*¢}. Each K{"* is centered in a Brillouin
zone (), that periodically repeats to fill out all of reciprocal
space. For the bcc lattice, this BZ will be a fcc Wigner-Seitz
cell of volume 2(27/a)?, as shown in Fig. 1(b).

(4) Label the reciprocal lattice corresponding to {R{*} by
the set of vectors {K;*}. Each K;* is centered at a reciprocal
space tile (corresponding to the reciprocal space of the real-
space tile) that again periodically repeats to fill out all of
reciprocal space. For the bec lattice, {K{*} are simple cubic
and will be centered at simple cubic tiles of volume (277/ a)’
or (7/a)? for the N.=2 [see Fig. 1(d)] or N.=16 cases, re-
spectively.

(5) Observe that {Kf'ig}C{ng}. Select N, vectors from
the set {K{*} that lie within Qp, and do not differ by an
element of {K?"¢}. We define these to be the set of cluster
momenta {K,}. The reciprocal space contained within the N,
reciprocal-space tiles centered at {K,} is completely equiva-
lent to that contained within )z, by translation through re-
ciprocal lattice vectors {K?"%}. See Fig. 1(f) for the bcc ex-
ample with N.=2.

Refer to the table in Ref. 10 for the R; and K,, values for
sc, bee, and fcc lattices obtained using the above method.
Note that for the fcc lattice the next allowed cluster sizes are
N.=4 and 32, respectively, where the real-space tiles are
again simple cubes of volume a’® and (2a)’, respectively,
surrounding each cluster. See Fig. 2 for the fcc N.=4 dia-
gram.

Having carried out this coarse-graining procedure, we can
now make an appropriate approximation to determine the
effective medium. In reciprocal space, we approximate
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S5G(k) within each of the N, tiles by the N, values {5G(K,)},

each defined to be the average of 5G(k) over the tile cen-
tered at K. The scattering path matrix may then be repre-
sented by the set of coarse-grained values

N.
/\K — C
HK,)= o

J k(G - GK) - SOK,)",  (4)
BzJ oy

which are straightforward to calculate owing to 5G(K,) be-
ing constant within each tile QKn' Note that the N, integrals
here have the same computational cost as one standard BZ
integral. This is unlike a supercell method such as the MCPA
where the size of the KKR matrix, which must be inverted at
every k point, increases as N, increases. In fact it is straight-
forward to show that this integration step is N, times faster
for the KKR-NLCPA than for a supercell method for compa-
rable cluster sizes. Using Eq. (3), the scattering path matrix
at the cluster sites becomes

19>

1 _~ .
Ve —3 dk(@' - G(k) - 5G(K,)) ™" |e®nRrR),
Qpz K, \VOg

(5)

From Nyquist’s sampling theorem, the effect of coarse-
graining the effective structure constant corrections is to re-
duce their range in real space. In fact from Eq. (3) we have

29,30

_ 1 . ‘
OG(Ry)) = 2 OG(K, e SR,

c Kn
8G(K,) = 2 5G(R,))e KRR, (6)
J#I

Note that 5G(R;;) remains a translationally invariant quan-
tity that depends only on the distance between sites / and J,
now within the range of the cluster size, but independent of
which site in the lattice is chosen to be site 1.° It is now
straightforward to generalize the CPA argument and deter-
mine the medium by mapping to an impurity cluster prob-
lem. We choose a real-space cluster consistent with the re-
quirements outlined above, and use the embedded cluster
method'>!° to replace it with an “impurity” cluster of real ¢
matrices and free-space structure constants in the (still unde-
termined) effective medium. We then consider all paths start-
ing and ending on the impurity cluster sites and demand that
the average over the 2V possible impurity cluster configura-
tions y be equal to the path matrix for the effective medium
itself, i.e.,

X Pyr) =2, (7)

Y
where P, is the probability of configuration y occurring.
Therefore the effective medium ¢ matrices and effective
structure constant corrections are determined from a self-
consistent solution of Egs. (5) and (7). An example algorithm
is given in Refs. 9 and 10. SRO may be included by appro-
priately weighting the configurations in Eq. (7) (the number
of which can be reduced using symmetry and sampling),
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FIG. 3. (Color online) (a) DOS for pure Cu and pure Zn. (b)
DOS for ordered CusyZns.

provided that translational invariance is preserved. Observ-
able quantities such as the density of states (DOS) can be
calculated from the corresponding configurationally aver-
aged Green’s function.?! The formula for the DOS within the
KKR-NLCPA is given in Refs. 9 and 10. Importantly, owing
to the translational invariance of the KKR-NLCPA medium,
it is independent of lattice site chosen. This is crucial for
calculating the partially averaged charge densities to be used
in combination with DFT.”2732-34 Finally, note that the
KKR-NLCPA formalism reduces to the KKR-CPA for N,
=1, and nonlocal scattering correlations (and SRO if desired)
are systematically included into the effective medium as N,
is increased, becoming exact as N,— .

III. RESULTS

To illustrate the KKR-NLCPA, we present calculations for
the bee CusyZns, solid solution with lattice constant 2.86 A.
In all calculations that follow, Cu and Zn potentials come
from self-consistent field (SCF) KKR-CPA calculations,?>-¢
the BZ integrals use the adaptive quadrature method,?’” and
the energy contour has a 1-mRy imaginary part.

Figure 3(a) shows DOS plots for pure Cu and pure Zn,
and Fig. 3(b) shows a calculation for the ordered CusyZnsy
compound. Since the energies of the Cu and Zn d bands are
very different, the system is said to be in the “split band”
regime. Physically, this means an electron travels more easily
between Cu or between Zn sites than between unlike sites
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FIG. 4. (Color online) (a) Total average DOS for disordered bcc
CuspZnsg using the KKR-CPA. Also shown are the contributions
from the Cu and Zn components (site-restricted average DOS). Ep
is the Fermi energy. (b) Total average DOS for bce CusyZns using
the KKR-NLCPA with N.=2, along with the contributions from the
four possible cluster configurations (cluster-restricted average DOS)
measured at the first site, i.e., Cu for Cu-Cu, Cu-Zn, and Zn for
Zn-Cu, Zn-Zn. (Owing to the translational invariance, contributions
measured at the second site would give the same results with a
simple reversal of the labels). Also shown are total DOS results for
N,.=16. (c) Plot of the difference in the total DOS between the N,
=1 and 2 calculations, i.e., (total N.=1)—(total N.=2).

and so the decrease in overlap between like sites in the or-
dered case results in a narrowing of the Cu and Zn bands by
a factor of 2 compared with the pure calculations.’® Figure
4(a) shows KKR-CPA results for disordered CusyZns. It is
clear that the bands are widened and smoothened compared
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FIG. 5. (Color online) (a) Total and cluster component DOS for bce CusgZns, using the KKR-NLCPA with N.=2 and a=0. (b)—(f) Same
as (a) but with increasing values of a, corresponding to short-range clustering.

with the DOS for the ordered calculation. The component
contributions from Cu and Zn impurity sites embedded in the
KKR-CPA medium are also shown. Next, a KKR-NLCPA
calculation for disordered CusyZns, for a two-site cluster
(N,=2) is shown in Fig. 4(b). First note that there is little
observable difference in the total DOS compared with the
KKR-CPA calculation. This is due to the small size of the
cluster, and the difference due to the nonlocal scattering cor-
relations shows up in detail only on a scale of
+1 state/atom/Ry, as shown in Fig. 4(c). As expected, it is
clear that the extra structure is in the energy regions of the
impurity d bands. However the most striking aspect of the
KKR-NLCPA calculation is that the component contributions
to the total DOS from the four possible cluster configurations

are apparent. The component plots here are the DOS mea-
sured at the first cluster site when a particular cluster con-
figuration is embedded in the KKR-NLCPA medium, which
is the Cu site for the Cu-Cu and Cu-Zn configurations, and
the Zn site for the Zn-Cu and Zn-Zn configurations. Cru-
cially, owing to the translational invariance of the KKR-
NLCPA medium, measurement at the second site gives the
same results with a simple reversal of the labels of the Cu-Zn
and Zn-Cu components. These component plots are particu-
larly useful for interpreting the effects of SRO on the elec-
tronic structure, as described in the next section. Finally, Fig.
4(b) also shows total DOS results for the larger N.=16 clus-
ter, where the extra structure is more visible in the energy

045101-5



ROWLANDS et al.

60

' ' total

= (a) 0=0.0 Cl:Chl =osas
€ sof p  CuZnee
£

2 -------
&

% 40 r

[0

IS

&,

o 30r

[0

T

&

5 20 +

2

2

3 10 |

g’ EF
o b= —— — e a3 s
0 0.4 0.5 0.6 0.7

60

(c) 0=-0.4

Density of States (states/atom/Ry)

PHYSICAL REVIEW B 72, 045101 (2005)

60

(d) 0=-0.6

Density of States (states/atom/Ry)

60

(f) a=-1.0

Energy (Ry)

FIG. 6. (Color online) (a) Total and cluster component DOS for bee CusgZns, using the KKR-NLCPA with N.=2 and a=0. (b)—(f) Same
as (a) but with decreasing values of «, corresponding to short-range ordering.

region between 0.10 and 0.15 Ry where some states are
shifted to higher energies.

Short-range order

Unlike single-site theories, it is possible to include the
effects of SRO on the electronic structure of disordered sys-
tems using the KKR-NLCPA. This may be done by using an
appropriate nonrandom probability distribution when averag-
ing over the impurity cluster configurations in Eq. (7). Of
course, as the size of the cluster increases, the range of pos-
sible SRO that may be included also increases. Here we
show results for bee CusyZns, using a pair cluster (N.=2),
where it is possible to include SRO between nearest-

neighbor sites only. This may be straightforwardly done by
introducing the nearest-neighbor Warren-Cowley SRO pa-
rameter «,> and using probabilities defined as

P(CuCu) = P(Cu)? + a/4,
P(ZnZn) = P(Zn)? + /4,
P(CuZn) = P(Cu)P(Zn) — al4,

P(ZnCu) = P(Zn)P(Cu) — a/4.

For CusyZns, P(Cu)=P(Zn)=0.5 and so the SRO parameter
can take values in the range —1<a=<1, where -1, 0, and
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+1 correspond to ideal ordering, complete randomness, and
ideal clustering.

Figure 5 shows the effects of short-range clustering upon
the configurationally averaged DOS. It is clear that as « in-
creases above zero, the probability of like pair components
increases while that of unlike pairs decreases, resulting in
corresponding changes to the component and total DOS. In-
deed at = +1 the probability of unlike pairs is zero and the
total DOS is now completely dominated by the features of
the Cu-Cu and Zn-Zn components, as shown in Fig. 5(f). As
expected, these features are reminiscent of the pure bands
shown in Fig. 3(a), for example, the magnifying of the
trough and peak on either side of 0.15 and 0.5 Ry can all be
associated with the DOS for pure Zn and pure Cu, respec-
tively. Moreover, a new peak appears just before 0.4 Ry as-
sociated with pure Cu. Figure 6 shows the effects of short-
range ordering upon the configurationally averaged DOS.
Here as « decreases below zero, the components of the total
DOS due to like pairs decreases while that due to unlike
pairs increases. Finally at a=—1, as shown in Fig. 6(f), there
are only contributions remaining from unlike pairs. Evi-
dently, the DOS in general has a closer resemblance to that
of ordered CusyZns, shown in Fig. 3(b). For example, the
peaks on either side of 0.15 and 0.5 Ry are now of roughly
equal magnitude and there is also a slight overall narrowing
of the bands compared with those for positive values of «
due to the decrease in probability of like neighbors.
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IV. CONCLUSIONS

The recently devised KKR-NLCPA generalizes the widely
used KKR-CPA method by including SRO, and satisfies all
of the requirements for a satisfactory effective-medium clus-
ter theory.'® It has relatively low computational cost in com-
parison with supercell-based methods since the BZ integra-
tion, the most computationally demanding aspect of a band-
structure calculation, does not scale with the cluster size. In
this paper we have implemented the KKR-NLCPA for a re-
alistic system by illustrating the dramatic changes that can
occur in the DOS for bee CusgZns,.

Ultimately the KKR-NLCPA will be the electronic struc-
ture component of a fully self-consistent theory of disordered
systems. The next step will be to combine it with DFT,?’
which will also enable charge correlations®-3* and local lat-
tice displacements*’ to be systematically taken into account
for alloys. Then, the SRO parameter « will need to be coarse
grained via Egs. (6), and could be determined via a linear
response calculation*! before being fed back into the elec-
tronic structure, resulting in a completely ab initio theory of
SRO at a given temperature 7. Similar treatments will also
be available for effects such as magnetic SRO in metallic
magnets at finite temperature.
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