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We investigate the interplay between amplitude and square-gradient scattering from the rough surfaces in
multimode waveguides �conducting quantum wires�. The main result is that for any �even small in height�
roughness the square-gradient terms in the expression for the wave-scattering length �electron mean free path�
are dominant, provided the correlation length of the surface disorder is small enough. This important effect is
missed in existing studies of the surface scattering.
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The problem of wave transport �both classical and quan-
tum� through the guiding surface-disordered systems has a
quite long history and stay remains a hot topic �see, e.g.,
Refs. 1–17 and references therein�. One of the main tools to
treat this problem is the reduction of the wave or electron
surface scattering to the bulk one in such a way that the latter
can be described by an effective Hamiltonian with a compli-
cated potential, however, with flat boundaries. Applying this
approach, one can reasonably discriminate between the so-
called amplitude and gradient scattering, and analyze their
interplay explicitly.

The idea of this approach was discussed by Migdal.5 Af-
ter, it was frequently used in the theories of classical and
quantum wave or electron scattering �see, e.g., Refs. 6–13�.
But in the majority of them6–10 the study was restricted to the
lowest order in the roughness height �. Other methods11–17

were mainly based on the principal assumption that the sur-
face roughness is sufficiently smooth.

In this paper we present the theory of wave scattering
from rough surfaces, which takes into account both the am-
plitude and gradient scattering mechanisms. The important
point is that we do not assume any special restrictions on the
model parameters except for general conditions of weak scat-
tering. The latter provides us with an appropriate perturba-
tive approach in scattering potential, however, is not re-
stricted by the smoothness of surfaces.

The main attention is paid to the competition between the
amplitude and gradient scattering. One of our main results is
that at fixed r.m.s. roughness height �, the less correlation
length Rc of a random surface profile, the larger contribution
of the gradient mechanism. Thus, by passing from the
smooth to white-noise profiles, the gradient scattering begins
to prevail. We have analyzed this crossover and obtained the
estimates describing the transition to the dominating gradient
scattering. In particular, we show that this transition is lo-
cated within the region of small roughness slopes where
� /Rc�1.

In what follows we consider an open plane waveguide �or
conducting quasi-one-dimensional quantum wire� of the av-

erage width d, stretched along the x axis. For simplicity, one
�lower� surface of the waveguide is assumed to be flat, z=0,
while the other �upper� surface has a rough profile z=w�x�
=d+���x� with ���x��=0 and ��2�x��=1. The average �¯� is
performed over different realizations of a statistically homo-
geneous and isotropic Gaussian random function ��x�. We
also assume that its pair correlator ���x���x���=W�x−x�� de-
creases on a scale Rc, with the normalization W�0�=1. The
roughness-height power �RHP� spectrum W�kx� is defined by

W�kx� = �
−�

�

dx exp�− ikxx�W�x� . �1�

Since W�x� is an even function of x, its Fourier transform
�1� is an even, real, and non-negative function of kx. The
RHP spectrum has maximum at kx=0 with W�0��Rc, and
decreases on the scale Rc

−1.
In order to analyze the surface scattering for our model,

we employ the method of the retarded Green’s function
G�x ,x� ;z ,z��. Specifically, we start with the Dirichlet
boundary-value problem

� �2

�x2 +
�2

�z2 + k2�G�x,x�;z,z�� = ��x − x����z − z�� , �2a�

G�x,x�;z = 0,z�� = G„x,x�;z = w�x�,z�… = 0. �2b�

Here the wave number k is equal to � /c for an electro-
magnetic wave of the frequency � and TE polarization,
propagating through a waveguide with perfectly conducting
walls. As for an electron quantum wire, k is the Fermi wave
number within the isotropic Fermi-liquid model. In order to
express the surface scattering as a bulk one, we perform the
transformation to new coordinates,

xnew = xold, znew = zoldd/	d + ���x�
 , �3�

in which both waveguide surfaces are flat. Correspondingly,
we introduce the canonically conjugate Green’s function,
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Gnew=d−1�w�x�w�x��Gold and omit the subscript “new” in
what follows. As a result, we arrive at the equivalent
boundary-value problem governed by the equation with a
“bulk” perturbation potential,

� �2

�x2 +
�2

�z2 + k2 − 1 −
d2

w2�x�� �2

�z2

−
�

w�x����x�
�

�x
+

�

�x
���x��1

2
+ z

�

�z
�

+
�2��2�x�

w2�x� 3

4
+ 3z

�

�z
+ z2 �2

�z2��G�x,x�;z,z��

= ��x − x����z − z�� , �4a�

G�x,x�;z = 0,z�� = G�x,x�;z = d,z�� = 0. �4b�

Here the prime stands for the derivative over x.
We emphasize that Eq. �4� is exact and valid for any form

of w�x�. As one can see, the scattering potential depends both
on the roughness profile ���x� and on its gradient ����x�.
Moreover, the potential contains the term with the square-
gradient �2��2�x�. This term is proportional to �2 and for this
reason was neglected in all previous studies of transport
properties in the surface-disordered waveguides. However,
as a matter of fact, the square gradient introduces the opera-

tor V̂�x�=��2�x�− ���2�x��, which plays a special role. Its pair
correlator,

�V̂�x�V̂�x��� = 2����x����x���2 = 2W �2�x − x�� , �5�

determines the square-gradient power �SGP� spectrum

T�kx� = �
−�

�

dx exp�− ikxx�W �2�x� . �6�

One should stress that although by integration by parts the
power spectrum of the roughness gradients ����x� can be
reduced to the RHP spectrum W�kx�, this is not possible for
the SGP spectrum T�kx�. This very fact reflects a highly non-
trivial role of the square-gradient scattering, giving rise to
the competition with the well-known amplitude scattering, in
spite of the seeming smallness of the term �2��2�x�.

To proceed, we pass from Eq. �4� to the Dyson-type equa-
tion, performing the ensemble averaging with the use of the
technique developed in Ref. 3. The method allows one to
develop the consistent perturbative approach with respect to
the scattering potential, which takes adequately into account
the multiple scattering from the corrugated boundary. After
quite cumbersome calculations we have obtained the average
Green’s function that, in the normal-mode representation, has
the form

�G�x,x�;z,z��� = �
n=1

Nd

sin��nz

d
�sin��nz�

d
�

�
exp�ikn�x − x���

iknd
exp�−

�x − x��
2Ln

� . �7�

Here kn=�k2− ��n /d�2 corresponds to the unperturbed
lengthwise wave number kx, and Nd= 	kd /�
 is the number
of propagating modes �or conducting electron channels� de-
termined by the integer part 	¯
 of the ratio kd /�.

Our interest is in the attenuation length or total mean-free-
path Ln of the nth mode. Its inverse value is given by the
imaginary part of the proper self-energy and, in accordance
with the form of the scattering potential, consists of two
terms describing different scattering mechanisms,

1

Ln
=

1

Ln
�1� +

1

Ln
�2� . �8�

The first length Ln
�1� is determined by the expression

1

Ln
�1� = �2 ��n/d�2

knd
�

n�=1

Nd ��n�/d�2

kn�d
	W�kn + kn�� + W�kn − kn��
 .

�9�

Its diagonal term is formed by the amplitude scattering
while the off-diagonal terms result from the gradient one.
Equation. �9� coincides with that previously obtained by dif-
ferent methods �see, e.g., Ref. 1�.

The second length Ln
�2� is associated solely with the

square-gradient mechanism due to the operator V̂�x�,

1

Ln
�2� = �

n�=1

Nd 1

Lnn�
�2� . �10�

Its diagonal term controls the intramode scattering,

1

Lnn
�2� =

�4

2

��n/d�4

kn
2 1

3
+

1

�2�n�2�2

	T�2kn� + T�0�
 . �11�

The off-diagonal partial length L
n�n�
�2� describes the inter-

mode scattering �from n to n��n channels�,

1

Ln�n�
�2� =

8�4

�4

��n/d�2

kn

��n�/d�2

kn�

�n2 + n�2�2

�n2 − n�2�4 	T�kn + kn�� + T�kn

− kn��
 . �12�

Let us analyze the conditions under which Eqs. �8�–�12�
are derived. We stress that the Dyson-type equation for the
average Green’s function was obtained within the second-
order approximation in the perturbation potential. This
means that the self-energy in this equation contains the bi-
nary correlator of the surface-scattering potential and the un-
perturbed Green’s function. In terms of the diagrammatic
technique, this is similar to the “simple vortex” or, the same
Bourret approximation.18 Following the ideas discussed in
Ref. 2, one can show that this approximation is justified
when the broadening 1/2Ln of the quantum wave number kn
is much less than both the correlation scale Rc

−1 and the spac-
ing �kn−kn±1����kn /�n� between neighboring quantum wave
numbers. The same conditions also arise due to another ap-
proximation that is the use of the unperturbed value kn in the
expression for the self-energy, instead of the perturbed one.
Now we take into account that ��kn /�n��	n

−1, where 	n is
the distance between two successive reflections of a wave
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from the rough boundary inside the nth channel. As a result,
we come to the following conditions of a weak surface scat-
tering:

	n = 2knd/��n/d� � 2Ln, Rc � 2Ln. �13�

These inequalities imply that the electron or wave weakly
attenuates on both the correlation length Rc and the cycle
length 	n.

As one can see, the expressions �9�–�12� represent, re-
spectively, basic contributions from principally different
surface-scattering mechanisms related to the amplitude, gra-
dient, and square-gradient terms. It should be emphasized
that the corrections proportional to �4 originated from
higher-order approximations in the amplitude and gradient
terms of the perturbation potential, are smaller than the main
contribution �9� under the conditions �13�. Contrary, the
square-gradient terms give rise to the �4 terms in Eqs. �11�
and �12�, which should not be neglected due to a specific
dependence on the correlation length Rc. Note that Eq. �13�
implicitly includes the requirement that the surface corruga-
tions be small in height ���d�, but does not restrict the
value � /Rc of the roughness slope.

Since Ln
�1� and Ln

�2� depend on as many as four dimension-
less parameters �k��2, kRc, kd /�, and n, the complete analy-
sis appears to be quite complicated. For this reason, below
we restrict ourselves by the analysis of the interplay between
Ln

�1� and Ln
�2� as a function of the dimensionless correlation

length kRc for Nd�kd /�
1.
As follows from Eq. �9�, the inverse value of the

amplitude-scattering length typically increases with an in-
crease of kRc. Specifically, in the case of the small-scale
roughness �kRc�1�k	n� we have 1/Ln

�1��kRc. Then,
within the intermediate region where 1�kRc�k	n, the in-
crease of 1 /Ln

�1� slows down, or can even be replaced by the
decrease for some values of the model parameters. Finally,
for large-scale roughness and strong correlations �1�k	n

�kRc� the value of 1 /Ln
�1� again starts to increase linearly

with kRc.
In contrast with 1/Ln

�1�, the inverse square-gradient scat-
tering length 1/Ln

�2� reveals a monotonous decrease as the
parameter kRc increases. At small �kRc�1�k	n� and ex-
tremely large �1�k	n�kRc� values of kRc, this decrease
obeys the law 1/Ln

�2�� �kRc�−3, due to T�0��Rc
−3.

From this analysis it becomes clear that the curves dis-
playing 1/Ln

�1� and 1/Ln
�2� must intersect, and one can observe

the crossover from the square-gradient to amplitude surface
scattering. To the left from the crossing point �kRc�� the
square-gradient scattering length prevails, Ln

�2��Ln
�1�. To its

right the main contribution is due to the well-known ampli-
tude scattering, Ln

�1��Ln
�2�. If the crossing point falls onto the

interval of the small-scale roughness �kRc�1�, its depen-
dence on the model parameters is described by

�kRc��
2 � �k��n/�knd . �14�

This estimate shows that the crossing point is smaller for
smaller values of the dimenssionless roughness height k�, as

well as for smaller mode indices n, or for larger values of the
parameter kd /�.

In Fig. 1 we display the dependence of 	n /2Ln as a func-
tion of kRc assuming the Gaussian binary correlator W�x�
=exp�−x2 /2Rc

2� for random surface profile ��x�. The curves
are plotted starting from such values of kRc for which
	n /2Ln

�2�=1, according to the first condition of Eq. �13�. Tak-
ing into account the second condition restricting the maximal
value of kRc, we plot every curve within the range where
Rc2Ln

�1�. As one can see, all curves have the crossover from
the square-gradient to amplitude surface scattering. The first
�lowest� one with �k��2=10−4 has the crossing point �kRc��
�0.2 located within the interval of small-scale roughness,
and the crossover reveals a small dip centered at �kRc��. The
curve obeys the asymptotic behavior �kRc�−3 to the left from
�kRc�� due to the main contribution from 	n /2Ln

�2�. Then the
quantity 	n /2Ln

�1� becomes dominating in the sum �8�, there-
fore, the curve starts to rise. Firstly, the linear dependence on
kRc on the right deep side �where kRc1� is replaced with a
smoother one �for kRc�1�. Finally, for Rc�	n �strong cor-
relations� the linear dependence restores.

The crossing points of the second, third, and fourth curves
have the values of the order one. Here the total attenuation
length Ln within the whole small-scale region is formed by
the square-gradient scattering length Ln

�2�. In full agreement
with Eq. �14� the presented curves display that the smaller
the parameter �k��2 the smaller the value of the crossing
point �kRc��.

Note that for all curves in Fig. 1 the roughness height is
small, � /d�1. Furthermore, for the amplitude-dominated
scattering 	to the right from the point �kRc�� where 	n /2Ln

�1�

mainly contributes
, the average corrugation slope is also
small for all data, � /Rc�1. The roughness slope remains to
be small at the crossing points too, but increases to their left
with the decrease of kRc. As a result, to the left from the
crossing point where the square-gradient term 	n /2Ln

�2� pre-
vails, the slope reaches the values of the order one, or even
larger for the first tree curves.

In conclusion, we report on the principal importance of
the square-gradient surface-scattering mechanism. We have

FIG. 1. 	n /2Ln versus kRc at kd /�=62.5, n=31, and different
�k��2.
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shown that at any fixed value of the roughness height � one
can indicate the region of small values of the correlation
length Rc where the new square-gradient scattering length
Ln

�2� predominates over the known amplitude scattering
length Ln

�1��Ln
�2��Ln

�1��. The predominance occurs in spite of
the fact that 1 /Ln

�1� is proportional to �2 while 1 /Ln
�2� is pro-

portional to �4. This happens since the two lengths are de-
termined by the substantially different roughness-height
W�kx� and roughness-square-gradient T�kx� power spectra,

which have vastly different dependencies on Rc. It is remark-
able that the square-gradient mechanism prevails in the com-
monly used region kRc�1 of a small-scale boundary pertur-
bation, where the surface roughness is typically described via
the white-noise potential.
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