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Gradient and amplitude scattering in surface-corrugated waveguides
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We investigate the interplay between amplitude and square-gradient scattering from the rough surfaces in
multimode waveguides (conducting quantum wires). The main result is that for any (even small in height)
roughness the square-gradient terms in the expression for the wave-scattering length (electron mean free path)

are dominant, provided the correlation length of the surface disorder is small enough. This important effect is

missed in existing studies of the surface scattering.
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The problem of wave transport (both classical and quan-
tum) through the guiding surface-disordered systems has a
quite long history and stay remains a hot topic (see, e.g.,
Refs. 1-17 and references therein). One of the main tools to
treat this problem is the reduction of the wave or electron
surface scattering to the bulk one in such a way that the latter
can be described by an effective Hamiltonian with a compli-
cated potential, however, with flat boundaries. Applying this
approach, one can reasonably discriminate between the so-
called amplitude and gradient scattering, and analyze their
interplay explicitly.

The idea of this approach was discussed by Migdal.> Af-
ter, it was frequently used in the theories of classical and
quantum wave or electron scattering (see, e.g., Refs. 6-13).
But in the majority of them®!? the study was restricted to the
lowest order in the roughness height o. Other methods'!~"”
were mainly based on the principal assumption that the sur-
face roughness is sufficiently smooth.

In this paper we present the theory of wave scattering
from rough surfaces, which takes into account both the am-
plitude and gradient scattering mechanisms. The important
point is that we do not assume any special restrictions on the
model parameters except for general conditions of weak scat-
tering. The latter provides us with an appropriate perturba-
tive approach in scattering potential, however, is not re-
stricted by the smoothness of surfaces.

The main attention is paid to the competition between the
amplitude and gradient scattering. One of our main results is
that at fixed r.m.s. roughness height o, the less correlation
length R, of a random surface profile, the larger contribution
of the gradient mechanism. Thus, by passing from the
smooth to white-noise profiles, the gradient scattering begins
to prevail. We have analyzed this crossover and obtained the
estimates describing the transition to the dominating gradient
scattering. In particular, we show that this transition is lo-
cated within the region of small roughness slopes where
og/R.<1.

In what follows we consider an open plane waveguide (or
conducting quasi-one-dimensional quantum wire) of the av-
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erage width d, stretched along the x axis. For simplicity, one
(lower) surface of the waveguide is assumed to be flat, z=0,
while the other (upper) surface has a rough profile z=w(x)
=d+cé(x) with (&(x))=0 and (£&*(x))=1. The average (- -) is
performed over different realizations of a statistically homo-
geneous and isotropic Gaussian random function &(x). We
also assume that its pair correlator (&(x)&(x"))=WW(x—x") de-
creases on a scale R,, with the normalization YW(0)=1. The
roughness-height power (RHP) spectrum W(k,) is defined by

o0

dx exp(— ik, x)W(x). (1)

—00

Wik,) =

Since W(x) is an even function of x, its Fourier transform
(1) is an even, real, and non-negative function of k,. The
RHP spectrum has maximum at k,=0 with W(0)~R,., and
decreases on the scale R

In order to analyze the surface scattering for our model,
we employ the method of the retarded Green’s function
G(x,x";z,7'). Specifically, we start with the Dirichlet
boundary-value problem

(i + 7z + kz)g(x,x' i2,2) = 0x—x")dz-27'), (2a)

x> 972

G, x";2=0,2")=G(x,x";z=w(x),z') =0. (2b)

Here the wave number k is equal to w/c for an electro-
magnetic wave of the frequency w and TE polarization,
propagating through a waveguide with perfectly conducting
walls. As for an electron quantum wire, k is the Fermi wave
number within the isotropic Fermi-liquid model. In order to
express the surface scattering as a bulk one, we perform the
transformation to new coordinates,

Znew = Zoldd/[d + Ug(x)] > (3)

in which both waveguide surfaces are flat. Correspondingly,
we introduce the canonically conjugate Green’s function,

Xnew = Xold>
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Grew=d '\w(x)w(x")G,q and omit the subscript “new” in
what follows. As a result, we arrive at the equivalent
boundary-value problem governed by the equation with a
“bulk” perturbation potential,

SN AT
&x2+ 97 * _wz(x) 97

J
()[5()_+_ (x)Mz az}

o?&%(x) .
| e
=8x-x")8z-7'), (4a)

Gx,x";2=0,z") =G(x,x";z=d,z') =0. (4b)

Here the prime stands for the derivative over x.

We emphasize that Eq. (4) is exact and valid for any form
of w(x). As one can see, the scattering potential depends borh
on the roughness profile oé(x) and on its gradient o&¢’(x).
Moreover, the potential contains the term with the square-
gradient 02&'?(x). This term is proportional to o2 and for this
reason was neglected in all previous studies of transport
properties in the surface-disordered waveguides. However,
as a matter of fact, the square gradient introduces the opera-

tor V(x) =§&2(x)—(&*(x)), which plays a special role. Its pair
correlator,

V)V =2 ()& ()2 =2W"(x-x), (5

determines the square-gradient power (SGP) spectrum

T(k,) = f ’ dx exp(— ik, X)W "*(x). (6)

One should stress that although by integration by parts the
power spectrum of the roughness gradients oé’(x) can be
reduced to the RHP spectrum W(k,), this is not possible for
the SGP spectrum T(k,). This very fact reflects a highly non-
trivial role of the square-gradient scattering, giving rise to
the competition with the well-known amplitude scattering, in
spite of the seeming smallness of the term o2&"%(x).

To proceed, we pass from Eq. (4) to the Dyson-type equa-
tion, performing the ensemble averaging with the use of the
technique developed in Ref. 3. The method allows one to
develop the consistent perturbative approach with respect to
the scattering potential, which takes adequately into account
the multiple scattering from the corrugated boundary. After
quite cumbersome calculations we have obtained the average
Green’s function that, in the normal-mode representation, has
the form

Ny )
(Glx,x";2,2))= > sin(%)sin( e )

n=1 d
Ix—X’|>
- . (7
2L, @

exp(ikn|x—x’|) (
X - exp
ik,d
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Here k,=k*>~(mm/d)* corresponds to the unperturbed
lengthwise wave number k,, and N,=[kd/ ] is the number
of propagating modes (or conducting electron channels) de-
termined by the integer part [- -] of the ratio kd/ .

Our interest is in the attenuation length or total mean-free-
path L, of the nth mode. Its inverse value is given by the
imaginary part of the proper self-energy and, in accordance
with the form of the scattering potential, consists of two
terms describing different scattering mechanisms,

LN
[TORTEk

n n

1
L (®)

The first length L(l) is determined by the expression

1_ (mnld)? 24 (7' 1d)?
LW o k,d 2 k,d

n n'=1

[W(kn + kn’) + W(kn - kn’)]-

9)

Its diagonal term is formed by the amplitude scattering
while the off-diagonal terms result from the gradient one.
Equation. (9) coincides with that previously obtained by dif-
ferent methods (see, e.g., Ref. 1).

The second length Lf) is associated solely with the

square-gradient mechanism due to the operator f)(x),

T
[0 4 2 o (10)
n n'=1

Its diagonal term controls the intramode scattering,

1 o (mnld)*
PR

2
[ - ][T(an>+T(o>]. (i

The off-diagonal partial length Lf;n, describes the inter-

mode scattering (from n to n’ # n channels),

1 804(71'n/d)2(71'n’/d)2 (n*+n'?)?
= Tk, +k, T(k,
L0 Tk ky Ronryl Ktk + 10

—k,)]. (12)

Let us analyze the conditions under which Egs. (8)—(12)
are derived. We stress that the Dyson-type equation for the
average Green’s function was obtained within the second-
order approximation in the perturbation potential. This
means that the self-energy in this equation contains the bi-
nary correlator of the surface-scattering potential and the un-
perturbed Green’s function. In terms of the diagrammatic
technique, this is similar to the “simple vortex” or, the same
Bourret approximation.'® Following the ideas discussed in
Ref. 2, one can show that this approximation is justified
when the broadening 1/2L,, of the quantum wave number k,,
is much less than both the correlation scale R;l and the spac-
ing |k,—k,.,| = |dk,/ n| between neighboring quantum wave
numbers. The same conditions also arise due to another ap-
proximation that is the use of the unperturbed value k,, in the
expression for the self-energy, instead of the perturbed one.
Now we take into account that |dk,/dn|~ A", where A,
the distance between two successive reflections of a wave
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from the rough boundary inside the nth channel. As a result,
we come to the following conditions of a weak surface scat-
tering:

A, =2k,d/(mnld) <2L, R.<2L,. (13)

These inequalities imply that the electron or wave weakly
attenuates on both the correlation length R, and the cycle
length A,,.

As one can see, the expressions (9)—(12) represent, re-
spectively, basic contributions from principally different
surface-scattering mechanisms related to the amplitude, gra-
dient, and square-gradient terms. It should be emphasized
that the corrections proportional to o* originated from
higher-order approximations in the amplitude and gradient
terms of the perturbation potential, are smaller than the main
contribution (9) under the conditions (13). Contrary, the
square-gradient terms give rise to the o* terms in Eqgs. (11)
and (12), which should not be neglected due to a specific
dependence on the correlation length R.. Note that Eq. (13)
implicitly includes the requirement that the surface corruga-
tions be small in height (o<<d), but does not restrict the
value o/R, of the roughness slope.

Since Lfll) and Lflz) depend on as many as four dimension-
less parameters (ko)?, kR,, kd/ , and n, the complete analy-
sis appears to be quite complicated. For this reason, below
we restrict ourselves by the analysis of the interplay between
Lil) and Lf) as a function of the dimensionless correlation
length kR, for Ny~kd/w> 1.

As follows from Eq. (9), the inverse value of the
amplitude-scattering length typically increases with an in-
crease of kR,. Specifically, in the case of the small-scale
roughness (kR.<1=<kA,) we have 1/Lf11)0<kRE. Then,
within the intermediate region where 1 <<kR.<kA,, the in-
crease of 1/ LLU slows down, or can even be replaced by the
decrease for some values of the model parameters. Finally,
for large-scale roughness and strong correlations (1 <kA,,
<kR,) the value of 1/L£l]) again starts to increase linearly
with kR..

In contrast with 1/ Lil), the inverse square-gradient scat-
tering length l/LI(IZ) reveals a monotonous decrease as the
parameter kR, increases. At small (kR,<1=<kA,) and ex-
tremely large (1 =<kA,<<kR,) values of kR,, this decrease
obeys the law 1/Lf12)0<(kRC)‘3, due to 7(0) ~R;3.

From this analysis it becomes clear that the curves dis-
playing 1/ Lil) and 1/ Lflz) must intersect, and one can observe
the crossover from the square-gradient to amplitude surface
scattering. To the left from the crossing point (kR.)g the
square-gradient scattering length prevails, Li2)<Lfll). To its
right the main contribution is due to the well-known ampli-
tude scattering, Lfll) <L,(12>' If the crossing point falls onto the
interval of the small-scale roughness (kR.<<1), its depen-
dence on the model parameters is described by

(kR )% ~ (ko)nk,d. (14)

This estimate shows that the crossing point is smaller for
smaller values of the dimenssionless roughness height ko, as
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FIG. 1. A, /2L, versus kR, at kd/7=62.5, n=31, and different
(ko).

well as for smaller mode indices n, or for larger values of the
parameter kd/ .

In Fig. 1 we display the dependence of A, /2L, as a func-
tion of kR, assuming the Gaussian binary correlator W(x)
=exp(—x?/ ZRf) for random surface profile &(x). The curves
are plotted starting from such values of kR, for which
A,/ 2L22)= 1, according to the first condition of Eq. (13). Tak-
ing into account the second condition restricting the maximal
value of kR., we plot every curve within the range where
R.< ZLLI). As one can see, all curves have the crossover from
the square-gradient to amplitude surface scattering. The first
(lowest) one with (ko)?=10"* has the crossing point (kR,)g
=~().2 located within the interval of small-scale roughness,
and the crossover reveals a small dip centered at (kR,)g. The
curve obeys the asymptotic behavior (kR,)™ to the left from
(kR,.)x due to the main contribution from A,/ ZLiz). Then the
quantity A,/ ZLSLI) becomes dominating in the sum (8), there-
fore, the curve starts to rise. Firstly, the linear dependence on
kR, on the right deep side (where kR, << 1) is replaced with a
smoother one (for kR.> 1). Finally, for R.> A,, (strong cor-
relations) the linear dependence restores.

The crossing points of the second, third, and fourth curves
have the values of the order one. Here the total attenuation
length L, within the whole small-scale region is formed by
the square-gradient scattering length Lff). In full agreement
with Eq. (14) the presented curves display that the smaller
the parameter (ko)? the smaller the value of the crossing
point (kR,)g.

Note that for all curves in Fig. 1 the roughness height is
small, o/d<<1. Furthermore, for the amplitude-dominated
scattering [to the right from the point (kR,)g where An/ZLfll)
mainly contributes], the average corrugation slope is also
small for all data, o/R.<<1. The roughness slope remains to
be small at the crossing points too, but increases to their left
with the decrease of kR,. As a result, to the left from the
crossing point where the square-gradient term A,,/ 2L;2) pre-
vails, the slope reaches the values of the order one, or even
larger for the first tree curves.

In conclusion, we report on the principal importance of
the square-gradient surface-scattering mechanism. We have
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shown that at any fixed value of the roughness height o one
can indicate the region of small values of the correlation
length R, where the new square-gradient scattering length
L(z) predominates over the known amplitude scattering
length L(l)(L 2)<L(1)) The predominance occurs in spite of
the fact that 1/L( is proportional to o while l/L(2> is pro-
portional to o*. ThlS happens since the two lengths are de-
termined by the substantially different roughness-height
W(k,) and roughness-square-gradient T(k,) power spectra,
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which have vastly different dependencies on R.. It is remark-
able that the square-gradient mechanism prevails in the com-
monly used region kR.<<1 of a small-scale boundary pertur-
bation, where the surface roughness is typically described via
the white-noise potential.

This research was partially supported by the CONACYT
(México) Grant No. 43730, and by the VIEP-BUAP
(México) under the Grant No. 5/G/ING/05.

*Electronic address: izrailev@venus.ifuap.buap.mx
Electronic address: makarov@siu.buap.mx
#Electronic address: mrendon@venus.ifuap.buap.mx

'F. G. Bass and 1. M. Fuks, Wave Scattering from Statistically
Rough Surfaces (Pergamon, New York, 1979).

2S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of
Statistical Radiophysics (Springer, Berlin, 1989).

3A. R. McGurn and A. A. Maradudin, Phys. Rev. B 30, 3136
(1984).

4]. A. Sénchez-Gil, V. Freilikher, 1. Yurkevich, and A. A. Maradu-
din, Phys. Rev. Lett. 80, 948 (1998); J. A. Sdnchez-Gil, V. Frei-
likher, A. A. Maradudin, and I. Yurkevich, Phys. Rev. B 59,
5915 (1999).

SA. B. Migdal, Qualitative Methods in Quantum Theory (Ben-
jamin, London, 1977), p. 98.

6J. A. Konrady, J. Acoust. Soc. Am. 56, 1687 (1974).

77. TeSanovi¢, M. V. Jari¢, and S. Maekawa, Phys. Rev. Lett. 57,
2760 (1986).

8N. Trivedi and N. W. Ashcroft, Phys. Rev. B 38, 12298 (1988).

?A. E. Meyerovich and A. Stepaniants, Phys. Rev. Lett. 73, 316

(1994); Phys. Rev. B 51, 17116 (1995); 58, 13242 (1998); 60,
9129 (1999); J. Phys.: Condens. Matter 12, 5575 (2000).

10G. A. Luna-Acosta, Kyungsun Na, L. E. Reichl, and A. Krokhin,
Phys. Rev. E 53, 3271 (1996).

LA B. Isers, A. A. Puzenko, and I. M. Fuks, Akust. Zh. 36, 454
(1990) [Sov. Phys. Acoust. 36, 253 (1990)]; J. Electromagn.
Waves Appl. 5, 1419 (1991).

I2N. M. Makarov and Yu. V. Tarasov, J. Phys.: Condens. Matter 10,
1523 (1998); Phys. Rev. B 64, 235306 (2001).

13G. A. Luna-Acosta, J. A. Méndez-Bermudez, and F. M. Izrailev,
Phys. Rev. E 64, 036206 (2001).

A, G. Voronovich, Wave Scattering from Rough Surfaces
(Springer, Berlin, 1994).

15A. A. Krokhin, N. M. Makarov, and V. A. Yampol’skii, J. Phys.:
Condens. Matter 3, 4621 (1991).

I6N. M. Makarov, A. V. Moroz, and V. A. Yampol’skii, Phys. Rev.
B 52, 6087 (1995).

17V, 1. Tatarskii, Waves Random Media 3, 127 (1993); 7, 557
(1997); 10, 339 (2000).

18R. C. Bourret, Nuovo Cimento 26, 1 (1962).

041403-4



