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We show that the combined use of magneto-tunneling spectroscopy and hydrostatic pressure P provides a

powerful means of probing and strongly modifying the fragmented conduction band structure of dilute
GaAs;_,N, quantum well layers. We demonstrate the strong effect of pressure on the GaAs;_/N, states over a
wide range of energies and k vectors not accessible in previous optical investigations of interband transitions
around k=0. Also, we report a large pressure coefficient for the effective mass, m, of the conduction electrons,
dm/9P=~3X 1073 m, kbar™!, nearly an order of magnitude larger than that found in GaAs (dm/JIP=4
X 10~*m, kbar™!, where m, is the electron mass in vacuum).
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Hydrostatic pressure P is an important thermodynamic
variable and provides the condensed matter physicist with a
means of probing interatomic bonding in molecules and sol-
ids, and of understanding how this determines fundamental
physical and chemical properties, such as band structure and
structural and phase transitions. !

Pressure experiments have been extensively used to in-
vestigate the band structure of semiconductors and have
played a useful role in the development of several important
electronic devices, such as transferred electron devices and
strained semiconductor quantum well lasers.> Of the semi-
conductor compounds, GaAs has been the most widely
investigated. In GaAs, moderate hydrostatic pressures de-
crease the lattice parameter without changing the crystal
symmetry, and modify electronic energy levels, carrier effec-
tive masses, and phonon frequencies. The variations with
pressure of the energy gaps, E,, between the I', X, and L
conduction band minima and the valence band edge are de-
scribed by the co efficients ar=dJE,/dP=10.8 meV/kbar
ay=-1.35 meV/kbar, and «@;=5.5 meV/kbar.> Also the
effective mass m of the I" conduction electrons increases with
P at a rate dm/IP=4X 10"*m, kbar™!, where m, is the free
electron mass.*

In this paper, we show how the incorporation of a small
amount of N (0.1-0.2 %) in GaAs leads to a fundamental
change in the pressure dependence of the band structure. In
GaAs,_,N,, isolated N atoms and N-N pairs introduce local-
ized energy levels above the I” conduction band minimum of
GaAs.>7 These localized states admix and hybridize with the
extended band states of GaAs and break up the conduction
band into highly nonparabolic energy—wave-vector disper-
sions, &(k),>"!! with states that have partial I character.”-!%!!
We use magneto-tunneling spectroscopy’ and hydrostatic
pressure to tune and probe this remarkable band structure.
Our experiment reveals a large pressure coefficient for the
effective mass of the conduction electrons, dm/JP=~=3
X 107%m, kbar™!, which is almost an order of magnitude
larger than that found in GaAs. Also, we demonstrate the
strong effect of pressure on the GaAs;_, N, states over a wide
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range of energies and k vectors not accessible in previous
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optical investigations of interband transitions around

k=05612-15

We use a series of n-i-n GaAs/Alj4GagsAs/GaAs;_ N,
resonant tunneling diode (RTD) heterostructures grown by
molecular beam epitaxy on (100)-oriented n-type GaAs sub-
strates. The layer structure in order of growth on the sub-
strate is as follows: 500 nm of GaAs doped with Si to 2
X108 cm™3; 50 nm of GaAs doped with Si to 2
% 10" cm™; 50-nm-thick undoped GaAs spacer layer; 6-
nm-thick undoped Al 4Gay¢As tunnel barrier; 10-nm-thick
GaAs;_,N; quantum well (QW) (y=0.2%); 6-nm-thick un-
doped Alj4Gay¢As tunnel barrier; 50 nm of undoped GaAs
spacer layer; 500 nm of GaAs doped with Si to 2
X 10" ¢cm™; 50 nm of GaAs top layer doped with Si to 2
X 10'® cm™. We also investigated similar RTDs with y=0
and 0.08% in the QW and with different QW widths. Each
sample was processed into a small free-standing piece of
wafer to facilitate mounting in the bore of a liquid clamp
pressure cell. Mesas with a diameter of 50 um with ring-
shaped metallic top contact layers were fabricated to provide
optical access for current-voltage (V) measurements under
illumination. These were performed at temperature T
=4.2 K under hydrostatic pressure, P, up to 10 kbar
(=1 GPa), and magnetic fields, B, up to 23 T.

Figure 1 shows a schematic band diagram for our RTDs.
When a voltage, V, is applied to the device, tunneling of
electrons through a particular subband in the GaAs,_,N, QW
gives rise to a peak in I(V), whenever this is resonant with an
adjacent filled state in the negatively biased emitter accumu-
lation layer. We observe three main features in /(V), labeled
Ey_, E,_, and E,, (this notation will be explained later in the
text), whose amplitude and voltage position are affected by
pressure [see I(V) plots at B=0 T in Fig. 2(a)]. The P depen-
dence of the resonances can be seen more clearly in the
differential conductance G=dI/dV plots shown in Fig. 2(b).
With increasing P, the amplitudes of all resonances decrease;
also, resonances E,_ and E|_ shift to higher voltages, while
the E,, feature shifts to lower bias.

To examine further this pressure behavior, we apply a
magnetic field B parallel to the QW plane. In this magneto-
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FIG. 1. Schematic band diagram of our RTDs and of the geom-
etry of our magneto-tunneling experiment. The magnetic field B is
applied perpendicular to the direction of current z. Varying the in-
tensity of B allows us to tune an electron to tunnel into a k-vector
state of the GaAs;_,N, QW, while the applied voltage V tunes the
energy €.

tunneling experiment, varying the intensity of B allows us to
tune an electron to tunnel into a QW state with a k vector
given by k=eBs/h, where s is the electron tunneling distance
from the emitter accumulation layer to the center of the QW
(see Fig. 1).° Since the applied voltage tunes the energy of
the tunnelling electron (V~¢), we can map out the (k) dis-
persion relations of the GaAs,_,N, QW subbands by measur-
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FIG. 2. (a) I(V) at T=42K for a GaAs;_,N, RTD (y
=0.2% ;w=10 nm) at different values of B and P. (b) Differential
conductance, G(V)=dI/dV, plots at B=0 T and different P. For
clarity, the curves are displaced along the vertical axis.
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ing the voltage position of the resonances in I(V) or G(V) as
a function of B (~k). The measured voltage shift, AV, of a
resonant feature in I(V) is related to the energy shift, Ae,
along the (k) curve according to the relation f=e(AV/Ag),
where f is the electrostatic leverage factor. Using a simple
electrostatic and quantum mechanical model of our device,
we estimate that f=3.4+0.4 and s=(26+5) nm.!® By con-
structing color plots of the intensity of the differential con-
ductance as a function of € and k, we can reveal in detail the
form of the e(k) curves and their dependence on pressure
(see Fig. 3). The uncertainty in the values of f and s limits
the accuracy of our experiment in determining &(k) at a
given pressure. However, relative changes of the e(k) curves
due to pressure can be determined very accurately.

For ambient pressure, P=1 bar, the measured (k) curves
show two energy regions of anticrossing indicated by hori-
zontal arrows in Fig. 3(a) and reveal the existence of three
subbands, E_, E|_, and E,. We attribute this break-up of the
dispersion curve to the admixing and hybridization of the
two lowest energy quantized subbands E, and E; of the
GaAs QW, with the localized energy levels associated with
isolated N-atoms (top horizontal arrow) and with second-
neighbor [220] N-N pairs (bottom arrow).!! The white
stripelike regions in these plots correspond to the minima in
G just beyond the resonant peak in I(V). The brightness of
these stripes is related to the I character of the GaAs;_,N,
states. The interaction between the I" conduction band states
of GaAs and the localized energy levels due to N incorpora-
tion gives to the hybridized subband states of the GaAs,;_,N,
QW a partly I' character over a wide energy range, and al-
lows electrons to tunnel into them from the GaAs emitter
accumulation layer, where the band states have a pure I’
character. At & and k values for which the I character of the
QW states is small, electron resonant tunneling from the
emitter is negligible so that no negative differential conduc-
tance occurs; these regions appear as dark bands in the plots
of Fig. 3(a). The weakening of all resonances at characteris-
tic energies and k vectors indicate that the GaAs;_,N, states
become increasingly localized (i.e., low I character) as they
approach the energy of isolated N-atoms and N-N pairs.

As shown in Fig. 3, the form of the (k) curves and the
amplitude of the resonances are modified significantly by
pressure. The decrease of the tunnel current with increasing
P was also observed in our control samples, i.e.,
GaAs/Aly4GayeAs RTDs with no N, and in other similar
GaAs/Al,Ga,_,As RTDs reported in the literature.!” This is
likely to be caused by the increase with P of the I effective
mass. A larger effective mass for the electrons decreases the
transmission coefficient through the Alj4Gaj¢As tunnel bar-
riers, thus reducing the current.!” Tunneling of electrons
through the X-related states in the Alj4Gaj¢As barriers can
also decrease the negative differential conductance associ-
ated with electron tunneling into the I" conduction band mini-
mum. However, we believe that this effect is small in our
sample as it can be observed only at high pressures
(>10 kbar) and/or for an Al content in the tunnel barrier
larger than that used in this work.'®

The most striking feature of the (k) curves in Fig. 3 is
the strong pressure dependence of the GaAs;_,N, states over
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FIG. 3. (Color online) Color and contour line plots of G(V) as a function of energy & (~V) and k vector (~B) as derived from our
magneto-tunneling experiment on a GaAs;_,N, RTD (y=0.2% ;w=10 nm). The vertical scale does not correspond to an absolute energy

>y

scale. Plots (a)—(d) correspond to P=1 bar, 3.9 kbar, 6.4 kbar, and 9.3 kbar, respectively. The full dot and the arrows indicate energy and k
vector k" values of anticrossing in the £(k) curves. The value of k" is considerably smaller than the size of the Brillouin zone kpy, i.e.,

k*/sz"“Ol

a wide range of energies and k vectors. With increasing P,
the high-energy region of anticrossing in (k) shifts to a
lower k vector and energy values (see point k™ in Fig. 3).
Also, the decreasing dispersion of the lowest (k) curve at
k=0 indicates that the effective mass m of the conduction
electrons increases rapidly with increasing P. By fitting the
(k) curve in the range of k between 0 and 2 X 10 m™' to a
parabola, we derive the value of m for each pressure. We find
that m at k=0 increases with P with an unusually large pres-
sure coefficient, dm/JIP=(3+1)X 1073 m, kbar~!. The mea-
sured variation of the density of states effective mass, m
=h%k/(de/ dk), is larger around k=4X10® m~!, where we
measure a value dm/JIP=(4+1) X 1073 m, kbar™! (see Fig. 4).
We measured similar values of dm/JP in two other tunneling
diodes with GaAs;_ N, QWs, one with a GaAs;_,N, layer
thickness w=7 nm and y=0.2%, the other with w=8 nm and
y=0.1%. The value of dm/JP for GaAs,;_yN, is almost an
order of magnitude larger than that measured in our
GaAs/ Al 4Gag¢As RTDs with no N, and also that found in
bulk GaAs (dm/dP=4X10"*m, kbar™!) (Ref. 4) and is a
clear manifestation of the effect of band anticrossing with the
N levels.

The strong sensitivity of the (k) curves to the relatively
modest pressures used in our experiment indicates that rel-
evant band properties, such as effective masses and electron
velocity, can be tailored using a fundamentally new concept.
Increasing pressure and/or quantum confinement raise the
energy of the I conduction band minimum of GaAs, while
leaving relatively unaffected the energy of the strongly local-
ized isolated N atoms.’ Thus, in our experiment the pressure
provides a powerful means of continuously modifying the
interaction between these two levels and hence the form of
the (k) curves.

Data shown in Fig. 3 represent a stringent test for the
various theoretical models reported in the literature. These
include band anticrossing (BAC) models, which describe the
conduction band of GaAs;_,N, alloys in terms of the admix-
ing and hybridization of the extended GaAs conduction band
states with the localized single N-impurity levels® and/or N
clusters,'® and detailed band structure calculations which

consider multivalley coupling’ and the formation of a
N-impurity band."

To explain our data, we first consider a two-level BAC
model for bulk GaAs;_;N,, in which the GaAs I' conduction
band states are hybridized with the energy levels of isolated
N atoms.?” This model predicts that N incorporation in GaAs
leads to a splitting of the conduction band into two subbands,
E_ and E,, whose energy separation Ag decreases with in-
creasing P. This is in qualitative agreement with our obser-
vation of a decreasing energy separation between subbands
Ey_ and E,, at k=0 (see Figs. 3 and 4). The model explains
the shift of the characteristic k vector for anticrossing k" to
lower values that is also revealed by the measured (k)
curves [see the white circles in Figs. 3(a)-3(d) and Fig. 4].
Finally, we find that the density of states effective mass, m
=h%k/(del dk), calculated at k=0 and k=4X10® m~! using

m(P)/m(0)
atk=4x10°m”

m(P)/m(0)
atk=0
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FIG. 4. (Color online) P dependence of the ratios k*(P)/k"(0),
A;(P)/A(0), and m(P)/m(0) as derived from our magneto-
tunneling measurements on a GaAs;_,N, RTD (y=02%;w
=10 nm). The three ratios are labeled as r in the vertical axis. The
curves represent the P dependence of the three ratios calculated
using a two-level BAC model for bulk GaAs;_,N,. The P depen-
dences of k" and A are shown in the inset.
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the (k) dispersion of E_, increases with P with pressure
coefficients, which agree with those derived from the mea-
sured (k) curves (see Fig. 4).

The two-level BAC model provides us with a simple
quantitative explanation for the pressure dependence of m,
Ag, and k*. However, we also note that this model does not
describe accurately the measured e(k) curves due to the ad-
ditional effect of N-N pairs: note the form of the dispersion
close to the lower horizontal arrow in Fig. 3. This effect is
weaker for the N-N pairs than for isolated N atoms due to
their low density. For a random incorporation of N and low
y~0.1%, the density of N-N pairs is small
(~10" cm™) compared to that of isolated N atoms
(~10" cm™). The effect of the N-N pairs on the &(k)
curves can be described by extending the two-level BAC
model to include the interaction between the GaAs host con-
duction band I states and the full range of N-related levels in
the alloy, with the N states described explicitly using a linear
combination of isolated nitrogen states (LCINS) model.'*!!

The color plots in Fig. 3 show that the hybridized states
resulting from the interaction with the N-N pairs shift with
pressure at a similar rate as that of the conduction band mini-
mum of GaAs,;_,N, (see the bottom horizontal arrow in Fig.
3). This result is in contrast with the very weak pressure
dependence of the N-N pair energy levels revealed in previ-
ous optical studies (see, for example, Refs. 6 and 14), but it
can be explained in terms of the complementarity of the op-
tical and magneto-tunneling techniques. Previous optical
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studies have revealed interband transitions associated with
N-N pairs and higher order N clusters in the band gap of
GaAs,>141521-23 byt they were not able to probe directly the
energy levels of N-N pairs that are resonant with the con-
duction band states. It has been proposed that these states
have a significant I" character due to hybridization effects and
that they can shift with pressure at a similar rate as the con-
duction band minimum.?* In our experiment, we can probe
directly these types of states as magneto-tunneling spectros-
copy provides us with a means of probing the GaAs;_,N
states over a wide range of energies. )

In conclusion, we have shown that the incorporation of a
small amount of N in GaAs gives rise to an unusual pressure
dependence of the electronic properties. Isolated N-atoms
and N-N pairs disrupt the extended Bloch states of the GaAs
conduction band at characteristic resonant energies, thus
breaking up the band into sections with strongly modified
e(k) dispersion. Hydrostatic pressure provides a powerful
means of tuning and probing this band structure. Our experi-
ment reveals a large pressure coefficient for the effective
mass of the I' conduction electrons in GaAs;_ N, dm/JP
~3%107%m, kbar™! for y=0.1-0.2 %. Also we have re-
vealed the existence of hybridized states resulting from the
interaction with the N-N pairs that shift with pressure at a
similar rate as the conduction band minimum.
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