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The weak localization �WL� correction to the conductivity of a granular metal is calculated using the
diagrammatic technique in the reciprocal grain lattice representation. The properties of this correction are very
similar to the corresponding one in disordered metal, with the replacement of the electron mean free path � by
the grain diameter d and the dimensionless conductance g by the tunneling dimensionless conductance gT. In
particular, we demonstrate that at zero temperature no conducting phase can exist for dimensions D�2. We
also analyze the WL correction to magnetoconductivity in the weak field limit.
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Recently, the properties of granular materials have at-
tracted special attention.1–4 The quantization of the electron
spectrum in small grains requires one to revise the basic idea
of the quasiparticle spectrum continuity, assumed in the de-
scription of most properties of metallic and superconducting
systems. The appearance of a new energy scale, the mean
level spacing �, results in unusual superconducting proper-
ties of such systems, with a possibility of observing, in these
systems, specific quantum phase transitions, etc. In particu-
lar, it turns out that the interplay between the intragrain dif-
fusion and intergrain tunneling of electrons makes the metal-
insulator transition in such “quantum metal” very peculiar. In
this Communication, we intend to discuss the specifics of the
weak localization corrections in granular systems.

The elastic electron relaxation rate in granular metal con-
sists of three contributions

1

�el
=

1

�imp
+ ET + � , �1�

where �imp is the mean scattering time of electrons with im-
purities, ET=vF /d is the Thouless energy, d is the character-
istic grain size, and vF is the intragrain Fermi velocity. The
last term is the electron intergrain tunneling rate: ��gT�,
where gT=2��t /��2 is the tunneling dimensionless conduc-
tance and t is the tunneling energy.

The character of electron motion in a metal is conve-
niently classified as a function of its mean free path �.5 The
diffusion length �T

�n�=�Dn /T �where Dn=vF
2�imp/D is the dif-

fusion coefficient of metal and D is the space dimensionality�
separates the regions of ballistic ����T� and diffusive ��
	�T� electron motion. When �→q / pF the metal-insulator
transition in the three-dimensional �3D� case takes place.

In the case of a granular metal, one can expect that the
standard WL theory, describing the precursor effects of
this transition,6,7 has to be modified in two ways. First, the
diffusion coefficient D here, at least in some interval of pa-
rameters, has to be determined by the tunneling time �−1

instead of elastic scattering time �imp and, therefore, we will

have a different tunneling thermal length �T=�D /T. Second,
the characteristic grain size d must appear in the theory side
by side with the diffusion length �T. Two different situations
are possible. When d	�T, the diffusive part of the � axis is
divided into the regions of the normal intra-grain diffusion
�q / pF	�	d� with the metallic diffusion coefficient Dn and
of the tunnel intergrain electron diffusion �d	�	�T� char-
acterized by the diffusion coefficient D= ��x�t�2� / t�t→


��d2 �see Fig. 1�a��. In the opposite limit, when d��T, only
the intragrain diffusion is possible, but, in its turn, the do-
main of ballistic regime contains two regions: the intragrain
one with ballistic time �imp ��T	�	d� and the region of
intergrain electron motion with the ballistic time �−1 �see
Fig. 1�b��.

We will discuss here the most interesting case of low
temperatures, d	�T. We will also assume that the electron
motion inside a single grain is ballistic ��bulk�d ,��d�: this
means that before tunneling to the neighbor grain the elec-
tron is reflected many times on the grain boundaries ��
	ET�. As a consequence, �el	ET

−1 and the dimensionless
conductance of a single grain g=ET /��gT. The conductance
of the entire system is given by g−1+gT

−1	gT
−1, what is

FIG. 1. A schematic representation of the two possible scenarios
for the electron motion in granular metals as a function of the ratio
between d, the grain diameter, �T, the thermal length, and �, the
mean free path.
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equivalent to saying that the drop of applied electric potential
occurs only inside the tunnel barrier.

We assume that the grains are almost identical, with av-
erage diameter d, and form a regular lattice with lattice con-
stant equal to the same d. The coordinate of the grain center
will be labeled by the lattice variable Ri. The Hamiltonian of
the system can be written as1

Ĥ = 

i,p

�pĉi,p
† ĉi,p +

1

2 

�i,j�



p,p�

�tij
p,p�ĉi,p

† ĉj,p� + H.c.� ,

where ĉi,p �ĉi,p
† � is the annihilation �creation� operator of an

electron in grain i with intragrain momentum p. The tunnel-

ing energy tij
p,p� will be taken equal for all bonds between

nearest-neighbor grains and independent on the intragrain

momentum, tij
p,p�= t. Performing the Fourier transform with

respect to such Ri one can write the Hamiltonian in the rep-
resentation of both intragrain and intergrain momenta
�double momentum representation�:

Ĥ = 

K,p

��p + tZ
K�ĉK,p
† ĉK,p

+
tZ

2 

K



p�p�


K�ĉK,p
† ĉK,p� + H.c.� . �2�

Here K is the quasimomentum belonging to the reciprocal Ri
lattice �it varies in the first Brillouin zone�. The lattice struc-
ture factor 
K=Z−1
�=1

Z eiK·d�; d� are the vectors connecting
the center of selected grain with the nearest-neighbor sites, Z
is the coordination number. For a simple cubic lattice, the
vectors d� have one component equal to ±d and all the oth-
ers equal to zero. For the sake of simplicity, we will restrict
ourselves to this case; the extension to generic lattices is
straightforward. In simple cubic lattices, 
K
=1/D
�=1

D cos�K�d�. From Eq. �2� we can define the single
electron Green function in the double momentum represen-
tation as

GK�p,�n� =
1

i�̃n − �p − Zt�1 − 
K�
, �3�

with �̃n=�n+ �2�el�−1sign�n and �n=�T�2n+1� as fermionic
Matsubara frequency.

Recalling that the electric field is negligible inside the
grains and differs from zero only inside the barriers, in the
presence of the vector potential A one can write the �th
component of the electrical current operator in the imaginary
time � as

Ĵ���� = i
etd

2 

K,p,p�

�eiK�dĉK,p
† ���ĉK,p���� − H.c.�

−
e2d

2
�A��� · d�ĤT��� . �4�

The linear response function, expressed as the second deriva-
tive of the partition function, is given by

K�,����� = −
1

Z�0�� �2Z�A�
�A�����A���0��A→0

= ������� − e2d2���������ĤT�0, �5�

where the current-current correlation function is expressed
via the current operator as

��,����� = − �T̂�Ĵ����Ĵ���0��0.

The thermal average � �0 shall be performed with the diago-
nal Hamiltonian, the first line of Eq. �2�. We are interested in
the diagonal components of conductivity tensor:

��,����� = 2e2d2�t�2

K

sin2�K�d�

� T

�n



p,p�

GK�p,�n+��GK�p�,�n� , �6�

where �n+�=�n+�� and ��=2�T� is the bosonic Matsubara
frequency. We can formulate the following rules of
diagrammatic technique in the double momentum represen-
tation: �1� at each external vertex attach a factor v̂�

=etd sin�K�d�; �2� at each straight line attach a single elec-
tron Green function GK�p ,�n�; �3� sum over all internal mo-
menta and Matsubara frequencies; �4� impose energy and
lattice momentum conservation at each vertex. Now the im-
purity averaging of Eq. �6� can be performed. The Cooperon
vertex6 corresponding to the granular metal can be obtained
from the Dyson equation reported in Fig. 2. Another possi-
bility is to renormalize the standard intragrain Cooperon by
means of an introduction in the corresponding diagrams of a
self-energy correction appearing due to tunneling, as it is
done in Ref. 1. Both approaches in the assumptions made
above turn out to be completely equivalent and lead to the
expression

CQ���� =
1

2��el
2 �F

1

���� + 2��1 − 
Q�
.

In the latter expression the exact value appears for the tun-
neling rate: �=ZgT�. In the expression D
= �2��1−
Q� / �Q�2�Q→0=�d2 one can also recognize the ef-
fective “tunneling diffusion constant.”

Now one can directly calculate the diagram reported in
Fig. 3. In our assumptions, see Eq. �1�, the Green function
can be considered independent on K when integrating over

FIG. 2. Dyson equation for the diffusion vertex part in a granu-
lar metal in the direct space. The thick lines are the double Fourier
transform of the fermionic Green functions Eq. �3�, the dashed lines
represent single impurity scattering and the initial and final grains
are reported as roman indices i, j, etc. The Cooperon is obtained
from the diffuson via time-reversal transformation on a fermionic
Green function �Ref. 6�.
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p, because its behavior is completely determined by the pole
due to the impurity �or grain boundaries� scattering, related
to �el

−1, just as in the case of the diffusive limit for a bulk
system. Performing the frequency summation, the p and p�
integration and the sum over the lattice momentum K one
finds

K��
WL����

��

= −
e2d2

4��F
gT


Q

cos�Q�d�
���� + 2��1 − 
Q�

.

At this point, we can find the WL correction to the conduc-
tivity as

���D�
WL

��D�
n = −

1

�ZgT


Q

cos�Q�d�
1 − 
Q

. �7�

In the case of a bulk granular system �D=3� the sum
converges and the correction is finite. The metal-insulator
phase transition can be observed at a critical value ZgT

cr

�O�1�.
In the case of a granular film or wire �D�2� the WL

correction Eq. �7� diverges at small Q→0. This fact indi-
cates that at zero temperature these systems cannot exhibit
metallic properties for any value of the dimensionless con-
ductance gT. At finite temperatures, a natural cutoff of Eq. �7�
is provided by the phase-breaking rate 
�= �����−1

= �d /L��2.6 It is related to the phase-coherence length L�

=�D��, which tends to infinity when T→0. As a result

���1�
WL

��1�
n 	 −

2

Z�3gT

1
�
�

;

���2�
WL

��2�
n 	 −

1

Z�2gT
ln

�2


�

. �8�

Equations �8� permit one to define the localization length ��D�
loc

at which the correction becomes of the order of ��D�
n :

��1�
loc

d
	

Z�3

2
gT;

��2�
loc

d
	 eZ�2/2gT/� .

It is worth noting that Eq. �7� does not contain �el
−1, but only

lattice parameters as gT and the coordination number Z: the
intragrain dynamics, as expected, simply drops out of the
calculation. The conductivity and its corrections are related
to the diffusion on the grain lattice, and the mechanism of the
momentum randomization between different grains is not
crucial: the electron dynamics at low temperature can be
thought of as that of a random walker on a lattice. This
picture is fully consistent with the existing WL theory,6,7 and
it is in agreement with previous experimental findings in
granular metals.8

More intriguing are the properties of the WL correction to
the magnetoresistance of granular metal. It is well known
that quantum corrections to conductivity in disordered metal
are very sensitive to the magnetic field: in fact, its presence
disturbs the phase coherence of electrons moving along the
self-intersecting trajectories, suppressing the WL correction
and leading to the appearance of the anomalous negative
magnetoresistance.6 In the following, we will show how such
a correction manifests itself in the case of granular metal.

To calculate the WL contribution to magnetoresistance, it
is necessary to rewrite Eq. �7� in the direct space:

���D�
WL

��D�
n = −

2

ZgT
�

C̃i,i+� + C̃i+�,i

2

which is independent of i, depending only on the intergrain
spacing d. � represents the bond along the direction of the

current. Here C̃Q
−1= �2��el

2 �FCQ�−1=−i�+2��1−
Q�. We no-
tice that this form underlines the fact that transport is due
only to the potential drop inside the barrier separating two
grains i and i+�. In the presence of a magnetic field, the
Cooperon wave function is given by the solution of the
equation

�4���1 − 
Q+2eA��i�r� = E�i�r� . �9�

Moreover, also the intragrain Cooperon will be renormalized
by the presence of the magnetic field, acquiring a mass term
equal to1 E0�H�= 2

5 ��� /�0�2ET, where �=Hd2 is the mag-
netic flux threaded through a single spherical grain and �0
=� /e is the flux quantum. When the field satisfies the in-
equality d	�H= �eH�−1/2, or �	�0, we have

C̃ij�r,r�,�� = 

Q
,Q�,n

�i,Q
Q�n�r�� j,Q
Q�n
* �r��

− i� + �c�n +
1

2
� + DQ


2 +
1

��

+ E0�H�
,

�10�

where �c=4D /�H
2 is the Cooperon cyclotron energy. Q
 is

the momentum along the magnetic field and �n ,Q�� are the
quantum numbers of the Landau basis.

The most interesting case is the two-dimensional geom-
etry, with the magnetic field applied across the plane of the
sample6 for which the WL correction is

FIG. 3. WL correction to the conductivity in the double momen-
tum representation. The solid lines are single electron temperature
Green functions GK�p ,�n�; the external velocity vertices are v̂�

=etd sin�K�d�; the shaded box is the Cooperon CQ����.
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���2�
WL

��2�
n = −

cos��c

2�
�

�ZgT


n=0

nmax 1

n +
1

2
+ �
� +

E0

�
� �

�c

.

Since the sum over Landau levels is evidently divergent at
the upper limit we introduced the cutoff parameter nmax
=�2� /�c�1, at which the cyclotron frequency becomes the
order of the zone edge nmax�c�D�� /d�2. The final result
reads

���2�
WL

��2�
n = −

1

�ZgT
F��,
�� ,

where we express the magnetic field in terms of the magnetic
flux

F��,
�� = cos�2�
�

�0
�����

4

�0

�
+

1

2
+

�

10

�

�0

ET

�
�

− �� 
�

4�

�0

�
+

1

2
+

�

10

�

�0

ET

�
�� , �11�

where ��x� is the digamma function. The WL correction to
the magnetoresistance ���H�=��WL�H�−��WL�0� is ob-
tained as

���H� = −
�0

�ZgT
�F�H,
�� − ln

�2


�
� . �12�

One more energy scale shows up in Eq. �12� with respect to
the bulk case, namely the Thouless energy. In the limit of
very weak fields � /�0	�1/4ET��, this energy scale is not
observable in the magnetoresistance: the leading singular
correction reduces to

���H�
�0

	
2�

3

1

ZgT
� �

�0
�2

� H2

which corresponds to the anomalous magnetoresistance of
the standard theory. The granular behavior deviates from the
bulk one at fields such that � /�0�� /ET where the intra
grain term starts to dominate in the second digamma function
in F�H ,
��: for �1/4ET��	� /�0	
�, the magnetoresis-
tance correction acquires the logarithmic form

���H�
�0

=
2

�ZgT
ln��ET

�

�

�0
� .

Larger fields are out of the range of our approximated ap-
proach, in which the intragrain Landau levels, with the spec-
trum �c�n+1/2� with �c=4Dn /�H

2 , start to significantly con-
tribute to the Cooperon wave function. Let us notice finally
that the ultraviolet cutoff nmax�ET /�c=� /�c remains the
same.

In summary, we have developed a diagrammatic tech-
nique in a double-momentum representation for transport in
granular metals. Using this technique, the weak localization
corrections to the conductivity arise in a natural way and an
explicit calculation shows the same low-temperature behav-
ior as in bulk metals, but with the diffusion constant Dn
replaced by the effective tunneling diffusion constant D
=�d2 and the mean free path � by the average grain diameter
d. Our result agrees with Eq. �13� of Ref. 9 in the Q→0
limit; however, our technique underlines the presence of the
grain lattice, represented by the cosine factor in Eq. �7�,
reminiscent of the lattice structure factor 
Q. We also give
an estimate of the magnetoresistance correction for very
weak fields.
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