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Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior
in a submonolayer two-dimensional gas of repulsive linear k-mers on a square lattice at half coverage. A
�2k�2� ordered phase, characterized by alternating files of k-mers separated by k adjacent empty sites, is
separated from the disordered state by a order-disorder phase transition occurring at a finite critical tempera-
ture. Based on the strong axial anisotropy of the low-temperature phase for k�2, an order parameter measur-
ing the orientation of the particles has been introduced. Taking advantage of its definition, an accurate deter-
mination of the critical exponents has been obtained for three adsorbate sizes. Namely, �=0.53�1�,
�=0.02�1�, �=1.14�3�, and �=0.93�3� for k=2 �dimers�; �=0.54�1�, �=0.03�1�, �=1.16�3�, and
�=0.89�3� for k=3 �trimers�; and �=0.53�2�, �=0.02�1�, �=1.14�3�, and �=0.89�4� for k=4 �tetramers�. In
the studied cases, the results reveal that the system does not belong to the universality class of the two-
dimensional Ising model �k=1, monomers�. We pointed out that the breaking of the orientational symmetry
characterizing the low-temperature phase for particles occupying more than one site is the main source of this
change in the universality class. Consequently, we suggested that the behavior observed for dimers, trimers,
and tetramers could be generalized to include larger particle sizes �k�2�. Finally, hyperscaling relations have
been validated, leading to independent controls and consistency checks of the values of all the critical
exponents.
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I. INTRODUCTION

The two-dimensional lattice-gas model with nearest-
neighbor interactions, has been extensively explored in the
last decades. This is due in part to the fact that this system is
known to provide a useful model for studies of phase transi-
tions occurring in many adsorbed monolayer films.1–9 Much
more modest efforts have been devoted to the study of the
simplest generalization of the model to structured gases. In
fact, most of the studies are devoted to the adsorption of
molecules with single occupancy; however, if some sort of
correlation exists, like particles that occupy several k con-
tiguous lattice sites �k-mers�, the statistical problem becomes
exceedingly difficult.10–12 This difficulty is mainly associated
to three factors which makes the k-mer statistics different
from the usual single particle statistics: �i� there is no statis-
tical equivalence between molecules and vacancies; �ii� the
occupation of a given lattice site ensures that at least one of
its nearest-neighbor sites is also occupied; and �iii� an iso-
lated vacancy does not determine whether that site can be-
come occupied or not. The model of a two-dimensional gas
of rigid k-mers is the simplest representation of a strongly
adsorbed film of linear molecules in submonolayer or mono-
layer regime. Examples of this kind of systems are mono-
layer films of n-alkanes adsorbed on monocrystalline sur-
faces of metals, such as Pt�111� �Ref. 13� and Au�111�.14,15

The inherent complexity of the statistical thermodynamics
of polyatomics still represents a major limitation to the de-
velopment of approximate solutions for the thermodynamic
functions, which certainly hampers their analysis. However,
several attempts have been done in the past in order to un-
derstand the critical behavior of adsorbed monolayer films
formed of k-mers. A seminal contribution to the theoretical

study of phase transitions in monolayers of polyatomics has
been made by Firpo et al.16 Although this model was pro-
posed to describe monolayers of long hydrocarbon chains
spread at the gas-liquid interface, its theoretical foundation
can be applied to describe gas-solid systems. In this ap-
proach, the configurational factor in the canonical partition
function was obtained from the Di Marzio statistics for rigid
rod molecules,17 and the attractive interactions between the
hydrocarbon chains were taken into account in the frame-
work of a mean-field approximation. The theory predicts the
existence of only one first-order phase transition correspond-
ing to the two-dimensional gas-liquid condensation for small
molecules.

More recently, by using Monte Carlo �MC� simulations,
multiple-histogram reweighting18,19 and finite-scaling
techniques,7,20 Rżysko and Borówko21–24 have studied a wide
variety of systems in presence of multisite occupancy.
Among them, attracting dimers in the presence of energetic
heterogeneity;21 heteronuclear dimers consisting of different
segments A and B adsorbed on square lattices;22,23 and trim-
ers with different structures adsorbed on square lattices.24 In
these leading papers, a rich variety of phase transitions was
reported along with a detailed discussion about critical expo-
nents and universality class. The authors found that the ma-
jority of systems belong to the two-dimensional Ising class
of universality. However, in the case of heteronuclear dimers
with repulsive A-A coupling and attractive interactions of
B-B and A-B types the fluid exhibits a nonuniversal
behavior.23

The behavior of interacting dimers has also been analyzed
by using graph theory.25 In Ref. 25, a Sierpinski gasket with
a fractal dimension of ln 3/ ln 2 was used as substrate. How-
ever, the technique can be extend to other fractal graphs with
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low “ramification degree.” With respect to repulsive cou-
plings, the first papers dealing with phase transitions and
ordering phenomena were published by Phares et al.26 The
authors calculated the entropy of dimers on semi-infinite
square lattices by means of transfer matrix techniques. They
concluded that there are a finite number of ordered structures
for repulsive dimers in the critical regime. Based on these
findings, in previous work we studied the phase diagram of
dimers with repulsive nearest-neighbor interactions on
square lattices27 confirming the structural ordering predicted
in Ref. 26. From these studies it is not possible to know
completely the structure of the different low-temperature or-
dered phases occurring in the adlayer as the size k of the
admolecules is increased. However, from the �4�2� phase
appearing in dimers at 50% coverage, it was possible to pre-
dict the existence of a �2k�2� structure for k-mers at half
coverage, which was widely studied in Ref. 28. In this ref-
erence, a systematic analysis of critical exponents for each
k-mer size was not carried out since it is not necessary to
assume any particular universality class in order to calculate
the critical temperatures from the order parameter cumulant’s
properties.29

In summary, despite over two decades of intensive work,
there exists a lack of systematic studies of the critical expo-
nents �and universality class� characterizing the critical be-
havior of repulsive linear k-mers �with k�2� adsorbed on
square lattices at half coverage. The objective of this paper is
to provide a thorough study in this direction. For this pur-
pose, extensive MC simulations in the canonical
ensemble29–31 supplemented by analysis using finite-size
scaling theory �FSST� �Ref. 32� have been carried out. Our
results allow to estimate the critical exponents and to test
with high accuracy the validity of hyperscaling relations. The
outline of the paper is as follows: In Sec. II we introduce the
lattice-gas model and the order parameters characterizing the
�2k�2� structure. In addition, the simulation scheme is de-
scribed. The MC results are presented in Sec. III. Finally, the
general conclusions are given in Sec. IV.

II. BASIC DEFINITIONS AND MONTE CARLO
SIMULATION SCHEME

A. The model

In this section, the lattice-gas model for the adsorption of
linear rigid molecules is decribed. The surface is represented
as a simple square lattice in two-dimensions consisting of
M =L�L adsorptive sites, where L is the size of the system
along each axis. The homonuclear linear molecule �or linear
k-mer� is modelled as k interaction centers at a fixed separa-
tion, which is equal to the lattice constant a. In the adsorp-
tion process, it is assumed that each monomer occupies a
single adsorption site. The high-frequency stretching motion
along the molecular bond has not been considered here. The
bond between segments of molecule cannot be broken and its
length remains constant throughout the treatment. Thus, mol-
ecules adsorb or desorb as one unit, neglecting any possible
dissociation.

In order to describe the system of N k-mers adsorbed on
M sites at a given temperature T, let us introduce the occu-

pation variable ci which can take the following values:
ci=0 if the corresponding site is empty and ci=1 if the site is
occupied. Under this consideration, the Hamiltonian of the
system is given by

H = w�
�i,j�

cicj − N�k − 1�w + �o�
i

ci, �1�

where w is the nearest-neighbor �NN� interaction constant
which is assumed to be repulsive �positive�, �i , j� represents
pairs of NN sites and �o is the energy of adsorption of one
given surface site. The term N�k−1�w is subtracted in Eq. �1�
since the summation over all the pairs of NN sites overesti-
mates the total energy by including N�k−1� bonds belonging
to the N adsorbed k-mers.

B. Order parameters

In order to study the order-disorder phase transition oc-
curring in the adsorbate, it is convenient to define a related
order parameter. In this section, we will refer to two order
parameters. The first one, �1�k�,33 is obtained in terms of
sublattice magnetizations and can be used for k�1. In the
particular case of k=1, �1�k� corresponds to the well-known
geometrical order parameter, �c�2�2�, used for describing the
order-disorder phase transition occurring for repulsive mono-
mers adsorbed on square lattices.34,35

The second quantity, �2�k�, is an order parameter measur-
ing the orientation of the admolecules in the �2k�2� ordered
structure �Fig. 1 in Ref. 28 shows snapshots corresponding to
two possible configurations of the �2k�2� phase appearing
for adsorbed dimers �k=2� in the critical regime�. The de-
generacy of this phase is equal to 4k. The figure suggests a
simple way to build an order parameter. In fact, we see that
the �2k�2� ordered structure �being k�2� adopts an orien-
tation along one of the axes. Then, the 4k configurations can
be grouped in two sets, according to the orientation of the
phase. Taking advantage of this property, we define an order
parameter, �2�k�, as

�2�k� = �Nv − Nh

N
� , �2�

where Nv �Nh� represents the number of k-mers aligned along
the vertical �horizontal� axis and N=Nv+Nh. It is worthwhile
to notice that, since the low-temperature phase is isotropic
for monomers, �2�k� can be used for k�2.

When the system is disordered �T	Tc�, the two orienta-
tions �vertical or horizontal� are equivalents and �2�k� is
zero. As the temperature is decreased below Tc, the k-mers
align along one direction and �2�k� is different from zero
�being �2�k�=1 at T=0�. On the other hand, �1�k� is a �mini-
mum� maximum for �T	Tc� T
Tc.

33 In conclusion, �1�k�
and �2�k� appear as good order parameters evincing the
order-disorder phase transition, with �2�k� more computa-
tionally convenient and better behaved in the limits T→0
and T→�.

As the discussion above reveals, the phase transition is
accomplished by a breaking of the translational symmetry.
This fact is independent of the molecular size. However, an
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additional breaking of the orientational symmetry occurs for
k�2. Consequently, a change in the universality class is ex-
pected for linear molecules with k�2, with respect to the
well-known two-dimensional Ising class of universality cor-
responding to monomers.

C. Monte Carlo method

We have used a standard importance sampling MC
method in the canonical ensemble.29–31 The lattices were
generated fulfilling the following conditions.

�1� The sites were arranged in a square lattice with con-
ventional periodic boundary conditions.

�2� Because the surface was assumed to be homogeneous,

the interaction energy between the adsorbed k-mer and the
atoms of the substrate, �o, was neglected for the sake of
simplicity.

�3� Appropriate values of L /k were used in such a way
that the �2k�2� adlayer structures are not perturbed.

The thermodynamic equilibrium is reached by following
Kawasaki’s dynamics, generalized to deal with polyatomic
molecules. The algorithm to carry out an elementary Monte
Carlo step �MCS�, is the following.

Given a square lattice of M equivalent adsorption sites,
�i� set the value of the temperature T;
�ii� set the value of the coverage, �=kN /M =1/2, by ad-

sorbing N=M /2k linear molecules onto the lattice, each mol-
ecule occupying k adsorption sites;

�iii� a k-mer and a linear k-uple of empty sites are ran-
domly selected, and their positions are established. Then, an
attempt is made to interchange its occupancy state with prob-
ability given by the Metropolis rule,36

P = min	1,exp�− H/kBT�
 , �3�

where H=Hf −Hi is the difference between the Hamilto-
nians of the final and initial states and kB is the Boltzmann
constant;

FIG. 1. Curves of U1�T� versus kBT /w, for k=1 and different
lattice sizes as indicated. From their intersections one obtained
kBTc /w. Inset, data collapsing for the cumulants ��=1�.

FIG. 2. U1�T� �a� and U2�T� �b� versus kBT /w, for k=2 and
different lattice sizes as indicated.

FIG. 3. Data collapsing for the cumulants in Fig. 2�b�.

FIG. 4. Plot of Kc�L� vs L−1/� for the maxima of the slopes of �2

and U2, as well as of the maxima of C and �. From extrapolation
one gets the estimation of the critical temperature.
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�iv� a k-mer is randomly selected. Then, a displacement
to nearest neighbor positions is attempted �following the Me-
tropolis scheme�, by either jumps along the k-mer axis or
reptation by rotation around a unity of the k-mer. This pro-
cedure �diffusional relaxation� must be allowed in order to
reach equilibrium in a reasonable time; and

�v� repeat steps �iii� and �iv� M times.
The equilibrium state can be reached after discarding the

first m� MCSs. Then, averages are taken over m successive
MCSs. In each particular case, the values of m� and m were
estimated by calculating the autocorrelation function of the
order parameter. Details of this procedure will be presented
in the next section.

Thermodynamic quantities, such as the internal energy
per lattice site, E, is obtained as simple averages,

E =
1

L2 �H�T. �4�

The specific heat C is sampled from energy fluctuations,

C =
1

L2kBT2 ��H2�T − �H�T
2� . �5�

The quantities related with the order parameter, such as
the susceptibility �, and the reduced fourth-order cumulant U
introduced by Binder,29 can be calculated as

� =
L2

kBT
���2�T − ���T

2� , �6�

U�T� = 1 −
��4�T

3��2�T
2 , �7�

where the thermal average �¯�T, in all the quantities, means
the time average throughout the MC simulation.

FIG. 5. �a� Size dependence of the order parameter, �2�k=2�, as
a function of temperature. �b� Data collapsing ��2L�/� vs �t�L1/�� for
the curves in �a�.

FIG. 6. �a� Size dependence of the susceptibility, � �with k=2�,
as a function of temperature. �b� Data collapsing ��L−�/� vs tL1/��
for the curves in �a�.

FIG. 7. �a� Size dependence of the specific heat, C �with k=2�,
as a function of temperature. �b� Data collapsing �CL−�/� vs tL1/��
for the curves in �a�.

ROMÁ, RAMIREZ-PASTOR, AND RICCARDO PHYSICAL REVIEW B 72, 035444 �2005�

035444-4



III. COMPUTATIONAL RESULTS

The critical behavior of the present model has been inves-
tigated by means of the computational scheme described in
the proceeding section and FSST.29–31 The FSST implies the
following behavior of C, �, �, and U at criticality,

C = L�/�C̃�L1/�t� , �8�

� = L−�/��̃�L1/�t� , �9�

� = L�/��̃�L1/�t� , �10�

U�T� = Ũ�L1/�t� �11�

for L→�, t→0 such that L1/�t=finite, where t�T /Tc−1.
Here �, �, �, and � are the standard critical exponents of the
specific heat � C� �t�−� for t→0, L→��, order parameter
��� t� for t→0+, L→��, susceptibility ��� �t�� for t→0,
L→��, and correlation length � ��� �t�−� for t→0,L→��,

respectively. C̃ , �̃ , �̃, and Ũ are scaling functions for the re-
spective quantities.

In our simulations, the approach towards equilibrium has
been monitored by calculating the autocorrelation function of
the order parameter. A crude estimate of this quantity al-
lowed us to establish a criterion for determining m�. The
procedure was the following: In all the studied cases
�k=1, ¯ ,4� and for the largest lattice size �L120�, the
relaxation time associated to the autocorrelation function of
the order parameter was measured. Then, m� was taken as 10
times this characteristic time. The resulting values for m�
ranged between 105 for monomers and 106 for dimers, trim-
ers, and tetramers. In addition, m=m� configurations were
used to compute averages. Finally, findings from this pre-
liminary study suggest that the dynamical exponent z de-
pends on k, varying from z2.2 for monomers �in good
agreement with other results reported in the literature37� to
z3 for dimers, trimers, and tetramers. An accurate deter-
mination of z, which is out of the scope of the present paper,
would require more detailed simulations.

In order to understand the basic phenomenology, we first
consider the well-known lattice gas of repulsive monomers.
Figure 1 illustrates the reduced four-order cumulants U1�T�
plotted versus kBT /w for several lattice sizes. From their
intersections one gets the estimation of the critical tempera-
ture. The value obtained for the critical temperature was
kBTc /w=0.567�1�, which is in excellent agreement with ex-
act value calculated by Onsager.38 In addition, the fixed
value of the cumulants, U1

*=0.615�3�, corresponds to the
value of the two-dimensional Ising model. Once we know Tc,
the critical exponent � can be calculated from the full data
collapsing of U1. The results are shown in the inset of the
figure, where an excellent fit was obtained for �=1. On the
other hand, the data of C, �1, and � �data do not shown here�
scaled extremelly well using �=0, �=0.125, �=1.75.

We now analyze the case corresponding to k=2. Figures
2�a� and 2�b� show Binder cumulants plotted versus kBT /w,
being U1�T� and U2�T� obtained from �1 and �2, respec-
tively. As it can be noticed, the curves from �1 show large
finite-size effects and the intersection point seems to con-
verge to a fixed point for large values of L. On the other
hand, the cumulants obtained from �2 are well behaved and
allow a more accurate estimation of �Tc ,U*�. For these rea-
sons, throughout this paper we will work with �2.

The value obtained for kBTc /w �=0.3323�1�� agrees very
well with previous determinations reported in the
literature,27,28 while U2

*=0.643�3� suggests that the system

TABLE I. Values of �, �, �, �, Tc and U* �as indicated in the text� for k ranging from 1 to 4. In the case
k=1, the value of Tc is exact �Ref. 38� and the critical exponents correspond to the well-known two-
dimensional Ising universality class.

k � � � � kBTc /w U*

1 0�log� 0.125 1.75 1 0.567296 0.615�3�
2 0.93�3� 0.02�1� 1.14�3� 0.53�1� 0.3323�1� 0.643�3�
3 0.89�3� 0.03�1� 1.16�3� 0.54�1� 0.4061�1� 0.638�4�
4 0.89�4� 0.02�1� 1.14�3� 0.53�2� 0.4853�2� 0.649�4�

FIG. 8. �a� U2�T� versus kBT /w, for k=3 and different lattice
sizes as indicated. �b� Data collapsing for the curves in �a�.
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does not belong to the universality class of the two-
dimensional Ising model. In order to corroborate this finding,
the critical exponents are calculated in Figs. 3–7.

In Fig. 3, we plot U2 vs tL1/�. According to the theoretical
prediction of Eq. �11�, the critical exponent � is determined
in such a way all curves �for different sizes� collapse into a
universal curve. In this case, �=0.53�1�. Once � is known,
Eqs. �8�–�11� allow for a efficient route to estimate Tc from
the extrapolation of the positions Kc�L��w /kBTc�L� of the
maxima of the slopes of � and U, as well as of the maxima
of C and �. For all these quantities one expects that29,31,32

Kc�L� = Kc��� + const L−1/�, L → � , �12�

where the constant depends on the quantity considered. Fig-
ure 4 shows the extrapolation towards the thermodynamic
limit of Kc�L� according to Eq. �12�. The results obtained

give an additional proof of the numerical values of Tc and �
calculated in Figs. 2 and 3, respectively.

Given kBTc /w=0.3323�1� and �=0.53�1�, �, �, and �
were obtained from the collapse of the curves of �2, �, and
C, as it is shown in Figs. 5–7, respectively. The resulting
values of the critical exponents, �=0.93�3�, �=0.02�1�,
�=1.14�3�, point out clearly the existence of a different uni-
versality class from that of two-dimensional Ising model.
The values of the critical exponents along with the critical
temperature and the intersection point of the cumulants are
collected in Table I.

FIG. 9. Same as Fig. 4 for trimers �k=3�.

FIG. 10. Same as Fig. 5 for trimers �k=3�.

FIG. 11. Same as Fig. 6 for trimers �k=3�.

FIG. 12. Same as Fig. 7 for trimers �k=3�.
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Finally, the finite-size scaling study was carried out for
k=3 and k=4, with an effort reaching almost the limits of
our computational capabilities. For k=3, the collapsing data
are shown in Figs. 8–12. In the case k=4, the curves are not
shown here. In both cases, a very well correlation was ob-
tained for the values of Tc, �, �, �, and � listed in Table I. As
can be demonstrated, the set of critical exponents for dimers,
trimers and tetramers fulfills the well-known inequalities of
Rushbrooke,39 �+2�+��2, and Josephson,40 d�+��2
�being d the dimension of the space�, leading to independent
controls and consistency checks of the values of all the criti-
cal exponents.

The identical results �within numerical errors� obtained
for the critical exponents corresponding to dimers, trimers,
and tetramers corroborate our hypothesis that the breaking of
the orientational symmetry occurring for k�2: �i� affects the
nature of the phase transition and �ii� is the main source of
the change in the universality class, with respect to the well-
known two-dimensional Ising class of universality corre-
sponding to monomers.

IV. CONCLUSIONS

In the present work, we have addressed the critical prop-
erties of repulsive linear k-mers adsorbed on two-
dimensional square lattices at one-half coverage, and dis-
cussed the dependence of the universality class on the size k.
The results were obtained by using Monte Carlo simulations
and finite-size scaling theory.

Several conclusions can be drawn from the present work.
On the one hand, we have introduced an order parameter, �2,
which is particularly useful for describing systems with mul-
tisite occupancy. This parameter is well behaved, computa-

tionally convenient, and performs better than previous order
parameters obtained in terms of sublattice magnetizations.
The physical basis of �2 relays in the breaking of the orien-
tational symmetry occurring for linear k-mers with k�2 at
the critical regime.

On the other hand, the evaluation of the complete set of
static critical exponents, �, �, �, and � for different molecu-
lar sizes, shows that for linear k-mers with k�2, this phase
transition does not belong to the universality class of the
two-dimensional Ising model �k=1�. The main source for
this behavior is the breaking of the orientational symmetry
occurring for k�2, which does not occur for k=1. More-
over, the critical exponents reported in the present paper for
k�2 do not correspond to a known universality class, ac-
cording to the current classification of order-disorder transi-
tions on surfaces given by Schick.41

A detailed scaling analysis shows that usual hyperscaling
relations �inequalities of Rushbrooke and Josephson� are ful-
filled and leads to independent controls of the values of all
the critical exponents.

The order parameter, �2, seems to be a promising param-
eter for describing the critical behavior of repulsive dimers
on square lattices at �=2/3.27 Work in this sense is in
progress.
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