
Resonator design for use in scanning tunneling spectroscopy studies of surface electron lifetimes

S. Crampin
Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom

H. Jensen, J. Kröger, L. Limot, and R. Berndt
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

�Received 4 January 2005; revised manuscript received 24 March 2005; published 15 July 2005�

We derive expressions for the lossy boundary-scattering contribution to the linewidth of surface electronic
states confined with atomic corrals and island resonators. Correcting experimentally measured linewidths for
these contributions along with thermal and instrumental broadening enables intrinsic many-body lifetimes due
to electron-electron and electron-phonon scattering to be determined. In small resonators lossy-scattering
dominates linewidths while different scaling of widths and separations cause levels to merge in large resona-
tors. Our results enable the design of resonators suitable for lifetime studies.
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I. INTRODUCTION

The dynamics of hot electrons and holes at surfaces have
attracted considerable attention in recent years, not least due
to their importance in photochemistry and charge-transfer
processes such as electronically induced adsorbate reactions.
A particular focus has been the study of quasiparticle life-
times associated with excitations in the band of surface-
localized electronic states found at the �111� surfaces of the
noble metals, which have become a testing ground for new
theoretical, computational, and experimental methods aimed
at developing a deeper fundamental understanding of quasi-
particle dynamics.1 Theoretically, much progress has been
made towards a quantitative account of inelastic
electron-electron2,3 �e-e� and electron-phonon4 �e-p� interac-
tions of these states, while techniques such as scanning tun-
neling microscopy5,6 �STM� and spectroscopy7 �STS�, and
photoelectron spectroscopy8 have been used to construct a
steadily increasing database of experimentally determined
lifetimes. The lifetimes of excitations with energies spanning
just a few tenths of an eV have been shown to reflect a
wealth of key surface physics: intraband and interband scat-
tering processes, spatially dependent and d-electron screen-
ing, defect-scattering processes, electron-phonon interactions
with Rayleigh �surface� and bulk phonons, and their tem-
perature dependencies.

Lifetime studies using STM can be divided into two ap-
proaches: those which exploit the phase coherence of quan-
tum interference patterns5,6 and those based upon line shape
analysis.7 The line shape method uses spectroscopic mea-
surements of the differential conductivity dI /dV at a fixed
position above the surface, and relies upon the presence of
spectral structure that contains a signature of the quasiparti-
cle lifetime. On pristine surfaces the only such feature is the
band-edge onset, so that only the lifetime of excitations at
this energy are accessible. However, electron confinement to
natural or artificial nanoscale electron resonators, such as
those shown in Fig. 1, results in energy quantization, induc-
ing spectral structure in the form of a series of resonant lev-
els at energies that can be controlled through changes in the

dimensions and geometry of the resonator. The quasiparticle
lifetime is then reflected in the level widths,10,11 but addi-
tional contributions arise due to lossy boundary scattering
that must be accounted for if line shape analysis is to be used
to determine the intrinsic quasiparticle lifetime. In this paper
we provide analytic and numerical results for the linewidths
of electrons confined by different nanoscale resonators, and
discuss their use in lifetime studies using STS.

The starting point of our analyses is the equation satisfied
by the single-particle Green’s function G�r ,r�� �Ref. 12�

�−
�2�2

2m* + V − E + i Im �I�G�r,r�� = − ��r − r�� , �1�

where r is a two-dimensional position vector, m* the effec-
tive mass, and E the electron energy with respect to the
surface-state band minimum. The validity of this framework
for describing confined surface-state systems has been estab-
lished in many studies.6,11,13,14 Confinement is due to the
potential V, which in general will remain unspecified. Only
the scattering properties of V are relevant. These quantities
can be calculated using ab initio methods, or, as we assume
here, measured experimentally. We also include an inelastic
potential or self-energy i Im �I�E� to account for the effects
of e-e and e-p scattering. This is related to the lifetime �I
associated with these processes by �I=−� / �2 Im �I�.1 The
local density-of-surface states �LDOS� is obtained from the
Green’s function as ��r ;E�=−�2/��Im G�r ,r� �the 2 is for
spin degeneracy�. We associate the LDOS with dI /dV in the
usual way.15 In Sec. II we consider circular atomic corral
resonators, and in Sec. III circular adatom and vacancy is-
lands. Noncircular resonators are discussed in Sec. IV. Con-
tributions to experimentally measured linewidths arising
from thermal broadening and instrumental effects are de-
scribed in Sec. V, and in Sec. VI we illustrate how the results
of our analyses may be used to identify appropriate resonator
structures for lifetime studies.

II. ATOMIC CORRALS

Atomic corrals are artificial structures in which individual
adatoms are positioned with atomic scale precision into
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closed geometries.6,11,16,17 Strong scattering of the surface-
state electrons by the surrounding adatoms leads to confine-
ment. The “standard model” for describing these systems is
the s-wave scattering model,13 in which the solution to �1� is
given by11,13

G�r,r�� = G0�r,r�� + �
j,k

G0�r,R j�TjkG0�Rk,r�� , �2a�

Tjk = t� jk + t�
l�j

G0�R j,Rl�Tlk. �2b�

The sums in Eq. �2� are over the N identical adatoms at
locations R j, j=0,1 , . . . ,N−1, which are characterized by
the scattering t matrix t= �i /m*��exp 2i�−1�, where � is the
phase shift. G0 denotes the free-electron propagator12

G0�r,r�� = −
im*

2�2H0
�1����r − r��� , �3�

where H0
�1� is a Hankel function of the first kind18 and

�=�2m*�E− i Im �I� /�2. In the case of a circular corral, and
taking R j =S�cos 	 j , sin 	 j�, 	 j =2�j /N, when both r and r�
are at the center of the corral

G − G0 = �−
im*

2�2H0
�1���S��2 N

t−1 − G
�4�

and the LDOS at the corral center is

� = �0 +
2N

�
� m*

2�2�2

Im
�H0

�1���S�	2

t−1 − G
, �5�

where �0= �m* /��2��1− �2/��arg �	 is the clean surface
LDOS �Ref. 7� and

G = −
im*

2�2 �
j=1

N−1

H0
�1����R j − R0�� �6a�


−
im*

2�2 �NJ0��S�H0
�1���S� − C	 . �6b�

The last result follows using �R j −R0�=2S sin 	 j /2 and re-
placing the sum by an integral over � /N
	
2�−� /N,
which is valid for wavelengths greater than the adatom spac-
ing, or N��S.19 J0 is a Bessel function18 and C=1+ �2i /��
��ln�� /4�+�−1	, with �=0.577 215 664 9. . . �Euler’s
constant�. We have introduced =N /2�S, the linear density
of atoms making up the corral. Poles in the Green’s function
which correspond to bound electron states that have ampli-
tude at the center of the corral occur when t−1=G. Using the
asymptotic forms18 for J0, H0

�1� gives the condition as

e2i�S−i�/2 + 1 = ���� , �7a�

���� =
�

2
�C + �−

im*t

2�2 �−1� . �7b�

In the limit →� the solutions to Eq. �7� are when �=�n
= �n�−� /4� /S, corresponding to a series of resonances at
energies

En =
�2�n� − �/4�2

2m*S2 �8�

and with widths �full width at half maximum�

�In = − 2 Im �I�En� = �/�I�En� . �9�

This is the “hard-wall” limit, where the surface-state wave
function vanishes at the radius of the corral.16 The exact
energies in this limit have the same form as Eq. �8� but with
�n�−� /4� �=2.36,5.50,8.64 for n=1,2 ,3	 replaced by the
nth zero18 of the Bessel function J0, j0,n �=2.40,5.52,8.65 for
n=1,2 ,3�. This close agreement validates the use of
asymptotic forms in obtaining �7�.

In the hard-wall limit �9� shows that the resonance widths
are directly related to the inelastic e-e and e-p scattering

FIG. 1. Nanoscale electron resonators used in lifetime studies.
�a� Pseudo-three-dimensional representation of a constant-current
STM image of a rectangular corral approximately 9 nm�10 nm
constructed from 28 Mn atoms on Ag�111�. In order to enhance the
atomic structure the intensity is plotted on a logarithmic scale. The
standing-wave pattern inside is due to electron confinement.9 �b�
Gray scale representation of a constant-current STM image of a
240 nm�240 nm region of a Ag�111� surface showing numerous
hexagonal monatomic vacancy islands. Surface-state electrons are
confined within these islands by strong scattering at the step edges
of the vacancies.
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rates at the energy of the level. However, in practice there are
physical limits to how large the linear adatom density  can
become, with 
dnn

−1 where dnn is the nearest-neighbor sepa-
ration of surface atoms. Consequently the confinement is al-
ways less effective than in the hard-wall limit, which results
in increased level widths. Solving �7� to first order in this
case yields level widths

�n = �In + �Cn, �10�

where

�Cn 

�2�n

m*S
Re ln�1 − ���n�	 . �11�

This is the contribution to the level widths due to lossy scat-
tering by the corral adatoms. Figure 2 shows the typical be-
havior of �C, showing results for Fe corrals on Cu�111� of
various sizes and linear adatom densities. The accuracy of
the approximations made in obtaining the expression in Eq.
�11� are confirmed by the close agreement to be found be-
tween the level widths predicted by it and with those found
by fitting the LDOS �5� with a series of Lorenzians or from
iterative solution to �7�. The general trend to be observed in
the level widths is that they increase almost linearly with
energy but are approximately halved by simultaneously dou-
bling the radius and the number of atoms in the boundary
ring.

III. ADATOM AND VACANCY ISLANDS

In a second class of resonators confinement results from
scattering at ascending or descending steps. These are ada-
tom or vacancy islands.20–23 In these systems the scattering
properties of the confining step are conveniently character-
ized by a reflection coefficient R.14

Assuming circular symmetry, with S now the island ra-
dius, the Green’s function can be expanded as

G�r,r�;E� =
1

2�
�
M

GM��,��;E�eiM��−���. �12�

Substituting into Eq. �1� gives for � ,���S

�2�2GM

��2 + �
�GM

��
+ ��2�2 − M2�GM =

2m*

�2 ���� − ��� .

�13�

Solving by the direct method gives for �����S

GM��,��;E� =
i�m*

�2�AM − 1	
JM�����M����� , �14�

where JM is a Bessel function and �M�z�=HM
�1��z�+AMHM

�2�

��z�, a linear combination of Hankel functions. The coeffi-
cient AM is chosen to ensure that �M satisfies the scattering
boundary conditions at S.

Identifying the energy levels from the poles in the Green’s
function, we see from Eq. �14� that these arise whenever
AM =1. Only circularly symmetric states contribute to the
local density of states at the center of the island �JM�0�=0 for
M �0	 so that the energy levels that can be seen by STS
measurements at the center of islands occur when A0=1.
Using the asymptotic forms for the Hankel functions

�0���� � 2

���
�ei���−�/4� + A0e−i���−�/4�	

� �ei���−S� + Re−i���−S�	 , �15�

that is, one can recognize within �0 waves incident and re-
flected from the confining potential, enabling the coefficient
A0 to be related to the planar reflection coefficient R of the
step at the island edge. Using this relationship and equating
A0 to 1 gives

Re2i�Se−i�/2 − 1 = 0 �16�

as the condition for bound states visible in STS at the center
of islands. Assuming confinement sufficient to give an iden-
tifiable series of resonant levels, and writing R= �R�exp i�R,
Eq. �16� predicts their energies as

En =
�2�n� + �/4 − �R/2�2

2m*S2 �17�

and corresponding widths

�n = �In + �Rn, �18�

where

�Rn 
 −
�2

m*�2m*En

�2

ln�R�
S

. �19�

The hard-wall limit in this case is R→−1, which ensures that
the wave function �15� vanishes at S. In this limit �17� coin-
cides with Eq. �8� and �Rn=0 so that once again the reso-
nance widths are directly related to the inelastic e-e and
e-p scattering rates. In reality, scattering at real steps has

FIG. 2. Calculated level widths for Fe corrals on Cu�111� using
Im �I=0 ,m*=0.38me , im*t=1,E0=−0.44 eV. �Ref. 13�. Squares
and lozenges denote values found solving Eq. �7� by Newton-
Raphson iteration for N=48,S=71.3 Å, and N=96,S=142.6 Å, re-
spectively. Circles denote values found by nonlinear least-square
fitting of a series of Lorenzians to the LDOS given by Eq. �5� for
N=48,S=142.6 Å. The lines are plots of ��2� /m*S�Re ln�1
−����	, �=�2m*�E−E0� /�2 for the respective corral parameters.
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been found to be lossy, so that �R��1, and then Eq. �19�
enables the estimation of the resulting additional contribution
to the level width �R. Figure 3 shows widths found by solv-
ing Eq. �16� for variously sized Ag vacancy islands using an
energy-dependent step reflection coefficient fitted to experi-
mentally determined values,14 along with the widths ex-
pected using the approximate expression �19�. The agree-
ment is again very good. The widths show similar behavior
to those in the atomic corrals, increasing approximately lin-
early with energy and inversely proportional to the island
radius.

IV. NONCIRCULAR RESONATORS

Equations �11� and �19� enable the ready determination of
the lossy scattering contribution to the spectral linewidths of
electron states in circular resonators. In terms of lifetime
studies, circular resonators have two distinct advantages.
Firstly, the high symmetry results in the sparsest spectrum,
which simplifies the extraction of linewidths. This point is
discussed more fully below. Secondly, it is not generally pos-
sible to obtain an analytic expression for the spectral line-
widths in the case of noncircular resonators. Nevertheless,
noncircular resonators are important, for example the atomic
structure of the �111� surfaces favors the natural formation of
triangular and hexagonal resonators.

Figure 4 shows the calculated linewidths due to lossy
boundary scattering of electron states with amplitude at the
center of a 72 Fe atom triangular corral on Cu�111�, side d
=220.5 Å. An analytic treatment for this geometry is not
possible, and so these widths have been obtained by fitting a
series of Lorenzians to the local density of states which is
obtained by numerically evaluating the Green’s function us-
ing Eqs. �2a� and �2b�. The resonant levels occur at energies
that are close to those of the hard wall limit, Ep,q
=8�2�2�p2+q2+ pq� / �3m*d2�, where p=1,2 ,3 , . . ., 0
q

 p−1, and p−q�3� integer.25 Also shown in the figure is

the linewidth relation �Eq. �11�	 for circular corrals with ra-
dii S=81.9 Å, corresponding to the same area as the triangu-
lar corral, and S=63.7 Å, corresponding to the largest en-
closed circle. In each case in evaluating �7b� we have used
for , the linear density of corral atoms, the value from the
actual triangular corral, =72/ �3d�. The widths in the same-
area circular corral underestimate the triangular corral widths
by 
25%, but those for the inscribed circular corral provide
a good description. Calculations on other hexagonal and rect-
angular resonators confirm this result. The lossy scattering
contribution to the level widths at the center of noncircular
resonators are approximately given by the appropriate circu-
lar resonator width relation �11� and �19�, using for the radius
that of the largest enclosed circle. Therefore when designing
potential resonator structures for lifetime studies, lossy
boundary-scattering effects can be estimated using these ex-
pressions, although more detailed calculations taking into ac-
count the actual geometry are needed for subsequent quanti-
tative analysis of experimental spectra.

V. THERMAL AND INSTRUMENTAL EFFECTS

For completeness, we note that in addition to the lossy-
scattering contribution, the experimental linewidth also in-
cludes contributions due to instrumental and thermal effects.
These must also be borne in mind when considering the use
of resonators for lifetime determinations. The thermal broad-
ening is induced by the temperature dependence of the
Fermi-Dirac distribution function,15 which enters via the re-
quirement that electrons tunnel in STS from occupied states
in the tip �sample� to unoccupied states in the sample �tip�.
The effect on the differential conductivity is to convolve with
the derivative of the Fermi-Dirac distribution,

FIG. 3. Calculated level widths for circular Ag vacancy islands
using Im �I=0, m*=0.42, and E0=−67 meV, for island radii 75 Å
�squares�, 150 Å �circles�, and 300 Å �lozenges�. The lines are plots
of −��2 /m*S��2m*�E−E0� /�2 ln�R� for the respective island radii.
The inset shows the reflection coefficient used in the calculation
�line�, along with the experimental values from Ref. 14.

FIG. 4. Calculated level widths �squares� found by nonlinear
least-squares fitting of a series of Lorenzians to the local density of
states at the center of a triangular corral, side 220.5 Å constructed
from 72 Fe atoms on Cu�111� �the structure reported in Ref. 24�.
Calculation parameters: Im �I=0, m*=0.38, im*t=1, E0

=−0.44 eV. The lines are plots of the circular corral linewidth re-
lationship, Eq. �11�, for the dashed line, radius 81.9 Å and the solid
line, radius 63.7 Å. The inset shows the atomic structure of the
triangular corral, and the size of the two circles.
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�T�V� = �T�0�cosh−2�eV/2kT� . �20�

The thermal broadening function shown in Fig. 5 has a
FWHM of 3.5 kT. This is a relatively small contribution at
low temperatures �=3.0 mV at T=10 K�.

The differential conductivity is normally measured using
a lock-in technique, which reduces phase-incoherent noise
contributions.26 A sinusoidal voltage modulation Vm cos��t�
is superimposed upon the tunneling voltage V, and the signal
at frequency � recorded

I��V� =
2�

�Vm
�

0

�/�

I�V + Vm cos �t�cos �tdt

= �
−�

� dI

dV
�V + V���m�V��dV�. �21�

The measured voltage is the differential conductivity convo-
luted with the instrumental function �m,

�m�V� = �2�Vm
2 − V2/�Vm

2 , �V� 
 Vm

0, �V� � Vm.
� �22�

The FWHM of this instrumental broadening function �m,
shown in Fig. 5, is 1.7Vm.

VI. DISCUSSION

The results of the preceding sections permit the design
and use of resonator structures for the measurement of intrin-
sic lifetimes. To illustrate this, we consider circular atomic
corrals constructed from Ag adatoms on Ag�111�, for which a
scattering phase shift �=0.75+0.42i has been measured.6

The basic idea is that resonators with different dimensions
result in different series of energy levels, at energies given by
�8� �or more accurately by numerically solving �7�	. By
choosing an appropriate radius S, levels can be positioned at
specific energies �=En. Using STS to measure the corre-
sponding level width �, Eqs. �10� and �11� plus knowledge
of the thermal and instrumental broadening effects �Sec. V�
may then be used to identify �I���=� /�In.

Figure 6 compares theoretical estimates for the intrinsic
many-body widths of the Ag�111� Shockley surface state

with the boundary-loss contributions �Cn that arise in vari-
ously sized circular corrals at fixed linear density of corral
adatoms. For the smallest corral, of radius S=10 nm, �C
�squares� is significantly greater than �I �solid line� for most
energies. In practice this will make more difficult the accu-
rate determination of �I and hence lifetimes �I �=� /�I� from
STS-measured linewidths, which will be the sum of �I and
�C, plus the effects of the convolution with �T �20� and �m
�22�. In the 20 nm radius corral the intrinsic and boundary-
loss linewidth contributions are comparable for most ener-
gies, making it a better candidate structure for intrinsic life-
time determinations. One might consider going further,
noting that for a fixed linear density of atoms making up the
corral, =N / �2�S�, the linewidth �C decreases linearly with
S, encouraging the use of corrals of even greater radius. For
almost all energies the lossy-scattering contribution �C in the
30 nm corral shown in Fig. 6 is smaller than the intrinsic
linewidth �I. However, from Eq. �8� we see that the level
spacings vary as 1/S2, decreasing with radius more rapidly
than �C, so that in larger corrals the resonances merge, and
the levels lose their integrity. This is already apparent at low
energies in the 20 nm corral. The LDOS for this case is
presented in the inset in Fig. 6, and shows that the lowest
two levels are only just separated. If typical thermal and
instrumental broadenings are included, then the lowest level
becomes an indiscernible shoulder. Hence lifetimes �I

Ag are
best measured in Ag adatom corrals with radii up to
20 nm, with smaller resonators used for lifetimes at ener-
gies towards the bottom of the band of surface states. Finally
we point out that sparser adatom arrays result in broader
linewidths, as can be seen in Fig. 2, and that using �11� an
appropriate linear density of adatoms may be identified.

We conclude by summarizing the main results of this
work. We have derived analytic expressions for the contribu-
tion to the spectral linewidths of electronic states measured
using scanning tunneling spectroscopy at the center of circu-
lar atomic corrals and adatom and vacancy islands that arises

FIG. 5. �a� Thermal broadening function, resulting from the
temperature dependence of the occupation of electron states. �b�
Instrumental broadening associated with the use of a modulating
voltage and lock-in technique for recording the differential
conductivity. FIG. 6. Linewidth contributions to states at the center of circular

Ag adatom corrals on Ag�111�. Intrinsic width due to e-e and e-p
scattering �solid line—compiled from theoretical values reported in
Refs. 2, 4, and 27. Lossy boundary scattering: 60 atoms corral,
radius 100 Å �squares�; 120 atoms, radius 200 Å �circles�; 240 at-
oms, radius 300 Å �lozenges�. Inset: the LDOS normalized by �C

=m* /��2 at the center of the 120 atom corral.
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due to lossy boundary scattering. Correcting measured line-
widths for these contributions as well as thermal and instru-
mental broadening effects enables intrinsic lifetimes due to
electron-electron and electron-phonon scattering to be deter-
mined. The expressions that we have obtained are straight-
forward to evaluate, and also provide an estimate of lossy-
confinement effects in noncircular resonators where the
relevant radius is that of the largest enclosed circle. Using

our linewidth expressions it is possible to design resonator
structures appropriate for lifetime studies.
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