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The resonance Raman profile of the radial-breathing mode is calculated for all 300 single-walled carbon
nanotubes in the radius range from 2 A to 12 A and for all optical transitions up to 3.5 eV using a symmetry-
adapted nonorthogonal tight-binding model [V. N. Popov, New J. Phys. 6, 17 (2004)]. The influence of the
electron-phonon and electron-photon interactions on the Raman intensity is studied using an approximate
expression for the intensity in the vicinity of each optical transition as the product of the electron-phonon
coupling matrix element, the momentum matrix element, and the effective mass raised to different powers. The
dependence of the latter three quantities and the maximum Raman intensity on the nanotube radius, the chiral
angle, and the optical transition energy is discussed in detail. In particular, the points of the corresponding plots
exhibit family behavior of three different types. It is shown that the widespread practice to neglect the
electron-photon and electron-phonon interactions in the estimation of the intensity can lead to incorrect pre-

diction of the Raman spectra.
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I. INTRODUCTION

Carbon nanotubes have unusual vibrational, electronic,
and optical properties due to their quasi-one-dimensionality.'
The synthesized nanotubes consist either of a single graphitic
layer [single-walled nanotubes (SWNTs)] or a number of co-
axial layers [multiwalled nanotubes (MWNTs)]. The nano-
tubes are observed quite often in bundles of many tubes. The
low-frequency vibrational mode in the nanotubes with uni-
form radial atomic displacements [the radial-breathing mode
(RBM)] gives rise to a high-intensity Raman line that can be
used for the structural characterization of the samples by
means of Raman spectroscopy. The frequency of the RBM,
calculated within force constant models,>> was found to be
inversely proportional to the nanotube radius. The calcula-
tions within the density-functional approach using the local-
density approximation (LDA) showed a slight dependence of
this frequency on the nanotube chirality.*> The interactions
between the separate nanotubes in a bundle or between the
layers in a MWNT modify the frequencies of the RBMs of
the isolated nanotubes.%’

The Raman scattering from nanotubes has the remarkable
peculiarity that it takes place mainly under resonant
conditions.! This means that the Raman spectra show distinct
features due to certain nanotubes only when the laser excita-
tion energy comes close to the optical transitions of these
tubes. For this reason, the Raman spectrum measured at a
given laser energy consists of a small number of lines com-
pared to the otherwise large number of different nanotubes
present in the sample. The optical transitions of SWNTs,
calculated within the 7-band tight-binding model (#TB
model),® orthogonal and non orthogonal tight-binding
models,”!? and the LDA approach,'! underestimate the ob-
served absorption and emission energies. This disagreement
is mainly due to the neglect of the self-energy and excitonic
effects on the band energies.!” In a recent analysis of the
electron interactions in nanotubes,? it was argued that the
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one-dimensional (1D) interaction and excitonic effects com-
pete and nearly cancel. The remaining two-dimensional (2D)
(graphene) interactions were found to lead to a logarithmic
correction to the band energies that can explain fairly well
the difference between the observed optical transitions and
the predictions of the noninteracting models above.

The experimental Raman data have been so far assigned
using mostly the predictions of force-constant models for the
RBM frequency and the optical transition energies of the
#'TB model.! Recent well-resolved spectrofluorimetric data
from HiPCO samples'* allowed the derivation of empirical
expressions for the transition energies of narrow semicon-
ducting tubes.'> The low-frequency Raman spectra of high-
pressure CO (HiPCO) samples'® were assigned using these
empirical expressions and an empirical formula for the ra-
dius dependence of the frequency of the RBM. Recently,
similar relations have been derived from the analysis of ex-
tensive Raman data obtained using tunable laser sources'”'8
Such empirical relations can be applied to determine accu-
rately the Raman shift of the lines corresponding to the RBM
frequencies of certain tubes and the laser energies that are
favorable for the observation of these lines. However, the
Raman lines originating from different tubes can have differ-
ent maximum intensity, varying from very low to very high,
which makes the Raman spectra assignment a challenge.
Therefore, for the unambiguous determination of the radius
and chirality distribution of the tubes in the sample, one has
to know the dependence of the Raman line intensity on the
laser energy [the so-called resonance Raman profile (RRP)].
So far, most of the quantum-mechanical simulations of the
RRP have used the 7TB electronic band structure of the
nanotubes and have considered the momentum and electron-
phonon coupling matrix elements as tube-independent.!-?° In
a few cases, the momentum matrix elements were calculated
within more sophisticated models and the electron-phonon
matrix elements were assumed to be equal to the first deriva-
tive of the transition energy with respect to the nanotube
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radius.?!?? To the best of our knowledge, no results for the
RRP within the excitonic picture have been published so far.
Recently, we have reported the results of the calculations of
the RRP for 50 narrow semiconducting nanotubes carried out
within a well-tuned nonorthogonal tight-binding model, >
showing in particular that the maximum Raman intensity can
vary from very low to very high for different tubes. These
RRPs were used to simulate the Raman spectra of SWNT
samples and a fair agreement was reached with available
Raman data on HiPCO samples.'®

In this paper, we propose a systematic study of the tube-
dependent behavior of the maximum Raman intensity with
respect to the strength of the electron-photon and electron-
phonon interactions. First, we present the maximum Raman
intensities calculated within a symmetry-adapted nonor-
thogonal tight-binding model®!? for all 300 nanotubes in the
radius range from 2 A to 12 A, which contains practically all
nanotubes currently produced by various techniques. Next, in
the analysis of the Raman intensity, we used an approximate
expression that is proportional to the product of the electron-
phonon coupling and momentum matrix elements, and the
electron effective mass raised to different powers. We calcu-
lated the dependence of the latter three quantities on the
nanotube radius, chiral angle, and transition energy and dis-
cussed the effect of the interactions of the electrons with
photons and phonons, and of the electronic band structure of
the nanotubes on the maximum Raman intensity. We ob-
served three different types of family patterns for the latter
quantities. The dependence of the optical absorption coeffi-
cient on the structural properties of the nanotubes is also
calculated. The results for the maximum Raman intensity
and the absorption coefficient are used in the discussion of
the conditions for the observation of the different nanotube
types using Raman scattering spectroscopy and optical ab-
sorption spectroscopy. The paper ends with conclusions.

II. THEORETICAL PART

The nanotube can be considered as being obtained by the
rolling up of an infinite strip of graphene along the chiral
vector C,=L;a;+L,a, (a; and a, are the primitive transla-
tions of graphene) into a seamless cylinder. The integer num-
bers L; and L, (L;=L,=0) specify uniquely the nanotube.
There are “armchair” tubes (L;=L,), “zigzag” tubes (L,
# L,=0), and chiral tubes (all the rest). The nanotube can be
characterized by its radius R and chiral angle 6, which is the
angle between the chiral vector and the nearest zigzag of
carbon-carbon bonds. All nanotubes possess a screw symme-
try defined by two different primitive screw operations.
Choosing the same two-atom unit cell as for graphene, any
other unit cell of the tube can be obtained by a suitable
combination of integer numbers times these two operations.
The incorporation of the screw symmetry in the calculations
of various properties of nanotubes leads to drastic reduction
of the computational time.?

Recently, we have implemented a symmetry-adapted non-
orthogonal tight-binding model (NTB model) in the calcula-
tions of the band structure and the dielectric function of prac-
tically all existing carbon nanotubes.”!? In the NTB model,
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the electronic band structure of a nanotube is obtained by
solving the matrix eigenvalue equation’

2 (Hyry = EgSuap ) = 0. (1)

!
r

Here Hy,,» and Sy, are the matrix elements of the Hamil-
tonian and the overlap matrix elements, respectively, E; is
the one-electron eigenenergy, and ¢y, are the coefficients in
the expansion of the one-electron wave function as a linear
combination of the atomic orbitals of the two-atom unit cell.
The one-dimensional wave vector k and the integer quantum
number [ are consequences of the translational and the rota-
tional symmetries of the nanotubes (-w<k<m, —-N_./2<I
<N,/2; N, is the number of carbon pairs in the translational
unit cell). The index r labels the 2n atomic orbitals of the
two-atom unit cell (n=1 for the 7-band tight-binding model
and n=4 for the all-valence tight-binding model using 2s,
2p.. 2p,, and 2p_ orbitals for carbon). The eigenvalue equa-
tion, Eq. (1), yields the one-electron eigenenergies E,;,, and
the expansion coefficients cy,,,, m=1,2,...,2n. For each k,
this equation has to be solved for all values of /, i.e., N,
times. Therefore, the computational time for solving the ei-
genvalue problem for each k using standard diagonalization
techniques scales as (2n)°N, in the symmetry-adapted
scheme and as (2nN.)? in any non-symmetry-adapted
scheme. The advantage of the former is obvious and it makes
possible large-scale calculations of the Raman intensity of
nanotubes where a sampling of a large number of wave vec-
tors is required for the numerical integration over the one-
dimensional Brillouin zone of the nanotube.

The Raman-scattering process can be described quantum
mechanically considering the system of the electrons and
phonons of the tube and the photons of the electromagnetic
radiation and their interactions.”* The most resonant Stokes
process includes (a) absorption of a photon (energy E;, po-
larization vector €") with excitation of the electronic sub-
system from the ground state with creation of an electron-
hole pair, (b) scattering of the electron (hole) by a phonon
(frequency w,, polarization vector e), and (c) annihilation of
the electron-hole pair with emission of a photon (energy Eg
=E;-hw,, polarization vector €) and return of the elec-
tronic subsystem to the ground state. The Raman intensity
for the Stokes process per unit tube length is given by

* 2
12 pqucvch'v

I(E,w,)=A ; :
’ L cv (EL - EL'U - lyc'u) (ES - Ecv - l’)/cv)

)

()

where A=C (Eg/Ei) (n+1), C is a constant, n is the phonon
Bose-Einstein factor, and L is the length of the tube contain-
ing N unit cells. E_, is the vertical separation between two
states in the valence band v =klm and the conduction band
c=kl'm', and v,, is the excited state width. pf;}S is the matrix
element of the component of the momentum in the direction
of the polarization vector €. The electron-phonon coupling
matrix element D, is determined by the scalar product of the
derivative of E_., with respect to the atomic displacement
vector u and the phonon eigenvector e
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Here, M is the mass of the carbon atom and u;, is the y
component of the displacement of the ith atom in the two-
atom unit cell. The radial-breathing mode is an almost uni-
form radial motion of the tube with negligible nonradial
components of the atomic displacements, even for very-
small-radius tubes. Assuming uniform radial deformation of
the tube, it is readily seen that =, ,e;, (JE.,/du;,) is propor-
tional to the derivative of E_, with respect to the tube radius.
The derivatives with respect to the atomic displacements or
the tube radius can be estimated using the Hellmann-
Feynman theorem.

The analysis and the application of the obtained RRPs are
facilitated by the use of a convenient approximate expression
of the RRPs. As it will be shown in the next section, the
features of the RRPs, arising from the optical transitions with
energies E;; (ii=11,22,... for the first, second, etc., optical
transition), are well separated and nonoverlapping in most
cases. This fact allows approximating each feature indepen-
dently of the other features of a given profile. The most
suitable function can be obtained from the estimation of the
Raman intensity assuming two approximations. First, the
points of the Brillouin zone corresponding to the spikes of
the electronic density of states (the so-called van Hove sin-
gularities) will give predominant contribution to the sum in
Eq. (2). Therefore, the numerator in the right-hand side can
be assumed as k independent and can be pulled out of the
summation at the wave vector k;; of the optical transition Ej;.
Second, the remaining summation can be performed as an
analytical integration over the Brillouin zone of the tube for
a particular optical transition?? replacing the sum over k with
(L/2m) [dk and using the effective-mass approximation.
Namely, in the vicinity of the optical transition E;;, the dif-
ference between the energies of the valence and conduction
bands can be written as E,,=E;+h*(k—k;;)*/2m;, where m,
is the effective mass of the transition. As a result, the integral
over k is_transformed into an integral over the energy:
(L/ Zﬂﬁ)\'/m;/ 2 [dE/NE—-E;. The summation in Eq. (2) then
yields

J 1 dE
(EL-E-iy,)(Es—E-iy,) VE-E,
i 1 1
] W
ho\\NE —E;—iy,, VEs—E;—iYs

The electronic response is strongly suppressed for incident
and scattered light polarizations perpendicular to the tube
axis and is largest for polarizations parallel to the tube axis.
For the intermediate cases, the Raman intensity is deter-
mined by the component of the polarization vectors along the
tube and, therefore, will be proportional to (cos ¢)* where ¢
is the angle between the polarization vectors and the tube
axis.?® Then, we can restrict ourselves to light polarizations
parallel to the tube axis (z axis) and obtain the approximating
function for the feature of the RRP at the transition energy
E;; in the form
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L{(EL,»,) = A’|Pii|4D?imZ|Fii|2~ (5)
Here

2 1 1

Fii=_</ — = : ) (6)
hw,\NE, —E;—iv,, VEs—E;—iv,

and A'=C’ (Eg/Ei) (n+1), C' is a constant, p;; is the matrix
element of the z component of the momentum, and D;; is the
electron-phonon coupling matrix element evaluated at the
optical transition E;;.

The Raman intensity, as approximated by Eq. (5), is a
symmetric function of the laser energy with respect to E;
=E;+hw,/2 (see Refs. 22 and 23). For small v,,, it has two
peaks corresponding to the two resonances at E;=FE;; and
E;=FE;+hw,. For the experimentally measured values of vy,,,
the two peaks merge into a single bell-like peak with a maxi-
mum at E;=E;+hw,/2. We are going to consider only the
latter case. The width of the approximating function depends
on the optical transitions E; and the phonon frequency w,,
both of which are available either as results of calculations or
as empirical relations. The width of this function also de-
pends on the excited state width vy,,, which arises from the
not yet well-studied processes of relaxation of the electronic
excitations in nanotubes and is usually assumed to be a tube-
independent parameter.

It is convenient to rewrite Eq. (5) in the form

.. 2
123 , (7)

IiiE , W, ZA,Im
(EL,@,) Fr

1,ii

where F! is the value of F;; at E; =E;;+fiw,/2. The quantity
IY';; is equal to the maximum of I;,(E;,®,) (up to the factor
A') and will be referred to as the maximum Raman intensity.
It is given by the expression

1= il Dimal Fii . (8)
The index 1 is added to designate that this quantity is an
approximation to the maximum Raman intensity of the full
calculation [Eq. (2)].

Most of the empirical models of the band structure use
constant parameters and therefore the derivatives of the band
energy with respect to the atomic coordinates as well as the
intensity are zero. In the ab initio approach, both p;; and D;;
can be derived, but this is accompanied with increasing com-
putational difficulties. However, the effective masses m,*l can
be easily calculated within all models from the electronic
band structure of the tubes. Then, it is tempting to assume p;;
and D;; as tube-independent constants and use as “zeroth-
order” approximation the simpler expression for the the peak
intensities

m  _ o K| m|2
0,i=C mii|Fii

. )

where C” is a constant.

In some cases, more than one pair of valence and conduc-
tion bands contributes to a given optical transition and the
maximum intensity given by Egs. (8) and (9) has to be cor-
rected. In armchair and zigzag tubes, the bands with quantum
numbers =/ (I#0,N,/2) are degenerate and, for the corre-
sponding transitions, the maximum intensity must be multi-
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plied by 4. The transitions in the armchair and the majority
of the transitions in chiral tubes take place inside the Bril-
louin zone at points *k;; and, for these transitions, the maxi-
mum intensity must be multiplied by 4. Finally, there is a
degeneracy of all bands with respect to electron spin, which
gives rise to the same multiplicative factor for all optical
transitions.

The presentation of the features of the RRP in the form of
Eq. (7) is very convenient for the analysis of the resonant
Raman intensity. Indeed, the expression in the right-hand
side of this equation is the product of a tube-dependent pa-
rameter A'[}'; and a bell-like function of E; equal to 1 for
E;=E;;+hw,/2. The former characterizes the maximum Ra-
man intensity and the latter determines the shape of the RRP.
In the next section, we shall consider in more detail the de-
pendence of the parameters /}'; on the tube radius, chirality,
and transition energies through the constituent matrix ele-
ments of the electron-phonon coupling and the momentum,
as well as the effective mass.

The nanotube samples can also be characterized by means
of optical absorption spectroscopy. An approximate expres-
sion of the maximum absorption coefficient at the optical
transitions can be derived assuming independent contribu-
tions of the separate optical transitions. Considering p,, as k
independent, it can be pulled out of the sum over the wave
vector in the expression for the imaginary part of the dielec-
tric function.’ The latter sum can be transformed into an
integral and evaluated within the effective-mass approxima-
tion to obtain the maximum absorption coefficient a/';; at the
transition energy E; up to a constant multiplier as

m 2.
@ ll__|pll| "mii' (10)
Ell

In this case, the “zeroth-order” approximation would be to
assume the matrix elements of the momentum to be con-
stants _and write the absorption coefficient as ap;
—C’”\m /E; (C" is a constant). The presence of degenerate
bands and transitions inside the Brillouin zone will require
correction factors of 2 in Eq. (10). The results of the calcu-
lations obtained using Egs. (8) and (10) can be the basis for
comparison of the conditions for observation of nanotubes
by Raman and absorption spectroscopies.

III. RESULTS AND DISCUSSION

A. Resonance Raman profiles

We used Eq. (2) to calculate the RRP for the relaxed
structure of all 300 semiconducting and metallic nanotubes
in the radius range 2 A <R <12 A and for optical transitions
E;<3.5 eV within the NTB model.” This model does not
include self-energy corrections and the obtained E;; underes-
timate the experimental data'* by about 0.3 eV.!” Since the
radius and chirality dependence of this correction is not
known, throughout the paper we use the uncorrected NTB
values of E;. We restricted ourselves to incident and scat-
tered light polarizations parallel to the tube axis, for which
only electronic transitions klm— klm' are dipole-allowed.?
For the RBM frequency ,, the empirical formula’ w,
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FIG. 1. The calculated RRPs of 24 SWNTs belonging to the
groups CO, C1, and C2. The labeling of the optical transitions ii
follows that of the #TB model in the linear dispersion approxima-
tion. The intensity is in arbitrary units and the scale is the same in
all graphs.

=1117.5/R+12.5 was used (w, is in cm™ !"and R is the radius
of the nonrelaxed tube in A for nearest carbon-carbon sepa-
ration ac.c=1.44 A). The excited-state width was taken to be
Y=0.03 eV, which is consistent with recent experimental
data.'®?? The summation in Eq. (2) was performed over
5000/ \N k points in the Brillouin zone, which were found
to be enough for the convergence of the sum.

The obtained RRPs have a different behavior for nano-
tubes with residual v=0, 1, or 2 of the division of L;—L, by
3. For this reason, we consider these three cases separately
and adopt the notation Z0, Z1, and Z2 for zigzag tubes, and
CO0, C1, and C2 for chiral tubes. Armchair tubes are denoted
here with A. In Fig. 1, the calculated RRPs for 24 tubes
belonging to groups CO, C1, and C2 are shown. It is seen
that the maximum intensity /7] increases with the increase of
the transition energy and decreases with the increase of the
radius. Apart from these general trends, I} depends on the
index ii of the optical transition.

Before continuing with this specific dependence, we note
that the transition energies of the nanotubes can be estimated
simply from the appropriately folded 7TB band structure
obtained assuming linear dispersion close to the K and K’
points in the Brillouin zone of graphene. The resulting
expression E?i:iyoac,c/R (vp is the hopping integral)
gives for i=1,2,4,5,... the transition energies with ii
=11,22,33,44,... in tubes C1, C2, Z1, and Z2, and for i
=3,6,... the transition energies with ii=11,22,... in tubes
C0, A, and Z0. The trigonal warping effect' gives rise to a
shift of the energies for tubes C1, C2, Z1, and Z2 to new
values E; and a splitting of the energies for tubes CO and Z0
into two components: EY, — (E1,Es),E9— (E33,Esy), ...
Because of the shift and the splitting of the transition ener-
gies, the 1/R curves will widen into strips with the points for
zigzag tubes lying on the boundaries and the points for the
chiral and armchair tubes lying inside the strips. Although
the order of E;; can be different from that of EY, we did
not relabel the former. This explains why for some of the
RRPs in Fig. 1, we have, e.g., E¢> E;; (central panel) and
Ess> Egq (right panel).
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FIG. 2. The calculated maximum Raman intensity I} of the
RBM for all optical transitions up to 3.5 eV and for all 300 SWNTs
in the radius range 2 A<R<12 A versus the tube radius, the chiral
the angle, and the transition energy. The data for the groups
(C0,A,20), (C1,Z1), and (C2,Z2) are presented in separate panels.
I'! is given in arbitrary units and the scale is the same for all graphs.
The points for the armchair and zigzag groups are connected by
solid lines. The points following two different family patterns are
connected by dotted lines. The numbers are the values of L,+2L, or
2L+L,.

In Fig. 1, the peak positions of the RRPs close to the
transition energies (E|;,E,,),(Es3,E4),... in tubes CO and
Ey,E5,E3;,... in tubes Cl and C2 versus radius lie on
strips similar to the strips on the transition energy-radius plot
mentioned above. The maximum intensity I} is larger for
transitions 11, 33,55, 77, ... in tubes CO, transitions 33,
55,77, ... in tubes C1, and transitions 22, 44,55, 77,...in
tubes C2 (we will use the notation Cy for the set of these
transitions) than for the rest of the transitions in tubes CO,
C1, and C2 (set C;). Similar behavior is observed for zigzag
tubes where the transitions can be grouped in two sets Zy
and Z; as well. The predicted behavior for tubes CO and Z0
corresponds to the experimental observation of much higher
intensity for the lower-energy component of each of the pairs
(Ey1,E),(Ex3,Eqy),...."718 The results for semiconducting
tubes agree with the observed much stronger Raman signal
from the E,, transitions in tubes C2 and Z2 than in tubes C1
and Z1."8

The dependence of the maximum Raman intensity I! on
the radius, the chiral angle, and the transition energy is
shown for all studied tubes in Fig. 2. As it can be seen in the
left panels, the points for a given transition ii form striplike
patterns and have two types of family behavior for nanotubes
with L+2L,=3u+v and 2L;+L,=3u+v (u is an integer
number). The family behavior of the intensity-radius plots
can be used similarly to that of the energy-radius plots for
the analysis of the experimental Raman data. For each ii, I}
decreases with the increase of the radius and tends to zero for
the radius tending to infinity. For a nanotube sample with a
certain radius distribution, the tubes and transitions of set Cy
will have larger maximum intensity than those of set C; and,
for each transition, the zigzag tubes will give rise to largest
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maximum intensity. The points for transitions 11, 22,33, ...
in armchair tubes have values close to those for transitions
11, 33,55, ... in tubes ZO (see inset of Fig. 2). Note that
points for tubes with close radii normally correspond to tran-
sitions with different transition energies.

In Raman-scattering experiments, the samples are probed
with a given laser excitation energy, and therefore, it is im-
portant to display the intensity against the transition energy
as well. The plots in the right panels of Fig. 2 reveal that, for
each ii, I!! increases with the increase of the energy and that
the points follow the same two types of family patterns as in
the left panels (not shown). Again, similarly to the left pan-
els, the points of set Cy have larger maximum intensity than
those of set C;. The points with close energies generally
correspond to tubes with different radii. For the quantitative
analysis of the Raman spectra of a sample at a given laser
energy, one can use the numerical data for the maximum
intensity (see Sec. IITE).

Finally, the points in the central panels in Fig. 2 follow a
family pattern L1—L2=3u+ v (not shown) and their spread
decreases with the increase of the chiral angle. Tubes with
close-to-armchair chirality have very low I}, which tends to
zero for chiral angles tending to /6. Armchair tubes, how-
ever, have maximum intensity that can be comparable to that
of zigzag and close-to-zigzag tubes.

In the next sections, we turn to the study of the impact of
the effective mass of the transition (Sec. III B), the electron-
phonon coupling matrix elements (Sec. III C) and the mo-
mentum matrix elements (Sec. III D) on the Raman intensity
[see Eq. (8)]. The dependence of these quantities on the tube
radius, the chirality, and the transition energy will be dis-
cussed in detail.

B. Effective masses

In order to derive the effective masses m;; for the optical
transitions of the studied nanotubes, we first calculated the
imaginary part of the dielectric function and obtained the
transition energies E;; as the positions of the peaks of this
function. It has to be noted that the #TB model predicts that
the optical transitions take place between the maxima of the
valence band E}' at wave vector k, and the minima of the
conduction band E!' at wave vector k.=k,, because of the
symmetry of the valence and conduction bands with respect
to the Fermi level. On the other hand, the o-7 band mixing
and the structural relaxation in the NTB model lead to a shift
between these maxima and minima so that k.# k,. Then,
generally, the optical transition takes place at wave vector k;;
between k, and k. and E;# E'—E' (see Fig. 3). To demon-
strate this, we start from the expressions for the valence band
E, and the conduction band E.. in the effective-mass approxi-
mation: E”+#2(k—k.)?/2m, and E"~h>(k—k,)>/2m,, where
mi and mz are the corresponding electron effective
masses. We substitute these expressions in the equation E,
=E,~E,=E;+h*(k—=k;)?/2m; and obtain  k;=(k./m,
+hy/m) /(1 m,+1/m), i.e., k,<ky<k, or k,>k;;> k.. This
is the case with all armchair and some chiral tubes where the
optical transitions take place inside the Brillouin zone. For
all zigzag and some chiral tubes, however, k;=k,=k.=0.
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FIG. 3. Part of the band structure of tube (3,3) containing the
first optical transition E;. The wave vector is in units 27/T (T is
the translation period of the tube). The wave vectors k,, ki, and k.
are equal to 0.386, 0.408, and 0.428, respectively. The energy dif-
ference E.—E, and the transition energy E;; are 2.862 and 2.907,
respectively. This figure illustrates the general case of optical tran-
sitions in nanotubes when the transition energies are not equal to the
vertical separation between extrema of two bands. For the notation,
see text.

Substituting k;; in the equation for E,,, one easily arrives at
the expressions 1/m;=1/m_+1/m, and E;=E"-E"+h?*(k,
—k,)?/ 2(mj+m;) It is clear that the value of the effective
mass mz does not depend on the separation between the po-
sitions of the band extrema, while the transition energy de-
pends on this shift quadratically.

For the derivation of the effective masses mz from the
electronic bands, we used a sampling of 1000 points in the
Brillouin zone in order to bracket the k-vector interval, in
which the energy separation E_, between two bands with the
same quantum number [ is close to a given optical transition
E;;. Thus we determined the quantum number /; of the tran-
sition E;; and k;; and mZ were obtained by a five-point para-
bolic interpolation in this interval. The variation of E., with
k for a few lowest-energy optical transitions in three tubes
with close radii, (4,4), (7,0), and (5,3), is illustrated in Fig. 4.

The obtained effective masses m;; are shown versus the
tube radius, the chiral angle, and the transition energy in Fig.
5. The effective masses are all smaller than the electron mass
in the considered energy range. They increase with the in-
crease of the transition energy and the decrease of the radius
and the chiral angle. Zigzag tubes have generally larger
masses than the armchair tubes. Similarly to I;;, the effective
masses show the same three types of family behavior. Most
of the calculated values of m;,; agree well with the theoretical
predictions of the 7TB model (see, e.g., Ref. 25). For small
radii, some of the NTB effective masses can be up to 1.5
times larger than the 7w TB ones, but the former converge to
the latter with the increase of the radius. The higher effective
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FIG. 4. The calculated k-vector dependence of the interband
separation E,,, the momentum and electron-phonon coupling ma-
trix elements, |p,,| and D, respectively, and the product |p.,|* D?,
(in arbitrary units) in the entire Brillouin zone for three tubes with
close diameters. The quantum numbers /;; of the pairs of conduction
and valence bands are shown as well.

masses for small radii in the NTB model originate from the
lower and flatter electronic bands than in the 7TB model due
to the o-7 band mixing. Similarly to the #TB results, the
NTB masses exhibit arrangement in strips labeled by the
transition index ii (left panels of Fig. 5). The masses for the
transitions of the set C; are larger than for the set Cy. Within
each strip, the masses for the zigzag tubes are the largest. For
the tubes A, Z0, Z1, and Z2 and for large radii, the effective
masses follow the 1/d behavior of #TB masses.

The points in the right panels of Fig. 5 have a wedgelike
arrangement. The points of set Z; (set Zy) lie on the upper
(lower) boundary of this region. In the constant-numerator
approximation, the strong variation of the maximum inten-
sity Iy;; from tube to tube is determined mainly by the effec-
tive mass [see Eq. (9)]. Therefore, I;; is larger for the sets
C; and Z; than for the sets Cy and Zy, contrary to the results

Radius (A}

Chiral Angle (rad) Transition Energy (eV)

FIG. 5. Same as for Fig. 2 but for the calculated mz (in units of
the electron mass).
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FIG. 6. Same as for Fig. 2 but for the calculated |p;|>.

of the full calculations for I} from the previous section. At
medium transition energies, the ratio of the masses for the
sets Z;, A, and Zy, is approximately 6:3:2 (see right panels of
Fig. 5). Bearing in mind that the intensity for armchair tubes
generally contains an extra multiplier of 4 in comparison to
zigzag and chiral tubes, the ratio of the intensities of the
three sets will amount to 6:12:2. Thus, within the constant-
numerator approximation and for a given laser energy, the
intensity for armchair tubes is predicted to be larger than that
for zigzag and chiral tubes. This is not supported by the
experimental Raman evidence that chiral tubes have usually
as intense Raman lines as those of zigzag and armchair
tubes.'® Therefore, the constant-numerator approximation
alone does not yield plausible predictions of the Raman in-
tensity and it is necessary to go beyond this approximation
and to account for electron-phonon and electron-photon in-
teractions.

C. Momentum matrix elements

The matrix elements of the momentum p;; are calculated
at the transition energies directly by evaluation of the corre-
sponding integrals.” The #TB calculations show that p;; is a
real quantity and can be positive or negative and has extrema
at the points k;. The sign and the magnitude of p;; versus the
radius and the chiral angle can be explained with the distance
between k;; and the K point of the Brillouin zone of graphene
and the position (inside or outside) relative to the zone
boundaries.?® In the NTB model, p;; has a small imaginary
part due to mixing of o and 7 states. The absolute value of
p;; has similar behavior as in the 7TB model. However, the
extrema of p;; are slightly shifted with respect to k;; (see Sec.
III B). This is illustrated in the case of three tubes with close
radii, (4,4), (7,0), and (5,3), in Fig. 4.

In Fig. 6 we show the results for |p;|> versus the tube
radius, the chiral angle, and the transition energy for all
nanotubes as above. The spread of the values of |p;|* de-
creases with the increase of the radius and chirality, and in-
creases with the increase of the transition energy. The points
in the three panels follow the same three types of family
patterns as for /7;. The points in the left panel are situated in

|2
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strips labeled by the index ii. For the sets Cy, Zy, and A (Cy.
and Z;), |p;|* decreases (increases) with the increase of the
radius. Within each strip of the set Cy (set Cy), |p;|* for
zigzag tubes is larger (smaller) than those for chiral tubes
with similar radii. For armchair tubes and a given transition
ii, |ps|* changes only slightly with radius. For a given radius
and for ii from 11 to 77, |p;|* of zigzag tubes increases in the
following order of the indices: 66, 44, 22, 11, 33, 55, and 77
(groups Z0 and Z1), and 66, 33, 11, 22, 44, 55, and 77 (group
Z2). The lines of points for armchair tubes are between those
with ii=22 and 11 for group Z0.

It is important to focus on the dependence of |p;|*> on the
transition energy. The points for the various tubes cover a
wedgelike region with the points for zigzag tubes lying close
to the boundaries and those for armchair tubes occupying the
space midway between the two boundaries. The upper
boundary contains the points of group Z and those of group
Z; are close to the lower boundary. The ratio between the
values for groups Z;, A, and Zy increases with the increase
of the energy. For medium transition energies, the ratio of
|pi|* for the three groups is about 1:2:3. We can estimate the
impact of both the effective mass and the momentum matrix
element on the maximum intensity of armchair and zigzag
tubes [Eq. (8)] by combining the ratios for both cases and
including the extra factor of 4 for armchair tubes to obtain
the ratio 6:24:6 (or 1:4:1). This ratio reveals that the maxi-
mum intensity of zigzag tubes is four times smaller than for
armchair tubes, contrary to the experimental observations of
comparable Raman signals. Therefore, the account of the
band structure and the electron-photon interactions is not
enough for the correct prediction of the Raman intensity and
it is necessary to consider the electron-phonon interactions as
well.

|2

D. Electron-phonon coupling matrix elements

The electron-phonon coupling matrix elements D;; were
calculated at the transition energies using the Hellmann-
Feynman theorem for the derivatives of E., with respect to
the atomic coordinates in Eq. (3). The atomic displacements
in the RBM were assumed to be strictly radial. As is exem-
plified in the case of the three tubes with close radii (4,4),
(7,0), and (5,3) in Fig. 4, D, can be positive or negative
depending on the tube type and the optical transition. The
peculiar change of sign as well as the magnitude can be
explained with the closeness of k;; to the K point of graphene
and left- and right-situated transitions.?” However, the sign of
the matrix element has no effect on the Raman intensity be-
cause the latter depends on Dj; to the second power. It is also
seen in Fig. 4 that the matrix element D_., as well as the
product |p,[*D?, is not extremal at k; with the exception of
transitions at the zone center.

The NTB results for D;; for all nanotubes as above are
given in Fig. 7 versus the tube radius, the chiral angle, and
the transition energy. D;; is negative for the sets Cy (and Zp)
and A and can be positive or negative for the set C; (and Z;).
The change of the sign and the magnitude of D;; are consis-
tent with recent ab initio results.”’ Generally, the absolute
value of D;; increases with the increase of the transition en-
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FIG. 7. Same as for Fig. 2 but for the calculated electron-
phonon coupling matrix elements D;;.

ergy and with the decrease of the radius. In the limiting case
of infinite radius, the breathing motion is just a parallel dis-
placement of the graphene plane with zero frequency. This
motion does not change the band structure and has zero Ra-
man intensity. The points for D;; in the left and right panels
of Fig. 7 are situated in overlapping strips labeled with the
index ii. In each strip, the points have family behavior like
that of I’} and the absolute values for zigzag tubes are larger
than those for chiral tubes with close radii or transition
energy.

Again, it is important to estimate the impact of D;; on the
maximum Raman intensity. For medium transition energies,
the ratio of the absolute value of D;; for sets Z;, A, and Zy is
about 3:2:6. Remembering that the electron-phonon matrix
element enters the intensity to the second power, we see that
the overall ratio of the intensities of the three sets, including
the factor 4 for armchair tubes, changes to roughly 1:2:4. The
transitions of set Zy have twice higher maximum intensity
than armchair tubes, but those of set Z; have twice less in-
tense lines than for armchair tubes. These results correspond
to the experimental observation of comparable Raman scat-
tering cross-sections for zigzag and armchair tubes.

E. Approximate maximum Raman intensity

The approximate maximum Raman intensity 7 was
obtained from Eq. (8) using the values of |p;|, Dy, m;;,
and Fj;. The quantity F’; depends on the nanotube radius
through the frequency of the RBM w,. Adopting the simple
1/R law for w,, it is easy to show that this function increases
monotonously with the increase of the radius and changes up
to 20% in the considered radius range. Supposing that the
nanotube sample consists of tubes with a relatively narrow
radius distribution, it is clear that the tube dependence of this
function can be ignored. Thus, the strong variation of I7;
from tube to tube will come mainly through the electron-
phonon coupling and momentum matrix elements and the
effective mass.

The calculated maximum intensity /7'; for all considered
nanotubes is similar to that of the full calculation I} plotted
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FIG. 8. Energy-radius plot of the maximum Raman intensities
IY';; [Eq. (8)]. The intensities are depicted by circles with size cor-
responding to the logarithm of the intensity. It is clearly seen that
for energy E,, the intensity of tubes C2 and Z2 is higher than that
of tubes C1 and Z1, vice versa for energy Ej;. For metallic tubes,
the lower-energy component of the pair (E;;,E,;) gives rise to
higher intensity than the higher-energy one.
in Fig. 2. We chose to present the results for /1, on an
energy-radius plot in Fig. 8 for laser energy and radius
ranges corresponding to the Raman data on HiPCO
tubes.'®!° The intensities for different tubes and laser ener-
gies are depicted symbolically by circles with different sizes.
From Fig. 8, it can be concluded that the intensity for E,, is
much higher for tubes C2 and Z2 than for C1 and Z1, but for
E; it is vice versa.'® For metallic tubes, the lower-energy
component of the pair (E,;,E,,) has higher intensity than the
lower-energy one (see also Fig. 1) in agreement with recent
Raman measurements on HiPCO samples.'”!8

The comparison of the numerical data for the approximate
intensities with the data for the exact ones shows that 17
underestimates I} up to about 5% for the most intense fea-
tures in the RRP and up to 50% for the weakest ones. The
origin of this disagreement can be sought in the approxima-
tions made in the derivation of I7';;. First, it was assumed that
the features in the RRPs are nonoverlapping, which is not
entirely justified for separations smaller than about 0.5 eV.
Second, the matrix elements in the same equation were as-
sumed to be slightly k dependent and were pulled out of the
sum at the point of the optical transition. The remaining sum
was calculated analytically using the effective-mass approxi-
mation. In the case of two close features at energies E,, and
E,,, the inaccuracy due to the first assumption can be de-
creased by replacing the terms Al |F,./Fl*

’]”bh|be/F '|> in the expression of the RRP by
A5\ 'waFaal Fag+ s NI Iy Fupl Fiy (s is the sign of D).
The dlsagreement due to the second approximation can be
reduced if the product |p.,|°D., and E,, are expanded in
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series of k—k; up to higher powers in the vicinity of each
optical transition. Since the NTB model has a certain degree
of inaccuracy relative to the ab initio approach, we did not
attempt to improve the approximate result /7';; [Eq. (8)].

On the other hand, there are difficulties in the derivation
of I'! of close features of the RRP. Normally, this should be
done by fitting a sum of independent peaks to the calculated
Raman profile. Unfortunately, the function |F;;|*> was derived
using certain approximations and does not describe well the
shape of the low-intensity features of the RRP. Additionally,
the error of such fitting can be very large for very close peaks
with peak intensities differing by several orders of magni-
tude. Note that such a problem does not arise for the first and
second optical transitions in semiconducting tubes.”* Bearing
in mind these crucial problems in the derivation of I} for
low-intensity and close peaks of the RRP, we assume that the
data for I7"; (Ref. 28) are more appropriate for simulation of
the Raman spectrum of nanotubes in the RBM region. In this
case, the resonance Raman profile for a given tube is given
by the expression

2

, (11)

12

F
I(EL,wa)=A,E I;n,ii m
i Fy

where the summation is over the optical transitions of the
tube. The total Raman intensity of a nanotube sample at a
given laser energy versus Raman shift w can be simulated
using the formula

1

—_— . 12
((1)—(1)0)24")/3 ( )

Itot(EL» w) = E gI(EL’ (1)0)

Here g is the distribution function of the tubes in the sample,
7, s the phonon linewidth, and the summation is carried out
over all tube types. The results of the simulation of several
Raman spectra for a given tube distribution are shown in
comparison with experimental ones in Ref. 23. In the case of
unknown tube distribution, the distribution function can be
determined by fitting Eq. (12) to measured Raman spectra at
several laser energies.

F. Maximum Raman intensity and absorption coefficient

In order to compare the conditions for observation of the
nanotubes in Raman and optical absorption spectroscopies,
we also calculated the maximum absorption coefficient. In
Fig. 9, o}';; evaluated from Eq. (10) is shown versus the tube
radius, the chiral angle, and the transition energy. It is clear
the o}';; changes only up to three times in the considered
radius and energy range. The points in the plots in the left
panels show striplike arrangement for transitions with differ-
ent indices ii. Generally, the values of o}'; in the strips de-
crease with the increase of ii for tubes with close radii or
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FIG. 9. Same as for Fig. 2 but for the maximum absorption
coefficient o/y’;;.

transition energies. For large radii, a}'; is roughly propor-
tional to the radius, which is corroborated by the result of the
7TB model.”® The central panels show that there is no evi-
dent correlation between the absorption coefficient and the
chiral angle of the tubes. In the right panels, all points of &/’
lie on a very narrow strip that follows roughly the power law
1/VE;;. While the maximum absorption coefficients of differ-
ent tubes differ as much as three times, the maximum Raman
intensity of the various tubes varies over five orders of mag-
nitude. Additionally, some tubes will have negligible scatter-
ing cross section for all laser energies up to 3.5 eV. These
circumstances can make difficult the structural characteriza-
tion of nanotube samples using Raman spectroscopy.

IV. CONCLUSIONS

In conclusion, we calculated the resonance Raman pro-
files of the radial-breathing mode for all 300 SWNTs in the
radius range from 2 A to 12 A and for all transition energies
up to 3.5eV within a symmetry-adapted nonorthogonal
tight-binding model. The calculated maximum Raman inten-
sity is largest for tubes with close-to-zigzag chirality as well
as for some armchair tubes. The maximum intensity for tran-
sitions 11, 33,55,77,... in zigzag tubes Z0 and Z1, and tran-
sitions 22,44,55, 77, ... in zigzag tubes Z2 is higher than for
the rest of the transitions in zigzag tubes.

For the analysis of the effect of the electron-phonon and
electron-photon interactions on the Raman intensity, we ap-
proximated the expression for the maximum intensity with
the product of the momentum matrix element to the fourth
power, the electron-phonon coupling matrix element to the
second power, and the effective mass, all of them calculated
at the optical transitions. We showed that the assumption for
tube-independent matrix elements yields a totally different
behavior of the maximum intensity than the result of the full
calculation. Accounting for the electron-phonon and
electron-photon interactions allowed us to reach an agree-
ment with the experimentally observed behavior of the inten-
sity (see Ref. 23).

035436-9



POPOV, HENRARD, AND LAMBIN

The comparison of the conditions for observation of nano-
tubes by Raman and optical absorption spectroscopies re-
veals that, while all nanotubes have comparable maximum
absorption coefficients, their maximum Raman intensity can
vary from very low to very high from tube to tube. There-
fore, Raman data collected at several laser energies have to
be used for the unambiguous determination of the tube dis-
tribution characterization by means of the theoretical maxi-
mum Raman intensities.
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