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We present a general model study of surface-enhanced resonant Raman scattering and fluorescence, focusing
on the interplay between electromagnetic �EM� effects and the molecular dynamics as treated by a density
matrix calculation. The model molecule has two electronic levels, is affected by radiative and nonradiative
damping mechanisms, and a Franck-Condon mechanism yields electron-vibration coupling. The coupling
between the molecule and the electromagnetic field is enhanced by placing it between two Ag nanoparticles.
The results show that the Raman scattering cross section can, for realistic parameter values, increase by some
10 orders of magnitude �to �10−14 cm2� compared with the free-space case. Also the fluorescence cross section
grows with increasing EM enhancement, however, at a slower rate, and this increase eventually stalls when
nonradiative decay processes become important. Finally, we find that anti-Stokes Raman scattering is possible
with strong incident laser intensities �1 mW/�m2.
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I. INTRODUCTION

Surface-enhanced Raman scattering �SERS� was discov-
ered three decades ago. SERS attracted a lot of attention
through the mid-1980’s.1–3 During this period the basic
mechanisms behind the effect were studied, explained, and
debated. The advent of single-molecule �SM� SERS �Refs.
4–7� started a second period of intense research. Now prob-
ably the prospect of utilizing SERS and related spectroscopic
techniques as an extremely sensitive analytic tool, possibly
combined with scanning probe techniques,8 in a variety of
life-science applications9 provides the main motivation for
research in the field. But SM SERS experiments performed
with intense lasers have also raised new questions about the
fundamental mechanisms involved.10–13

It is generally agreed that electromagnetic �EM� enhance-
ment effects are the most important reason for the dramatic
increase of the Raman scattering cross section �R seen in
SERS experiments.14–20 In addition to this, �R may also be
enhanced due to charge transfer effects.7,21–24 The EM en-
hancement effects received a lot of attention from the theory
side in the early days of SERS and has continued to do so
until now. The electromagnetic enhancement has in the gen-
eral case not one single reason, but involves several, more or
less closely related aspects such as plasmon resonances,
lightning rod effects, and the formation of “hot spots” in
fractal clusters.

However, single-molecule Raman scattering is not pos-
sible without a molecule that scatters the laser light inelasti-
cally. In this paper we focus on the interplay between the EM
enhancement and molecular dynamics, a topic that has re-
ceived relatively limited attention in the literature so far. A
brief account of this work was published in Ref. 25. We treat
the molecule as an electronic two-level system. Thus, we

make no attempt of calculating ab initio molecular proper-
ties, and charge transfer processes are also outside the scope
of this work. The focus is instead on calculating how the
molecule’s different states are populated and how its coher-
ent dipole moment develops given a certain energy-level
structure, electron-vibration coupling, electromagnetic en-
hancement and laser intensity. By treating the molecule dy-
namics within a density-matrix calculation, we can evaluate
a combined fluorescence and Raman spectrum where also
effects of electromagnetic enhancement are directly in-
cluded. Density-matrix methods were employed by Shen26 to
distinguish between Raman scattering and hot luminescence,
but to the best of our knowledge they have not been used in
the context of SERS.

The results show how, for a molecule placed between two
metallic nanoparticles, both the fluorescence and in particu-
lar the Raman cross sections are much larger than for a mol-
ecule in free space. This can be discussed in terms of two
EM enhancement factors, M and �Md�. Given an electric-field
enhancement M��� at the position of the molecule, the Ra-
man cross section increases by a factor ��M�4 compared
within free space, whereas the fluorescence cross section in-
creases by the factor ��M�4 / �Md�2. �Md�2 is a measure of how
much the decay rate of an excited state of the molecule is
amplified near one or several metal particles. For moderate
to large molecule-particle distances M and �Md� are almost
equal, but when the molecule gets very close to a particle �a
few nm or less� �Md� can be much larger than M. Thus,
surface enhancement of fluorescence is much less marked
than that of Raman scattering, and for small enough
molecule-particle separations the fluorescence cross section
saturates. When studying a molecule next to a single spheri-
cal metal particle, M does not reach at all as high values as in
the two-particle case, but �Md� still does. Consequently,
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single-molecule SERS is not possible in this case, and fluo-
rescence is strongly quenched when the molecule is placed
close to the particle. Distancing the molecule from the par-
ticle, �Md� drops and the fluorescence goes through a maxi-
mum and then eventually falls back to the free-molecule
value.

We have also studied how the Raman spectrum develops
when the intensity of the driving laser field is increased to
relatively large values of order 1mW/ ��m2�. In this case we
find that anti-Stokes Raman scattering becomes possible
even if the molecule vibrations are not thermally excited.
Such effects have been observed in a number of SERS ex-
periments, but the issue has been quite controversial.10–12 We
find that anti-Stokes Raman scattering in our model occurs
because a vibrationally excited level in the electronic ground
state is populated mainly through �possibly repeated� excita-
tion from the laser causing absorption followed by subse-
quent fluorescence deexcitation. We also find that when the
laser intensity is increased to values where Rabi oscillations
become important, the anti-Stokes Raman cross section
decreases, and the corresponding peak in the spectrum
broadens.

The rest of the paper is organized as follows. In Sec. II we
describe the model for the molecule that we use. As already
stated, the electromagnetic enhancement plays an important
role in SERS, and Sec. III describes how the EM enhance-
ment of the incident laser field, the emitted light, and the
deexcitation of the molecule is calculated. Moreover, we also
present numerical results for some representative cases. Then
in Sec. IV we go back to the model molecule and investigate
how the parameter values entering the model affect the ab-
sorption and Raman scattering cross sections for the mol-
ecule in free space. In Sec. V we use density-matrix theory to
derive a general expression from which the combined fluo-
rescence and Raman scattering spectrum can be calculated
for a molecule placed near metal nanoparticles, and driven
by, in principle, an arbitrarily strong laser field. The so cal-
culated spectra are presented in Sec. VI, and Sec. VII con-
cludes the paper with a brief comparison with experiments.

Finally, Appendix A gives some background information
about the electromagnetic calculations, and Appendix B pre-
sents a derivation of the non-radiative damping of the mol-
ecule due to the non-local dielectric response of the metal
particles.

II. MODEL

A schematic illustration of our model, both in terms of
molecule-nanoparticle geometry and the main features of the
molecule model is given in Fig. 1. In this figure we also
indicate the main steps involved in different Raman and fluo-
rescence processes.

We model the electronic degrees of freedom of the mol-
ecule as a two-level system with states �g� and �e�. The fre-
quency �ge, defined from the energy-level separation
Ee−Eg as

��ge = Ee − Eg, �1�

and the dipole matrix element, expressed as the product of
the elementary charge ee and a dipole length ldip, p0=eeldip,
�to be further discussed below� are the only parameters we
need in this context to characterize the essential electronic
properties of the molecule.

To deal with Raman scattering we must of course intro-
duce vibrational degrees of freedom and an electron-
vibration coupling. We consider only one symmetric, vibra-
tional mode, and let Q denote the corresponding coordinate.
The vibrational mode is characterized by its angular fre-
quency �vib and reduced mass �. The purely vibrational
Hamiltonian can thus be written

Hvib = ��vib�b†b +
1

2
� , �2�

where b and b† are annihilation and creation operators for a
vibrational quantum. We assume that the vibrational fre-
quency is independent of the electron state, but the equilib-
rium position is displaced a distance x0 in the excited state.

FIG. 1. Schematic illustration of the model
we use. �a� Electromagnetic enhancement is
achieved by �usually� placing the model molecule
between two metallic nanoparticles. �b� The mol-
ecule has two electronic states �sometimes called
bands in the following� each with a number of
vibrational sublevels. The equilibrium position
for the vibrational coordinate is displaced by x0

upon electronic excitation; this mechanism pro-
vides electron-vibration coupling. The arrows in-
dicate typical pathways for the molecule state in
fluorescence and Raman processes.
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Moreover, the transition dipole moment introduced above is
actually a function of Q: in the Born-Oppenheimer approxi-
mation we get the Taylor expansion

p � p�Q� = 	e�Q��eez�g�Q�� = p0 + � dp

dQ
�Q + ¯ ,

around Q=0. �Thus, we focus on the z components of the
electric fields and dipole moments, since they are the ones
enhanced in the nanoparticle geometry we study.� Then the
dipole matrix element between two electron-vibration prod-
uct states yields

	x0;m�	e�eez�g�0;n� = p0	x0;m�0;n� + � dp

dQ
�	x0;m�Q�0;n�

+ ¯ , �3�

where �x0 ;n� denotes vibrational state n in an oscillator po-
tential with the equilibrium position displaced to Q=x0, etc.
We adopt the Condon approximation, thus retaining only the
first �Albrecht A� term27 in Eq. �3�. It gives the dominating
contribution in the present situation where we limit the treat-
ment to the near resonant case �laser photon energy close to
the electronic transition energy� and a symmetric vibrational
mode. We thus get

	x0;m�	e�eez�g�0;n� = p0f�n,m� , �4�

where the Franck-Condon factor

f�n,m� = 	0;n�x0;m� = 	x0;m�0;n�

= 
n ! m! e−�2/2 �
k=0

min�n,m�
�− 1��m+k��n+m−2k

k ! �n − k� ! �m − k�!
, �5�

and the ratio � between x0 and the average zero-point vibra-
tion �	�2Q�2�
1/2= �2� / ���vib�
1/2,

� = x0
��vib

2�
, �6�

serves as a measure of the electron-vibration coupling in the
model.

The molecule is furthermore interacting with the electro-
magnetic field, both with the incident laser field and the elec-
tromagnetic vacuum fluctuations that cause spontaneous
emission. The electric field originating from the laser can be
written

E� L = ẑE0 cos �Lt = ẑ�E0/2��ei�Lt + e−i�Lt
 , �7�

so that the nominal incident intensity is Iin=c�0E0
2 /2. We

model the laser-molecule interaction within the dipole ap-

proximation by a −eer� ·E� term, H�=−eeE0z�ei�Lt+e−i�Lt
 /2
in the Hamiltonian. When evaluating matrix elements due to
H� we adopt the rotating wave approximation �RWA�. Only
the part of the field varying with time as e−i�Lt is kept in the
matrix elements when the molecule is excited, and vice versa
when it is deexcited. This yields

	x0;m�	e�H��g��0;n� = − �p0E0/2�e−i�Ltf�n,m� �8�

and

	0;n�	g�H��e��x0;m� = − �p0E0/2�ei�Ltf�n,m� . �9�

�In the following, when the local field at the molecule is
modified by the nearby metallic particles, these matrix ele-
ments must be corrected by an enhancement factor.�

The interaction between the molecule dipole moment and
the vacuum fluctuations of the electromagnetic field can be

described by a Hamiltonian Hfluct=−E� vac · p� , where the corre-
sponding electric field must be given on second-quantized
form. In free space we have

E� vac�r�,t� = �
k,�


 �

2	0�k

i�k

L3/2�k,�eik·r�ak,��t� − ak,�
† �t�
 ,

�10�

where the electromagnetic field has been normalized in a box
with side L, and ak,� and ak,�

† are annihilation and creation
operators for photons with wave vector k and polarization
direction � and �k,� is a unit polarization vector. For a mol-
ecule in free space the interaction with the vacuum fluctua-
tions gives a Fermi golden-rule transition rate28


rad,0�n,m� =
�3

3���0c3 �p0�2�f�n,m��2, �11�

where � is the angular frequency corresponding to the tran-
sition energy, i.e.,

� = �ge + �m − n��vib. �12�

With a dipole moment corresponding to ldip=1 Å, a transi-
tion energy of 2.5 eV, and �f �2=1, we get numerically 
rad,0
�5.9�107 s−1.

This transition rate is enhanced when the molecule is
placed near metallic nanoparticles; the radiative losses in-
crease and in addition energy can be dissipated in the par-
ticles, thus


rad,0�n,m� → �Md����2
rad,0�n,m� .

We will discuss the dissipation enhancement factor �Md����2
further in Sec. III.

Our model also includes, at a phenomenological level, a
few more relaxation mechanisms. Vibrational damping is de-
scribed by the parameters 
vib

�g� and 
vib
�e� . The transition rate

from a state with n vibrational quanta to the one with n−1 is
given by n
vib

�g� and n
vib
�e� , in the electronic ground and excited

states, respectively. The electronic state of the molecule does
not change in this process. Finally, we include a dephasing
rate 
ph affecting the coherent dipole moment of the mol-
ecule. The primary effect of the dephasing rate on the calcu-
lated results is to broaden the fluorescence resonances of the
molecule. An organic molecule in solution always has a
broad absorption and fluorescence spectrum. This is a result
of a number of things that cannot be included in a more
detailed way in our relatively simple model. A real molecule
has many different vibration modes leading to almost con-
tinuous absorption and fluorescence spectra, among other
things as a result of anharmonic mode coupling. Moreover,
the environment perturbs the molecule leading to a broaden-
ing of the spectra. Thus, if we did not introduce a dephasing
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parameter into the model, we would obtain absorption spec-
tra with very sharp peaks, similar to spectra for atoms in a
dilute gas in which case the peak widths are set by the natu-
ral linewidth due to radiation damping, Doppler broadening,
and collision broadening. We note that broadening param-
eters similar to 
ph are also used in Raman cross section
calculations that account for molecular structure in more
detail.29

III. ELECTROMAGNETIC ENHANCEMENT

A. Theory

In this section we address the calculation of the electro-
magnetic enhancement factors M and �Md� introduced above.
We first assume that the system of metal particles and the
molecule is illuminated by a p polarized plane wave with
angular frequency � and wave number k=� /c incident from
a direction specified by the angles 
 and �. The correspond-
ing incident electric field can be written

E� in�r�� = E� 0ei�k�·r�−�t� �13�

with

E� 0 = E0�x̂ cos 
 cos � + ŷ cos 
 sin � − ẑ sin 
� �14�

�in the following we assume the time-dependence of all
fields to be e−i�t�. When this field impinges on the metal
particles they are polarized, plasmons may be excited and,
most importantly, the electromagnetic interaction between
the spheres will cause a field enhancement in the region of
space in between them. We are mainly interested in calculat-
ing the z component of the electric field at the position of the

molecule �r�=0��; it is this field that excites the dipole moment
of the molecule when a laser beam illuminates the system.
We define the enhancement factor M��� in terms of the in-
duced total field at the position of the molecule, through the
relation

M��,
� = ẑ · E� tot�0��/�E� 0� . �15�

The enhancement of the incident laser field is thus given by
M��L ,
in�. Moreover, as a consequence of electromagnetic
reciprocity, the field sent out in the direction of 
 and � by an

oscillating dipole �angular frequency �� placed at r�=0� is
equally enhanced by a factor M�� ,
�.

To calculate the local field and M we must find the elec-
tric field around the nanoparticles. To this end we employ
extended Mie theory, expanding the field around each of the
two spheres in terms of vector spherical harmonics represent-
ing magnetic and electric multipoles30,31

E� �r�� = �
�,l,m

�a�lm
s �� �lm

�R� �r� − r�s� + b�lm
s �� �lm

�O��r� − r�s�
 . �16�

Here the functions �� �R� and �� �O� represent waves that are
regular at the origin and outgoing from the sphere, respec-
tively. The index s tells whether we are referring to the upper
�s=1� sphere, centered at r�1, or the lower one �s=2�. The rest
of the indices indicate the values of the angular momentum

of the multipole l and m, and whether it is a magnetic
��=1� or electric multipole ��=2�. In the following we let s̄
and �̄ denote the other sphere and the other type of multipole,

respectively �i.e., 1̄=2, etc.�. The corresponding basis func-

tions are given in terms of vector spherical harmonics X� lm,30

�� 1lm = X� lm�
,��zl�kr� , �17�

and

�� 2lm = k−1 � � �X� lm�
,��zl�kr�� , �18�

where zl is either a spherical Bessel function jl for the regular
waves, or a spherical Hankel function hl, for the outgoing
waves. The expression in Eq. �16� is only valid for
points inside a shell with inner radius R and outer radius
R+d1+d2 centered on sphere s. That is because the waves
scattered from the other sphere s̄ are described in terms of
waves incident on sphere s in Eq. �16�. For a general point
outside the two spheres, on the other hand, the field must be
written as a sum of the outgoing waves generated by both the
spheres, plus the incident wave driving the system.

The a and b coefficients appearing in Eq. �16� are related
by sphere response functions s1l and s2l depending on the
radius R of the sphere and its dielectric properties character-
ized by the local dielectric function 	 �taken from Ref. 32
and wave number kr=
	� /c. We get

s1l =
b1l

a1l
= −

kR jl��kR� − jl�kR�Jl

kR hl��kR� − hl�kR�Jl

�19�

for the magnetic multipoles and

s2l =
b2l

a2l
= −

	 kR jl��kR� + jl�kR��	 − 1 − Jl�

	 kR hl��kR� + hl�kR��	 − 1 − Jl�
, �20�

for the electric multipoles. Jl is shorthand for

Jl = krR jl��krR�/jl�krR� .

In view of these relations between incident and outgoing
waves, we have full knowledge of the electromagnetic field
once we know the a coefficients on both spheres. We solve
for them by realizing that the waves incident on a sphere
either originate from the external source or from the waves
scattered off the other sphere, and this yields

a�lm
s = a�lm,ext

s + �
��l�

c̃��l�m,�lm�r�s − r�s̄�s��l�a��l�m
s̄ . �21�

Expressions for the c̃ and aext coefficients can be found in
Appendix A.

After solving the system of equations obtained from �21�,
also the b coefficients can be determined thanks to Eqs. �19�
and �20�. Then, as discussed above, the electric field can be
calculated anywhere in space, in particular the local field at
the molecule is given by

E� tot�0�� = E� 0 + �
�,l,m,s

b�lm
s �� �lm�− r�s� , �22�

from which we can find the enhancement factor M. It should
be noted that in the calculation of the z component of the
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electric field on the symmetry axis there are only contribu-
tions from m=0 terms.

When calculating �Md�, we cannot use the plane wave as a
source, instead we place an oscillating point dipole at the
position of the molecule

p��t� = Re�pe−i�t
 . �23�

In free space, it would send out radiation with a total �time-
averaged� power30

Pfree =
�4p2

4��03c3 . �24�

With the spheres present we can once again solve for the
total electric field from Eqs. �19� through �22�. The only
difference is that now aext appropriate for a localized dipole
source has to be used, see Appendix A. Once the field has
been calculated we integrate the time-averaged Poynting
vector over a small sphere enclosing the dipole, but not the
particles, to find the total radiated power PMie, which yields a
contribution to the damping enhancement rate �Md�2,

�Md����2 = PMie/Pfree. �25�

PMie accounts for losses of energy due to radiation leaving
the molecule in all directions, as well as for dielectric losses
in the particles, i.e., energy from the molecule that goes to
heating the metallic particles.

In practice we need to add another contribution to �Md�2
that is due to the nonlocal dielectric response �mainly as a
result of electron-hole pair creation� of the metal particles
when the molecule is placed very close to them.33–35 This
involves processes that are not included in the calculation
discussed above which assumes a local response. The dielec-
tric losses captured by the Mie calculation at short molecule-
particle separations d scale as 1 /d3 as a result of the distance
dependence of the molecule’s dipole field. The power loss
caused by nonlocal effects, on the other hand, scales as 1 /d4,
and becomes a dominant damping process for small d �d less
than 1 nm or so�. In Appendix B we give a detailed presen-
tation of the calculation of the power loss Peh due to the
nonlocal dielectric response of the metal particles. After Peh
is calculated the total damping rate enhancement is found as

�Md����2 = �PMie + Peh�/Pfree. �26�

The nonlocal dielectric response of the metal particles
also, at least in principle, affects the enhancement factor M.
However, the corrections there would be relatively small and
are difficult to calculate. The highest field enhancements
found in our calculations originate from a cavity mode local-
ized between the two Ag spheres. This mode extends some
5 nm out from the symmetry axis �with d=5 Å and
R=400 Å� and does not have large components of very short
wavelengths mixed in to it. Thus although the field enhance-
ment requires the electric field to vary relatively rapidly in
the lateral direction along the particle surfaces, these varia-
tions still mainly involve wave vectors that are small enough
that the nonlocal effects are relatively unimportant.

B. Results for the enhancement

Figures 2–4 show calculated results related to the electro-
magnetic enhancement. In these calculations the molecular
response which we address in more detail later plays no role,
however, the placement of the molecule, i.e. where to evalu-
ate the electric fields, is crucial. We consider a case where
the molecule is placed symmetrically between the two metal
nanoparticles, d is the molecule-particle separation, and con-
sequently the smallest distance between the spheres is 2d.

FIG. 2. �Color online.� Calculated enhancement factors M���
for the incident light as a function of photon energy, for a molecule
symmetrically placed between two Ag spheres with 400Å radius.
The different curves give results for a number of different molecule-
particle separations d.

FIG. 3. �Color online.� Calculated enhancement factors �M�2 and
�Md�2 as a function of the molecule-particle separation d. As in Fig.
2, the molecule is symmetrically placed between two Ag spheres of
radius 400 Å, and the photon energy is 2.2 eV. Two different curves
show �Md�2 both with and without, the contributions due to nonlocal
dielectric effects �electron-hole pair creation� included.
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Figure 2 shows results for M�� ,
=90�� as a function of
photon energy for a few different values of d. There is an
overall increase of the enhancement when the spheres ap-
proach each other. Moreover, the enhancement factor has a
resonance peak with a resonance frequency that shifts with d.
For d=25 Å it lies somewhat above 2.6 eV, but it redshifts
with decreasing d and for d=5 Å ends up at �2.2 eV. The
resonance is caused by the interaction between the plasmon
modes of the two separate spheres leading to the formation
of a coupled mode with surface charges of opposite sign
facing each other across the gap between the spheres. This
means that a smaller d gives a more charge-neutral mode,
and thereby smaller restoring forces leading to the redshift
shown in Fig. 2.

In Fig. 3 we have plotted the enhancement factors �M����2
and �Md����2 �for the latter quantity both with and without
contributions due to electron-hole pair creation� as a function
of the molecule-particle separation d for photon energy
��=2.2 eV. Quite naturally, since d spans a large range of
values, so do the enhancement factors, from about 1 for
d�1000 Å, to 105 or more at the smallest d�10 Å. For
distances d larger than 200 Å the three curves follow each
other very closely; at least on this scale no difference is
discernible. This is because the silver particles are close
enough to enhance the incident field and thereby, as a con-
sequence of electromagnetic reciprocity, also enhance the ra-
diation rate and �Md�. But the particles are still sufficiently
far away from each other and the molecule that the dielectric
losses are negligible. Thus, radiation losses completely
dominate other damping mechanisms here. Continuing to-
wards smaller d, the two �Md�2 curves separate themselves
from the �M�2 curve because now losses in the silver particles
are no longer negligible compared with radiation losses. The

inclusion of damping due to electron-hole pair creation does
not make any difference at first; nonlocal effects play no role
and all loss mechanisms are already accounted for in the Mie
calculation. It is only when d reaches values of �30 Å or
below that the two curves representing �Md�2 with and with-
out electron-hole pair damping begin to differ.

Figure 4 shows the separate contributions to the damping
rate from nonlocal dielectric effects �electron-hole pair cre-
ation� and the remaining, radiative and dielectric loss mecha-
nisms. As in the previous figure we see a rapid increase of
the damping rate with decreasing d. This tendency is more
marked for the electron-hole pair losses which vary as 1/d4.
The electron-hole pair losses constitute a minor contribution
for d=20 Å, but has at d=5 Å become the dominant damp-
ing mechanism.

IV. THE MOLECULE IN FREE SPACE

Given the model for the molecule discussed above, we
can calculate the absorption and Raman scattering cross sec-
tions for a molecule in free space using lowest-order pertur-
bation theory, i.e., the Fermi golden rule.28

The absorption cross section derived in this way reads

�A = p0
2 �L

c�0
�

n

��totf�0,n�f�0,n�
���L − n��vib − ��ge�2 + �2�tot

2 , �27�

where �tot=
ph+
vib /2+
rad,0 /2 and 
rad,0 and 
vib are the
radiative and vibrational decay rates of the final, excited
state. For the combinations of parameter values that we use,

ph gives the completely dominating contribution to �tot for a
molecule in free space.

For the �fundamental� Raman cross section we get in a
similar way, using the Fermi golden rule with a second-order
transition matrix element

�R = p0
4 ��3�L

6��0
2c4��

n

f�1,n�f�0,n�
��L − n��vib − ��ge + i��tot

�2

.

�28�

Here ��=�L−�vib, and �tot=
ph+
vib /2+
rad,0 /2 for the in-
termediate, virtual state.

Turning to calculated results for spectra, we begin by
looking at absorption and Raman profiles and their depen-
dence on the molecular parameter values. Figure 5 shows
absorption and Raman profiles plotted for a series of differ-
ent dephasing rates 
ph. In panel �a� we also give experimen-
tal results for the absorption cross section of a commonly
used fluorescent dye molecule rhodamine 6G �R6G�. This
comparison provides some indications on what parameter
values can be considered realistic. Thus we have chosen
��ge=2.35 eV to get about the same peak position in the
model calculation as for R6G. The value used for ��vib, 160
meV, is characteristic for a C-C stretch vibration. The dipole
length ldip and the dephasing rate largely determine the
height and width of the absorption peak. We have set
ldip=1.2 Å, while we in the calculations presented in Fig. 5
used a number of different values for 
ph to study its effects.
Obviously 
ph=1.3�1014 s−1 gives the best agreement with

FIG. 4. Calculated damping rates as a function of photon energy.
As in Figs. 2 and 3 the molecule is symmetrically placed between
two 400 Å radius silver spheres. The curves show results for three
different molecule-particle separations d for the separate contribu-
tions from, on one hand, electron-hole pair creation and, on the
other hand, losses captured by the Mie calculations �here labeled as
radiation and Ohmic damping�. The damping rate for the free mol-
ecule was calculated from Eq. �11� with ldip=1 Å.
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the R6G experimental spectrum; the remaining difference is
the broader wings �especially on the low-frequency side� of
the calculated spectrum. Finally, the Franck-Condon param-
eter � mainly determines the strength of absorption side-
bands �or shoulders� due to vibrational excitations. In the
calculations presented here we have used �=0.5 and this
gives a shoulder in the absorption spectrum of similar
strength to that found in the R6G spectrum.

As can be seen in Fig. 5�a�, varying 
ph results in varia-
tions of the width and height of the absorption peaks; the
widths are proportional to 
ph whereas the heights are ap-
proximately inversely proportional to 
ph. Thus, with 
ph
considerably smaller than 1.3�1014 s−1 the vibrational side-
bands create marked, resonant peaks at 2.51 and 2.67 eV,
while with a larger 
ph the absorption spectrum is more
broadened.

The Raman profiles displayed in Fig. 5�b� show the same
trends as the absorption profiles when the dephasing rate 
ph
is varied, but the dependence is somewhat more complicated
in this case. The Raman scattering cross section is governed
by a second-order matrix element with an energy denomina-
tor with a real part set by the laser detuning and an imaginary
part mainly set by 
ph. Thus in the range of laser frequencies
close to resonance we get peaks in the profile with a height
determined by 
ph. In this situation �in Fig. 5�b� primarily
between 2.3 and 2.5 eV
 the height varies as �1/
ph

2 and the
width as �
ph

2 . On the other hand, further away from reso-
nance the detuning, not the dephasing rate, dominates the
energy denominator entering the Raman scattering matrix el-
ement and in this case �R varies much more weakly with 
ph.

V. CROSS SECTION CALCULATION

In this section we outline in detail the calculation of the
spectrum of light emitted by the molecule. This includes both
light scattered as a result of Rayleigh or Raman processes,
and fluorescence as a result of electronic transitions in the
molecule. The methods presented below makes it possible to
carry out this calculation in a general case with strong en-
hancement of both the incident light and of the damping rate.

A. Emitted intensity

The emitted light intensity at the point r0 in the far field
can be written36

Iem = 2�0c	E

�−��r0,t�E


�+��r0,t�� . �29�

Here E

�+��r0 , t� and E


�−��r0 , t� stand for the positive and nega-
tive frequency parts of the 
 component of the electric field,
respectively. By using the normal-ordered correlation func-
tion 	E


�−��r0 , t�E

�+��r0 , t�� we are assured that the vacuum

fluctuations do not contribute to Iem.
Our present goal is not only to find the total intensity of

emitted light, but also its spectral distribution. Starting from
Eq. �29�, and using the Wiener-Khintchine theorem this can
be written

Iem��� =
1

�
Re�

0

�

d� 2�0c	E

�−��r0,0�E


�+��r0,���ei��.

�30�

The electric fields are caused by the electric dipole moment
p�t� of the molecule. A point dipole with dipole moment
ẑpe−i�t placed at the origin in free space generates the radi-

ated electric field E� = 
̂p ei�kr−�t��2 sin 
 / �4��0c2r� at a dis-
tance r from the dipole. If this expression is combined with
Eq. �30� we get the differential scattering and fluorescence
cross section

d2�

d�d����
=

�4 sin2 


Iin8�3c3�0�
Re�

0

�

d� ei��	p�−��0�p�+����� .

�31�

When the molecule is no longer placed in free space the
electromagnetic propagation from source to detector is modi-

FIG. 5. �Color online.� Calculated �a� absorption and �b� Raman
profiles �i.e., cross sections as a function of incident photon energy�
for a molecule in free space for a number of different dephasing
rates 
ph. The remaining parameter values used in the calculation
are ldip=1.2 Å, ��ge=2.35 eV, ��vib=160 meV, and �=0.5.
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fied. This can be described by the enhancement factor
M�� ,
� introduced in Sec. III. M�� ,
� is closely related to a
photon Green’s function.37 The sin 
 factor in Eq. �31� is
absorbed in M which yields the emitted spectrum �in the
numerical results presented below we use 
=90° as the ob-
servation angle� from a molecule placed in the vicinity of
one or several metal nanoparticles

d2�

d�d����
=

�4�M��,
��2

Iin8�3c3�0�
Re�

0

�

d� ei��	p�−��0�p�+����� .

�32�

To get any further we must evaluate the dipole-dipole corre-
lation function 	p�−��0�p�+����� by solving the equations of
motion for the molecule dynamics. We will deal with this
using density-matrix methods.

B. Equation of motion for the density matrix

We consider a model molecule with N quantum states in
total. The two electronic levels �g� and �e� �sometimes called
bands in the following� each contains Nvib vibrational states,
i.e., N=2Nvib. The density matrix � is thus a 2Nvib�2Nvib
matrix with equation of motion

i
d�

dt
=

1

�
�Hmol + H�,�
 + Ltr� + Lph� . �33�

The first term to the right governs the motion as a result of
the molecule Hamiltonian Hmol, and the interaction H�, be-
tween the molecule and the laser field. The term Ltr� yields
the damping of the density matrix as a result of transitions
caused by Hfluct in which photons are spontaneously emitted,
but also transitions due to non-radiative processes and vibra-
tional damping are included in Ltr. The last term Lph� makes
it possible to introduce additional phase relaxation, also in a
phenomenological way.

The molecular Hamiltonian is diagonal, and can be writ-
ten as a sum of electronic and vibrational energies

Hmol = �
n=0

Nvib−1

�
l=g,e

�l;n��El + n��vib�	l;n� . �34�

To see more clearly what H� in Eq. �33� means, let us focus
on a manageable example with just four levels �Nvib=2�. We
then have

H�

�
= �

0 0 V−f�0,0� V−f�0,1�
0 0 V−f�1,0� V−f�1,1�

V+f�0,0� V+f�1,0� 0 0

V+f�0,1� V+f�1,1� 0 0
�

�35�

and

V� = − M��L�p0E0e±i�Lt/2 �36�

in a situation where the incident laser field is enhanced by
the factor M. With these equations, and their generalizations
to cases with more vibrational levels, the first term in Eq.
�33� can be calculated.

Consider now the second term Ltr�, in Eq. �33�. Given a
spontaneous transition rate �kj �at zero temperature� from
level j to level k �in our model this rate is due to vibrational
damping for intraband transitions and due to radiative damp-
ing and electron-hole pair creation for interband transitions�,
this term can be written36

Ltr� = − �
jk

	nkj + 1�
i�kj

2
�� jk�kj� + �� jk�kj − 2�kj�� jk


− �
jk

	nkj�
i�kj

2
��kj� jk� + ��kj� jk − 2� jk��kj
 . �37�

Here �ab stands for an operator �or matrix� with the ab ele-
ment equal to 1, and all the other elements equal to 0. These
operators fulfill the relations

�ab�kl = �al�bk and ��ab,�kl
 = �al�bk − �kb�al. �38�

The first sum in Eq. �37� refers to �possibly thermally acti-
vated� decay, the second to thermal excitation, and

	nkj� = 1/�e�Ej−Ek�/�kBT� − 1
 , �39�

implying that the thermal bath consists of a number of har-
monic oscillators, something that is at least certainly true for
the radiation damping. Given that all excitation energies
Ej −Ek occurring in our model are fairly large compared with
kBT at room temperature, we have restricted the calculations
to the zero-temperature limit 	nkj�=0.

The last term in the equation of motion describes dephas-
ing of interband �i.e., ground-excited and excited-ground�
coherences. This only involves one density-matrix element at
a time, thus

Lph� = Lph�
ij

�ij�ij = − i
ph�
i�g

j�e

��ij�ij + � ji� ji� , �40�

where i�g indicates that when the molecule is in state i it
should be in the electronic ground state, etc.

C. Stationary state

We need to solve Eq. �33�, and begin by determining the
stationary-state populations and coherences. To facilitate the
solution in a case with an arbitrary number of levels we form
an N2-dimensional vector �� , from the elements of the density
matrix as

�� = ��11,�21,…,�N1,�12,…,�NN
 . �41�

The equation of motion can then be written

i
d��

dt
= LJ�� , �42�

where the tensor LJ describes the coupling between two den-
sity matrix elements caused by the Hamiltonian and the

damping. LJ can be deduced from the right hand side of
Eq. �33�.

The stationary-state density matrix �SS is essentially time
independent, but because of the explicitly time-dependent
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terms in the Hamiltonian, it does have coherences �dipole
moments� oscillating with the laser frequency. We therefore
make the ansatz

��SS = e−i�J t��0, �43�

where ��0 and �J are time independent and �J is a diagonal

tensor. Moreover, the diagonal elements of �J refer to popu-
lations or intraband coherences equal 0. Only the diagonal

elements of �J referring to interband coherences are nonzero.
They equal +�L, for “excited-ground” coherences and −�L
for “ground-excited” coherences. For a two-state system �just
electronic degrees of freedom� we would have

�J = �
0 0 0 0

0 �L 0 0

0 0 − �L 0

0 0 0 0
� . �44�

The stationary state can thus be determined by solving the
equation

i
d�SS

dt
= LJ��SS ⇔ e−i�J t�J��0 = LJe−i�J t��0, �45�

which after a multiplication by ei�J t can be rewritten as

�LJ� − �J 
��0 = 0, �46�

where

LJ� = ei�J tLJe−i�J t �47�

is time independent. In addition to Eq. �46�, �0 must satisfy
Tr��0
=1.

D. Calculation of the spectrum

We can now focus on calculating the key quantities: the
fluorescence and Rayleigh and Raman scattering cross sec-
tions, as given by Eq. �32�. The positive frequency part of the
dipole operator originates from transitions from an electroni-
cally excited state to the electronic ground state. The nega-
tive frequency part, on the other hand, comes from transi-
tions from the electronic ground state to the excited state.
With the aid of the � operators introduced before Eq. �38� we
can then write the expectation value appearing in Eq. �32�,

	p�−��0�p�+����� = �p0�2 �
b,k�g

a,j�e

f�b,a�f�k, j�	�ab�0��kj���� .

�48�

The expectation value 	�ab�0��kj���� can be evaluated using
the quantum regression theorem �QRT�, as we will show
next.36

With the QRT the value of any element of the density
matrix at time � can be expressed as a linear combination of
the density matrix elements at the earlier time 0, provided
that the process is Markovian. For a physical process to be
Markovian there must not be any memory effects, damping

should be frequency independent, and the perturbing noise
completely “white.” It is fairly clear that none of these con-
ditions are fulfilled in a strict sense here, for resonant en-
hancement of the coupling between the molecule and the
electromagnetic field implies that damping and noise is
stronger at some frequencies than at others. However, the
EM enhancement, see Fig. 2, varies relatively slowly, on an
energy scale �E of a few tenths of eV, corresponding to a
memory time scale � /�E of a few femtoseconds, shorter
than the other time scales relevant for the molecule dynam-
ics. At the same time we note that in a number of interesting
problems in quantum optics, for example an atom in a pho-
tonic crystal with an atomic transition energy near a band-
gap edge of the photonic crystal, involves very important
memory effects that require other theoretical methods and
leads to novel physical phenomena.38,39

Continuing the calculation, we first consider a one-
operator expectation value and note that

	�kj���� = Tr������kj
 = � jk��� . �49�

We express this dependence through a Green’s function
Gjk,rs���, thus

� jk��� = �
rs

Gjk,rs����rs�0� . �50�

In the previously used vector and tensor notation this equa-

tion would read �����=GJ������0�. In terms of operator expec-
tation values Eq. �50� means

	�kj���� = �
rs

Gjk,rs���	�sr�0�� . �51�

The quantum regression theorem36 states that the relation
between the two-operator correlation functions
	�ab�0��kj���� and 	�ab�0��sr�0�� is identical to the one be-
tween one-operator expectation values expressed by Eq.
�51�, thus

	�ab�0��kj���� = �
rs

Gjk,rs���	�ab�0��sr�0�� . �52�

It will now be possible to calculate the dipole-moment cor-
relation function since the expectation value appearing in Eq.
�52� can be evaluated from the stationary-state density ma-
trix �SS, and the Green’s function, in view of Eq. �50�, can be
deduced from the equation of motion for the density matrix.

To explicitly calculate the Green’s functions we need to
solve the equations of motion for the density matrix given
certain initial conditions at time t=0, since Eq. �50� states
that Gji,kl��� is the value that the element � ji will take at time
� given that all density matrix elements are 0 at time t=0
except the �kl which equals 1. �This should be viewed strictly
mathematically; the initial conditions here sometimes mean
that the density matrix is traceless and non-Hermitian. How-

ever, when GJ operates on a physical ���0� one obtains a sen-
sible result also for �����.
 We can thus write down an equa-
tion of motion for the Green’s tensor

SURFACE-ENHANCED RAMAN SCATTERING AND… PHYSICAL REVIEW B 72, 035427 �2005�

035427-9



i
dGJ

dt
− LJGJ = i1J��t� , �53�

where the right-hand side takes care of the initial conditions

�i.e., GJ�t��0 for t�0
.
To solve Eq. �53� we make an ansatz analogous to the one

made for �SS above,

GJ�t� = e−i�J tGJ0�t� . �54�

Then by introducing the Fourier transform GJ0��� of GJ0�t�
through

GJ0��� = �
−�

�

dt ei�tGJ0�t� , �55�

we arrive at the solution

GJ0��� = i��� + i��1J + �J − LJ�
−1, �56�

where L� has been defined in Eq. �47�. From a formal point
of view the imaginary part �=0, but to avoid that the solu-
tion diverges at the driving frequency �L we introduce a
finite, but small, �. This gives a width to the calculated Ray-
leigh scattering peak. In the calculations reported in this pa-
per we have used the value �=2�1012 s−1 unless otherwise
stated.

We can now insert the expression for the expectation
value into the equation for the cross section

d2�

d�d����
=

�4�M��,
��2

Iin8�3c3�0�
�p0�2 �

b,k�g

a,j�e

f�b,a�f�k, j�

� Re�
0

�

d� ei���
rs

Gjk,rs���	�ab�0��sr�0�� .

�57�

The time integral gives the Green’s function Fourier trans-
form. In view of Eq. �54� and the fact that the index j refers
to an excited state while k refers to the electronic ground
state the time integral can be written

�
0

�

d� ei��e−i�L�G0jk,rs��� = G0jk,rs�� − �L� . �58�

Furthermore, the expectation value can be simplified to

	�ab�0��sr�0�� = 	�ar�0���bs = �0,ra�bs, �59�

which finally yields

d2�

d�d����
=

�4�M��,
��2

Iin8�3c3�0�
�p0�2 �

b,k�g

a,j�e

f�b,a�f�k, j�

� �
r

Re��0,raG0jk,rb�� − �L�
 �60�

for the scattering and fluorescence cross section.

E. Results in an elementary case

Equation �60� contains contributions to the cross section
due to both diagonal and off-diagonal elements of the density

matrix. These contributions typically have very different
physical origins. The light emission related to diagonal ele-
ments are due to an excited state being populated before
decaying; this describes fluorescence processes. The off-
diagonal elements, on the other hand, represent an oscillating
dipole moment on the molecule, and the corresponding con-
tributions to the emitted light are due to various scattering
processes. At the same time, one should keep in mind that
the contributions from diagonal and off-diagonal elements
must be taken together when calculating a physically rel-
evant, total cross section. As the example below shows, the
distinction between spectral features caused by diagonal and
off-diagonal elements of the density matrix is not completely
clean cut.

To illustrate this we show results for the scattering cross
section in a very simple case in Fig. 6. We consider a model
molecule with only two electronic levels without any sub-
level structure due to vibrations �see Ref. 40�. The electronic
excitation energy is set to 2.3 eV and the incident laser pho-
ton energy is 2.33 eV. The electromagnetic enhancement is
used as a parameter: both �M�2 and �Md�2 are set to 106,
independent of the frequency �. As for damping mecha-
nisms, we of course keep the radiation damping, but there is
no dephasing in this model. By inspecting Eq. �60� we see
that indices b, k, a, and j in this case refer to one definite
state �whereas they in the general case run over a set of
different vibrational states�, only the index r can point to
either the ground state or the excited state, so the cross sec-
tion is a sum of two terms. The three curves in Fig. 6 show
the total cross section as well as the contributions from the
term proportional to the element �0,ee �diagonal� and the term
proportional to �0,ge �off-diagonal�. The total cross section is
everywhere positive as it should be, and has a sharp peak at
��=2.33 eV due to Rayleigh scattering �the width of this
peak is set by the parameter � used in the calculation�. The

FIG. 6. �Color online.� The spectrum of scattered light from a
two-level system. In addition to showing the total cross section with
a Rayleigh peak as calculated from Eq. �60�, the other two curves
show the contributions originating from the diagonal and off-
diagonal elements of the density matrix, respectively.
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Rayleigh scattering is of course the result of photons being
reemitted because the molecule has an oscillating dipole mo-
ment described by the off-diagonal elements of the density
matrix, and this curve follows the one for the full cross sec-
tion closely near the laser frequency. However, for photon
energies near the electron transition energy the off-diagonal
contribution becomes negative, largely canceling the diago-
nal contributions in this case.

VI. CALCULATED SPECTRA

We begin by looking at spectra calculated for a molecule
placed symmetrically between two spherical Ag nanopar-
ticles. Figure 7 displays a number of combined fluorescence
and Raman spectra corresponding to different molecule-
particle separations d, and thereby different electromagnetic
enhancements. The plotted differential cross section corre-
sponds to a situation where both the incident and scattered
light propagate in the symmetry plane �i.e., 
=90��. All the
spectra show a broad fluorescence background. For the
smaller values of d, sharp Rayleigh and Raman peaks rise
above this background. �For d=5 Å the Rayleigh peak is cut
off. Note also that the calculation only captures the Rayleigh
scattered light coming from the molecule, but not the part
coming from the nanoparticles.� The fundamental Stokes
peaks, red-shifted by ��vib from the laser photon energy
��L, are the highest ones, but at least for d=5 Å we can also
see an overtone peak at ��L−2��vib due to creation of mul-
tiple vibrational excitations. The very strong dependence of
the Raman peaks on the molecule-particle separation d is the
most striking tendency seen in the plot. Increasing d from 5
to 8 Å reduces the peak height by approximately a factor of
6, at d=12 Å only a small Raman peak remains, and at

d=16 Å it is nearly impossible to discern a Raman peak. The
main reason for this is the stronger EM enhancement one
gets with a smaller d, see Figs. 2 and 3. As was shown in Fig.
3 of Ref. 25, the Raman scattering cross section behaves as
�R��M��L��2�M��−�vib��2�R,free as long as d is not too
small. The Raman cross section scales with the fourth power
of the enhancement because Raman scattering involves two
steps: in the first step a photon is temporarily absorbed and
the molecule goes into a virtual state, in the second step a
photon is emitted while the molecule goes back to the
ground state, albeit to a different vibrational state. The rate of
both these steps are enhanced by a factor �M�2.

Also the fluorescence background in Fig. 7 changes with
d; the fluorescence cross section shows an increasing ten-
dency with decreasing d, however, this change is not at all as
marked as for the Raman signal. Naively one may think that
fluorescence, which involves an absorption event and an
emission event, should also display a cross section scaling as
�M�4. But this is not so, because in the case of fluorescence
the molecule is in a real, electronically excited state after
having absorbed a photon but before emitting the fluores-
cence photon. Looking at the final step of the fluorescence
process it is then clear that there are two factors that deter-
mine the fluorescence intensity: �i� the EM enhancement at
the frequency of the emitted photon �M����2 and �ii� the
probability of finding the molecule in the excited electronic
state Pexc. The probability Pexc is affected by the electromag-
netic enhancement, but in two competing ways that largely
tend to cancel each other. Pexc increases when the molecule
is excited from the electronic ground state and the rate of
such processes scales as �M��L��2. However, at the same
time the excited state is emptied by radiative �including fluo-
rescence� and nonradiative processes, and the rate of these is
given by �Md�2
0,radPexc. Consequently, the probability of
finding the molecule in an electronically excited state de-
pends in a stationary-state situation on the EM enhancement
factors as

Pexc � �M�2/�Md�2

and for the fluorescence cross section we get

�F � �M�2Pexc � �M�4/�Md�2.

In Fig. 8 we compare three spectra calculated with differ-
ent laser photon energies. These spectra result from the com-
bined effect of a frequency-dependent Raman cross section,
see Fig. 5�b�, and the frequency-dependence of the electro-
magnetic enhancement as shown in Fig. 2. The free-molecule
Raman cross section is considerably higher for both
��L=2.4 eV and ��L=2.5 eV than for ��L=2.6 eV, which
explains why the Raman peak �at 2.44 eV� in the latter case
is so small. In addition, as a result of the resonant maximum
at �2.2 eV, in Fig. 2, the combined EM enhancement
�M��L−�vib��2�M��L��2 is the largest for ��L=2.4 eV and
smallest for ��L=2.6 eV.

Figure 9 shows the spectra that result when the dephasing
rate is varied. The diagram only shows the portion of the
spectrum where the Raman peaks �the principal one and the
first overtone� falls. Both these cross sections are, at least
with a laser photon energy as close to resonance as 2.45 eV,

FIG. 7. �Color online.� Calculated fluorescence and Raman
spectra for a molecule placed symmetrically d=d1=d2 between two
spherical �R=400 Å� Ag nanoparticles. Different curves correspond
to different particle-molecule separations d. The molecule param-
eter values used are ��L=2.45 eV, ��vib=160 meV, 
ph

=1.3�1014 s−1, 
vib�g� =2�1012 s−1, 
vib�e� =10�1012 s−1, �=0.5,
and Iin�0.13 �W/ ��m2�.
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quite sensitive to the dephasing rate. This is particularly ap-
parent for the Raman overtone peak. For creation of multiple
vibrational excitations to take place, the molecule must have
a chance to “investigate” the displaced oscillator potential
during a longer time than in the case of single-excitation
creation. This means that the multiphonon processes are
more easily disrupted when the dephasing rate goes up.

In Fig. 10 we show results for a different nanoparticle
configuration than the one considered so far. The results here
refer to a molecule placed near only one silver particle. In
this case there is some electromagnetic enhancement M, be-

cause the metal particle can be �resonantly� polarized. But
due to the lack of electromagnetic particle-particle coupling
the enhancement has a much smaller magnitude than in the
two-particle case. Typically �M�2 reaches values of 20–40
�depending on frequency� for d=5 Å. M is less sensitive to
d than in the two-sphere case, the most important contribu-
tion coming from the dipole field around the particle, i.e.,
�M��R3 / �R+d�3. However, the damping rates due to losses
in the particles, especially electron-hole pair creation, are
still comparable to those in the two-particle case. This means
that fluorescence is very strongly suppressed for small
d when there is only one Ag particle. For example, for
d=5 Å a rough estimate of the ratio �M�4 / �Md�2 with
�M�2�30 and �Md�2 taken from Fig. 3 shows that we can
expect a suppression �or quenching� of the fluorescence by a
factor of �103 compared with the free-molecule case. In Fig.
10 we see in fact a difference by about 3 orders of magnitude
between the fluorescence when d is 5 Å and when d is 1000
Å, the latter d yields situation quite similar to the free-space
case. For d=5 Å the fluorescence is suppressed to the extent
that Raman peaks stand out from the background, however,
the absolute Raman cross sections are of course too small to
be detectable in an experiment with a single molecule.

With increasing d in Fig. 10, the fluorescence yield first
increases because �Md� decreases rapidly whereas �M� falls
off at a much slower rate. Then when d reaches values of
50–100 Å �see the 70-Å curve� the fluorescence has a maxi-
mum, because the rate of decrease in �M�4 overtakes that of
�Md�2. For even larger d �M�2��Md�2, so the fluorescence
cross section behaves as �M�2 there. The spectrum calculated
for d=1000 Å approaches what one finds for the molecule in
free space. �In passing we note that somewhat different quan-
tities such as the photofragmentation rate for a molecule near
a metal surface has been observed to display41 a maximum as
a function of distance for similar reasons.�

The results presented so far have been calculated
with moderate laser intensities. We have used the value

FIG. 8. �Color online.� Calculated spectra for three different
frequencies of the driving field. The molecule-particle separation is
d=5 Å, and the rest of the parameter values are the same as in
Fig. 7.

FIG. 9. �Color online.� Calculated spectra for four different
dephasing rates. The molecule-particle separation is d=5 Å, and
the rest of the parameter values are the same as in Fig. 7.
The curves have been shifted vertically for increased clarity.
The truncated peak for 
ph=50�1012 s−1 has height
�200�10−16 cm2/ �meV sr�.

FIG. 10. Calculated spectra when the molecule is placed near
only one Ag particle with radius 400 Å. The molecule parameter
values are the same as in Fig. 7.
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104 V/m for E0 in Eq. �7� which corresponds to
Iin�0.13 �W/ ��m2�. This intensity is so low that, even in
spite of the EM enhancement, the molecule spends almost all
the time in the ground state �assuming, as we have done
before, that thermal excitations can be neglected�. The results
presented in Fig. 11 �where we return to a situation with two
nanoparticles� have been calculated with considerably higher
incident intensities. This means that we encounter situations
where there is an appreciable probability of finding the mol-
ecule electronically and/or vibrationally excited. For very
strong incident fields also the response properties of the mol-
ecule change, essentially because the probability of finding
the system in a certain level becomes time dependent �as a
result of Rabi oscillations�. In our calculations the stationary-
state density matrices �SS and �0 describe a time-average, the
way the molecule “looks” on the average after long time.
The dipole-dipole correlation function 	p�−��0�p�+��t��, on the
other hand, contains information about the molecule dynam-
ics over a shorter period of time, starting from a certain
initial state. Here Rabi oscillations due to excitation and de-
excitation by a strong driving, external field show up in the
results, along with other, more apparent, time-dependent as-
pects of the molecular dynamics such as dipole oscillations
and damping. To judge whether these phenomena are impor-
tant or not one can compare the resonant Rabi frequency
�R=M��L�p0E0 /� with other relevant frequency scales,
here primarily the dephasing rate 
ph.

In Fig. 11, we restrict the attention to parts of the spectra
in the frequency ranges around the Stokes and anti-Stokes
peaks with center frequencies �S=�L−�vib and �AS
=�L+�vib, respectively. The different spectra correspond to
intensities ranging from �13 �W/�m2 �at E0=105 V/m� to
�3.0 mW/�m2 �at E0=15�105 V/m�. The corresponding
values for the Rabi frequency �R range from �9�1012 s−1

at E0=105 V/m to �1.4�1014 s−1 at E0=15�105 V/m.
The rest of the parameter values have been chosen the same
way as in the calculation behind Fig. 7. At the lowest inten-
sity we get a Stokes peak that is nearly identical to the one in
Fig. 7, but with increasing intensity the peak height dimin-
ishes quite rapidly, and it is also broadened. At the
same time, at the anti-Stokes frequency, a small bump for
E0=105 V/m develops into a marked peak at E0
=5�105 V/m, and subsequently also this peak is reduced in
height and broadened with increasing E0. Thus, with incident
intensities of the order of 1 mW/�m2 it is possible to obtain
anti-Stokes Raman scattering �in the model� with a cross
section that is experimentally detectable. �The peak values
found in the figure must be multiplied by an effective peak
width �10 meV and the effective solid angle for dipole scat-
tering 8� /3, to give the total Raman anti-Stokes cross sec-
tion�. The fact that the anti-Stokes signal is weaker than the
Stokes signal is here partly due to the choice of laser fre-
quency which means that the Stokes peak falls at a maxi-
mum in the EM enhancement while the anti-Stokes peak is at
a minimum for �M�2.

To discuss the tendencies in Fig. 11 as a function of the
incident field it is useful to calculate the probabilities of find-
ing the molecule in different states. This is shown in Fig. 12.
The development at moderate intensities can be well under-
stood just from looking at the probabilities of finding the
molecule in either of the two lowest states �g��0;0� and
�g��0;1�. With increasing intensity it becomes more likely to
find the molecule in the vibrationally excited state which is a
good initial state for the anti-Stokes Raman process. At the
same time the vibrational ground state, the most common
initial state for a Stokes Raman process, becomes more and
more depopulated leading to a decreased intensity there.
However, comparing the probabilities in Fig. 12 with the
changes in peak heights in Fig. 11, it becomes clear that the

FIG. 11. �Color online.� Calculated spectra for a molecule
placed between two nanoparticles, with d=5 Å, for a number of
different incident intensities. The other parameter values are the
same as in Fig. 7. Only the energy ranges around the Raman Stokes
peak at ��S=2.29 eV and the Raman anti-Stokes peak at ��AS

=2.61 eV are shown.

FIG. 12. The probability of finding the molecule in different
states and for a number of different driving fields. States numbered
0 through 5 on the horizontal axis are in the electronic ground state,
i.e., �g�0;n� for 0�n�5, whereas states 6 through 11 correspond to
the electronically excited states �e�x0 ;0� through �e�x0 ;5�.
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behavior at higher intensities cannot be understood exclu-
sively in terms of the probabilities. If this was true, the
Stokes peak would not diminish as rapidly as it does, and the
anti-Stokes peak would continue to increase in height.

Instead the fact that the molecule’s response functions be-
come time-dependent for strong driving fields must also be
taken into account. The optical response of a molecule that is
driven by a weak laser field is determined by molecular
properties only �together with the temperature�. But when the
amplitude of the driving field is increased it is not only the
time-averaged populations of different states �shown in Fig.
12� and coherences that change; so do the correlations in
time between different elements of the density matrix, and
these also enter the result in Eq. �60� through the Green’s
function G. Physically these effects can be understood as the
result of Rabi oscillations as already mentioned above. When
an atom or molecule is driven by a strong external field there
will be oscillations in the populations of different levels as a
result of photon absorption and stimulated emission. It fol-
lows that the molecule response has time-dependent compo-
nents, and in the scattered signal there will be components
with a frequency resulting from mixing the incident laser
frequency with both vibrational frequencies and the frequen-
cies of the population oscillations, see Ref. 40. This leads to
the lowered, smeared out peaks in Fig. 11.

VII. DISCUSSION AND SUMMARY

We have performed a theoretical analysis of surface-
enhanced resonance Raman scattering �SERRS� and surface-
enhanced fluorescence based on a treatment that combines
electromagnetic enhancement effects and molecule dynam-
ics. We used a simple molecule model, however, with param-
eter values chosen in a realistic way.

Our study gives an opportunity to study how the Raman
and fluorescence parts of the spectra develop as the electro-
magnetic enhancement is varied. Most of the trends found
here agree well with what one can expect compared with
experiment. For the highest enhancements the Raman peaks
stand out from the fluorescence background. The rather rapid
decrease of the Raman cross section with increasing
molecule-particle separation agrees qualitatively with results
found in experiments where the metal particles are coated
with a thin layer of dielectric material, the thickness of which
can be controlled with reasonable precision.42,43 At the same
time the fluorescence background is more structured here
than in most experimental results found in the literature,4,6

although some exceptions do exist.44

The calculations presented here also provide an opportu-
nity to compare absolute cross sections with experiment.
Brus and co-workers estimated the maximum integrated
spectral cross section for single Rhodamine 6G molecules on
Ag-particle aggregates to 10−14−10−13 cm2,7 whereas the
maximum values obtained from integrating the differential
cross sections in Fig. 8 yield theoretical values in the range
10−13−10−12 cm2 depending on excitation energy. In the re-
cent SERS literature, it is often stated that a surface enhance-
ment of 1014−1015 is needed to explain single molecule
SERRS. However, we note that the quantitative agreement

between experiment and theory found here is obtained
through an electromagnetic Raman enhancement �M�4 of the
order 1010 in combination with an ordinary resonance Raman
effect for the free molecule. Thus, we conclude that the 14 to
15 orders of magnitude enhancement often cited in connec-
tion to single-molecule SERS may neither be present nor
needed for the effect to occur.

The quenching of the fluorescence �Fig. 10� once a mol-
ecule is placed near a metal surface is a well-known
phenomenon,45 and systematic studies have also found a lo-
cal maximum in the fluorescence cross section as a function
of the molecule-surface distance.46 Compared with this
study, the fluorescence maximum occurs closer to the surface
in our results because of the faster drop of the electromag-
netic enhancement with increasing distance from a finite
nanoparticle �see Fig. 10� than from a flat surface. In the case
of the dimer, the quenching effect cannot compete with the
strong surface enhancement, which means that a broad fluo-
rescence background remains under the Raman peaks even
for the shortest metal-molecule distances. It seems likely that
this background gives a major contribution to the “SERS
continuum” often reported in the literature, for example in
Refs. �4
 and �7
.

The model we have used in this work is a basic one con-
taining a minimum of ingredients. To better account for some
aspects of the SERS phenomenon, further developments are
needed. �i� More vibrational modes should be added to better
describe a fairly large organic molecule. �ii� More electronic
levels could also be included. This could be a way to model
“blinking” phenomena due to the molecule’s spending some
time in a metastable state that is not directly optically active.
One could also introduce electronic states leading to disso-
ciation of the molecule, thus modeling photobleaching ef-
fects. �iii� Ultimately one should also try to include electron
transfer processes between the molecule and the metal par-
ticles.
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APPENDIX A: ELECTROMAGNETIC CALCULATION

The coefficients c̃ in Eq. �21� are explicitly given by

c̃�l,m,��l�,m��R
� � = �

j=−1

1

Flm
j Fl�m�

j Ãl,m+j,l�,m�+j�R� � , �A1�

when �=��, and
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c̃�l,m,��l�,m��R
� � =

2l� + 1

i
l��l� + 1�
�
j=−1

1

R−j

� Flm
j Ãl,m+j,l�−1,m�+j�R� �Cl�,m�,l�−1,m�+j

1,−j ,

�A2�

when �=��. In these expressions

Flm
0 =

m

l�l + 1�

and Flm
±1 =


�l � m��l ± m + 1�

2l�l + 1�

, �A3�

R+1 = − 
4�/3, while R0 = R−1 = 
4�/3, �A4�

and the Gaunt integrals Cl,m,l�,m�
LM are defined by

Cl,m,l�,m�
LM =� d�Ylm

* ���YLM���Yl�m���� . �A5�

The coefficients Ã in Eq. �A1� are given by

Ãl,m,l�,m��R
� � = 4� �

L=�l−l��

l+l�

�− i�l−L−l�hL�k�R� ��

� YL,m−m��R̂�Cl,m,l�,m�
L,m−m� . �A6�

Finally, the coefficients describing the external field in Eq.
�13� are

a1lm,ext
s = 4�ileik�·r�s �

j=−1

1

Yl,m+j
* �k̂�Flm

j �êj
* · E� 0
 �A7�

and

a2lm,ext
s = 4�ileik�·r�s �

j=−1

1

Yl,m+j
* �k̂�Flm

j �êj
* · �k̂ � E� 0�
 , �A8�

where the unit vectors ê−1, ê0, and ê1 are given by

ê0 = ẑ and ê±1 = �x̂ ± ŷ/i�/
2, �A9�

and k̂=k� / �k�� is a unit vector in the direction of k�. When
instead the spheres are driven by a dipole ẑp0e−i�t at the
molecule position we have

a�lm,ext
s =

p0k3

4��0

8�

3
c̃2,1,0,�,l,m�r�s� . �A10�

APPENDIX B: DAMPING DUE NON-LOCAL DIELECTRIC
RESPONSE

In this appendix we outline the calculation of the electron-
hole pair contribution Peh/ Pfree to the damping rate enhance-
ment �Md�2. The nonlocal dielectric response of the metal
particles is treated within d-parameter theory,33 and the deri-
vation to a large extent follows Ref. 47.

The idea is to model the interaction between the molecu-
lar dipole and the degrees of freedom �mainly electron-hole
pairs� of the nearby metal particles by a linear coupling be-

tween the dipole and a number of boson modes. To be spe-
cific, the dipole points along the z axis and is placed at
z=h between two flat metal surfaces at z=0 and z=L. The
interaction Hamiltonian can then be written

Hint = �
q� ,�

�Cq� ,�bq� ,� + Cq� ,�
* bq� ,�

† �p̂ . �B1�

Here p̂ is the molecule dipole operator, b and b† are annihi-
lation and creation operators for the bosons �with in-plane
wave vector q� and another branch index �� and the coupling
coefficients Cq� ,� are dependent on the position h of the di-
pole. We use flat metal samples since this simplifies the en-
suing calculations �we can employ a surface response func-
tion taken from d-parameter theory�. Let us stress that the
flat-surfaces model is an excellent approximation in this con-
text. This is because strong nonlocal effects only take place
when the exciting field varies on short length scales, compa-
rable with length scales relevant to the electron system in the
nanoparticles, i.e., primarily the Fermi wavelength which is
of order 1 nm and thus much shorter than the particle radii
used here. Over such distances effects of the curvature of the
metal particles are small. Moreover, the rapidly varying
fields are superpositions of strongly evanescent waves local-
ized to a small region of space near the dipole. This means
that effects of retardation are negligible, which justifies that
we carry out a nonretarded calculation below. Using the
Fermi golden rule, Hint now gives a decay rate from the
excited state to the ground state of a two-level molecule
which can be written �here A is a normalization area�

w =
2�

�
�p0�2A� d2q

�2��2�
�

�Cq� ,��2����ge − ��q� ,�� .

�B2�

The above expression is only useful if we have a way of
calculating the coefficients Cq� ,�. To do this we evaluate the
energy dissipation from a classical dipole placed at the posi-
tion of the molecule to the bosonic degrees of freedom.
Again, this expression will contain the coefficients Cq� ,�, but
with a classical dipole the energy dissipation rate can also be
calculated using classical electrodynamics, and expressed in
terms of geometric parameters and the dielectric function of
the metal. We write the classical dipole moment as

p�t� = p1�t� + p1
*�t� = p1e−i�t + p1

*ei�t. �B3�

By letting p�t� take the place of p̂ in the Hamiltonian, we get,
from the Fermi golden rule, an energy dissipation rate

W = 2���p1�2�
q� ,�

�Cq� ,��2���� − ��q� ,�� . �B4�

Next we must calculate the dissipated power W within the
framework of classical electrodynamics. To this end we place
the dipole with a dipole moment given by Eq. �B3� between
the metal surfaces, at z=h. Since all the distances involved in
this calculation are very short we can ignore effects of retar-
dation and express the solution in terms of a scalar potential
��t�=�1e−i�t+�1

*ei�t, where �1 can be expressed as a Fou-
rier transform
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�1�x,y,z� =� d2q

�2��2 �̃q�z�eiq� ·r� �B5�

�r��=xx̂+yŷ�. For � to satisfy Poisson’s equation

�2� = − �/�0, �B6�

�where � is the charge density due to the dipole�, �̃q�z� must
be a linear combination of two exponentials eqz and e−qz. In
the classical calculation we treat the surfaces in terms of their
surface response functions: g1�q� ,�� for the surface at z=0
and g2�q� ,�� for the surface at z=L. The surface response
function gives the negative ratio between the “reflected” po-
tential �decaying as one leaves the surface� and the “inci-
dent” potential �decaying as one approaches the surface�.
Thus,

g�q� ,�� = − �̃q
refl/�̃q

inc, �B7�

where the potentials should be evaluated right at the sur-
faces. Within d-parameter theory the surface response func-
tion is given to first order in q= �q� � as33

g�q� ,�� =
���� − 1

���� + 1
�1 +

����
���� + 1

2qd����� . �B8�

The local dielectric function ���� is the same as used in the
Mie calculation and d���� is the d-parameter function. In
our calculations we have evaluated Im�d�
 from Table I of
Ref. 33 using rs=3 and ��p=9 eV appropriate for silver in
the low-frequency regime. The real part Re�d�
 plays a less
important role; we set it to the constant value Re�d�
=1 Å
here.

The solution for �1 can now be expressed in terms of
either the total incident potential at z=0, �̃q,down, as

�1�x,y,z� =� d2q

�2��2eiq� ·r�� �̃q,down�eqz − g1e−qz� , �B9�

or, by a similar expression, in terms of �̃q,up, the incident
potential at the upper interface. �̃q,down and �̃q,up are given by

�̃q,down = −
p1

2�0

e−qh + g2e−q�2L−h�

1 − g1g2e−2qL �B10�

and

�̃q,up =
p1

2�0

e−q�L−h� + g1e−q�L+h�

1 − g1g2e−2qL . �B11�

The Poynting vector S� =E� �H� at the two interfaces can
here be approximated by an expression involving only �; the
dissipated power is then given by

W = 4�0� d2q

�2��2�q���̃q,down�2Im g1 + ��̃q,up�2Im g2
 .

�B12�

But this power should equal the one found in Eq. �B4�, and
in this way we get a relation between the classical quantities
found here and the sum over � in Eq. �B4� �the sum over q

goes over to an integral�. Inserting the so obtained expres-
sion into Eq. �B2� gives

w =
2�

�
�p0�2�

qmin

� dq

�2��2�0q2�� 2�̃q,down

p1
�2

Im g1

+ � 2�̃q,up

p1
�2

Im g2� . �B13�

The electron-hole contribution to �Md�2 in Eq. �26� can now
be found as

Peh/Pfree = w/
rad,0, �B14�

where 
rad,0 is found from Eq. �11� with �f �2=1.
The integrand of Eq. �B13� has been plotted, for two dif-

ferent photon energies, as a function of q in Fig. 13, both
with and without a nonzero imaginary part for the function
d����. This illustrates different contributions to the damping
rate. At small q we have damping mediated by relatively
long-wavelength interactions between the molecule and the
substrates. This part of the damping is actually captured by
the Mie calculation discussed in the main text. In this range
of q space we see a fairly sharp peak around 0.5 nm−1 that is
due to losses to a resonant interface plasmon mode formed
between the two metal surfaces. We also see that the use of a
nonlocal dielectric function, a nonzero value for Im d����,
has essentially no effect here. Moving towards higher q val-
ues we encounter contributions to the damping that are not
included in the Mie calculation. There are two reasons for
this. �i� It becomes technically difficult to go to very high
values for the angular momentum l and consequently
rapid �high q� variations of the fields are not accounted for.
�ii� At these larger wave vectors the nonlocal effects

FIG. 13. �Color online.� Plot of the function being integrated in
Eq. �B13�.
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��Im d�����0
 that are not so easily included in the Mie
calculation provide the dominant contribution to the damp-
ing. This is clearly seen in Fig. 13.

In order not to double-count contributions to the damping
already included in the Mie calculation we employ a low-q

cutoff in Eq. �B13� using qmin=1 nm−1. It is not really pos-
sible to determine an exact position for the cutoff, since there
is no exact correspondence between angular momenta and
wave vectors, but 1 nm−1 is a reasonable value to use to-
gether with R=40 nm and lmax=50.
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