
Nanoparticle size distribution estimation by a full-pattern powder diffraction analysis

A. Cervellino*
Laboratory for Neutron Scattering, PSI Villigen and ETH Zurich, , CH-5232 Villigen PSI, Switzerland

C. Giannini,† A. Guagliardi, and M. Ladisa
Consiglio Nazionale delle Ricerche, Istituto di Cristallografia (CNR-IC), Via Amendola 122/O, I-70126 Bari, Italy

�Received 25 February 2005; published 5 July 2005�

The increasing scientific and technological interest in nanoparticles has raised the need for fast, efficient, and
precise characterization techniques. Powder diffraction is a very efficient experimental method, as it is straight-
forward and nondestructive. However, its use for extracting information regarding very small particles brings
some common crystallographic approximations to and beyond their limits of validity. Powder pattern diffrac-
tion calculation methods are critically discussed, with special focus on spherical particles with log-normal
distributions, with the target of determining size distribution parameters. A 20-nm CeO2 sample is analyzed as
an example.
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I. INTRODUCTION

We are assisting at a booming expansion of nanoparticle
research and technology. Synthesis methods especially make
fast progresses.1 Analysis methods, however, are not up to
speed. A fundamental simple task such as determining and
controlling the size distribution of nanoparticles �NPs� is cur-
rently a complex experimental work, involving electron mi-
croscopy and combined techniques. In this work we want to
highlight the possibilities offered in this issue by the much
less complex technique of powder diffraction.

Powder diffraction is a widespread technique with a great
potential to meet the increasing demands of microstructural
material characterization. The methods of powder diffraction
data analysis have reached maturity for micrometer-sized
polycrystalline materials. However, when the particle size
falls much below 100 nm, specifically tuned methods of
analysis are needed to extract meaningful information from
powder diffraction patterns. In fact, nanoparticles present
unique analytical challenges. In the most complex cases,
noncrystallographic structures2–11 may occur. Surface-related
deformation fields12–14 are another challenge. In these ex-
treme cases, the classical crystallographic formalism be-
comes quite useless. The Debye scattering function15 �that is,
the direct evaluation of the NP structure factor from the in-
teratomic distances� is the only choice in those cases. We are
currently developing10,16 methods to increase the efficiency
of such calculations and make them a practical tool.

Even for crystalline NPs, however, the small size plays a
decisive role. Bragg peaks may be so much broadened that
they cannot be simply separated and many approximations,
commonly accepted for micrometer-size domains, fail. As
we will show, also models specifically corrected for NPs may
fail for ultrasmall NPs �say below 5 nm diameter, as it is
better specified�.17–19 Again for these ultrasmall sizes the De-
bye scattering function is the only choice for obtaining pre-
cise results, while the smaller number of atoms makes it
extremely practical.

The plan of the paper is the following. In Sec. II we
discuss the shape-based method for calculating NP powder

patterns in relation to the surface structure and to its limits of
validity at small sizes. Application to full-pattern fit on a test
case �20-nm CeO2� is shown in Sec. III.20 Summary and
conclusions are given in Sec. IV.

II. POWDER PATTERNS AND SIZE INFORMATION

Scherrer’s formula21 is the best-known method for ex-
tracting size information from powder patterns �namely, from
the Bragg peaks’ width�. This is a simple method, but accu-
rate only to the order of magnitude. However, since Scher-
rer’s work, line profile analysis has made enormous
progress.22–31

Theoretical progress on understanding the physical origin
of peak broadening has been focused on dislocation analysis,
size broadening being considered as a side effect to be cor-
rected for in order to determine the defect structure. Never-
theless, today it is possible to determine the parameters of a
�log-normal� size distribution of crystallites, together with
information on type and concentration of dislocations. These
methods are, however, complex and sophisticated, requiring
a fairly high signal-to-noise ratio, low and flat background, a
precise deconvolution of the instrumental broadening, and
especially well-isolated Bragg peaks.

Full-pattern fitting methods �cf. Sec. II A� are more direct
and robust, especially when the target is the size analysis.
First, they use all the experimental information, regardless of
partial or total peak overlap, increasing redundancy and
therefore precision and decreasing experimental require-
ments. Furthermore, they allow the evaluation of a NP-
characteristic feature, namely, the variation with size of the
lattice parameter10,11 �an effect that can be important below
20 nm�. Corrections for texture, microabsorption, anisotropic
elastic peak shifts, and instrumental broadening can also be
implemented.

An efficient and precise method to evaluate NP diffraction
patterns is needed to perform full-pattern fits. Hereafter we
discuss the shape-based method17–19 with a thorough analysis
of its validity limits.
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A. NP shape-based diffraction models

We briefly recall some methods for the calculation of the
powder diffraction intensity for a NP with known periodic
structure and definite size and shape. In the following the
length of a vector v will be denoted by v. Accordingly, q will
be the scattering vector of length q=2 sin � /�, where � is the
scattering half angle and � the incident wavelength; h will
denote the scattering vector associated with a Bragg peak, its
length being h. A NP occupies a geometrical region of space
G. We recall32,33 the definition of a shape function S�r�, such
that S�r�=1 if r lies inside G, and S�r�=0 otherwise. We
shall henceforth suppose that S�−r�=S�r� so that its Fourier
transform is real.

However, defining the shape of a crystal means also to
describe what happens to the atoms on the surface. These are
increasingly important at very small sizes. In fact, there are
different ways of interpreting the action of S�r�, the most
meaningful ones being �a� truncating sharply the scattering
density �the electron density for x rays� at the surface;32,33 �b�
selecting all whole unit cells whose origins are in G and all
whole atoms whose centers lie in the selected cells;34 �c�
selecting all whole atoms whose centers are in G. Useful
illustrations are found in Fig. 1 of Ref. 17 �see Figs. 1�a�,
1�c�, and 1�d�, respectively, for �a�, �b�, and �c��.35 To evalu-
ate the diffracted intensities, in cases �b� and �c�, one may
utilize the Debye function. In this way the chosen model is
faithfully represented. It is possible, however, to proceed in a
different way, that is, by the shape-function method. Accord-
ingly, we first evaluate the scattering amplitude A�q�. The
explicit expressions17 are, for cases �a�, �b�, �c�:

Aa�q� = �
h��*

S̃�q − h�F�h� , �1�

Ab�q� = �
h��*

S̃�q − h�F�q� , �2�

Ac�q� = �
h��*

S̃�q − h�F�h,q� , �3�

where �* is the reciprocal lattice; S̃�q� is the Fourier
transform36 of S�r�, or

S̃�q� = �
R3

d3r S�r�e2�iq·r = �
G

d3r e2�iq·r, �4�

and it satisfies S̃�q�= S̃�−q� because S�−r�=S�r�; F�h� is the
unit-cell structure factor

F�h� = �
�=1

Na

f��h�e2�ih·r�, �5�

where the sum index � runs over the atoms in the unit cell,
which have form factors f�,37 and position vectors �relative
to the cell origin� r�; F�q� is the same as the former but
evaluated in q; and F�h ,q� is the mixed expression

F�h,q� = �
�=1

Na

f��q�e2�ih·r�. �6�

It is evident that form �a� is simpler but by construction
less reasonable—for electron and x-ray diffraction—than �b�
and �c�. In fact, the sharp truncation of the electron density at
the surface is unjustified. For neutron nuclear elastic scatter-
ing the atoms are point scatterers �when the Debye-Waller
factor can be neglected or factored out�; therefore, construc-
tion �a� coincides with �c�. Accordingly, in the neutron case,
the atomic form factors are constant and Aa�q�=Ac�q�.

Form �b� depends on an appropriate choice of the unit
cell. Clearly, it preserves the stoichiometric composition and
symmetry.

Form �c� needs a careful implementation �regarding the
definition of G� to preserve stoichiometry, which is important
for ionic compounds; however, it is clearly more flexible.
Remark also that, in the case of monatomic lattices,
instead—as for simple-cubic, face-centered or body-centered
cubic metals—constructions �b� and �c� will be coincident
and Ab�q�=Ac�q�.

B. NP scattering intensities

Squaring Eqs. �1�–�3� we obtain the intensities. Supposing

S centrosymmetric and S̃ real, we have

Ia�q� = �
h��*

S̃2�q − h��F�h��2, �7�

Ib�q� = �F�q��2 �
h��*

S̃2�q − h� , �8�

Ic�q� = �
h��*

S̃2�q − h��F�h,q��2. �9�

Here, we have neglected cross summations of the form

R�q� = �
h,k��*

k�h

S̃�q − h�S̃�q − k�Mq,h
x M̄q,k

x �10�

where the overbar stands for the complex conjugate and, for
x=a,b,c, respectively, it is Mq,h

a =F�h�, Mq,h
b =F�q�, or Mq,h

c

=F�h ,q�. Neglecting R�q� is, first of all, a question of con-
venience, because its evaluation—either analytical or
numerical—is extremely difficult.

There are obvious reasons for neglecting R�q� for large
particles. Consider a spherical particle with cubic structure

with lattice parameter a and radius R�a. S̃�q� is large only
for q�1/R, and decreases as �2�qR�−2 for q�1/R. As for
any Bragg peak h it is 1 /R	1/a�h, R�q��O(�R /a�−2)
can be neglected.

For smaller particles the situation is different. In Refs. 17
and 34 it is proposed that R�q� is negligible due to a certain
statistical “smearing” of the NP surface region on a thickness
of the order of the lattice parameter a. However, this hypoth-
esis cannot be accepted by default.
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First, the order at the surface strongly depends on the
considered crystal phase and on the actual sample. Consider
that for a NP of diameter D=Na, the fraction of atoms in-
cluded in a layer of thickness a is 	6/N �about 50% at D
=10a and still 12% at D=50a�. The structure of this large
fraction should be carefully considered on a case-by-case
basis. Relaxations in the core due to a disordered layer of
thickness a should also be considered. Second, supposing a
default smearing of the NP boundaries flattens the different
construction principles of forms �a�, �b�, and �c�. In fact, the
differences among them regard the finest details of the NP
surface structure.

We shall hereafter assess the effect of neglecting R�q� on
the calculation of a powder diffraction pattern. In the Appen-
dix we carry out some relevant calculations. Evidently this
will depend on the choice of form �a�, �b�, or �c�. Examples
are reported in the following section.

For form Ib�q� it turns out that, even when R�q� is not
negligible, it yields a contribution that is approximately pro-
portional to the retained term Ib�q� of the scattered intensity.
This means that the effect of neglecting R�q� may be just a
small error on the global scale factor for samples composed
of particles of equal size. However, as this effect is size
dependent, it may hamper the evaluation of size distribution
when this is not very narrow. A size-related correction factor
for the scale factor may—and should—be evaluated �see the
Appendix� in this case. This of course is an undesired com-
plication.

In cases �a� and �c� the neglected term R�q� depends on
the crystal structure �see the Appendix�. It is not a constant
scale factor for all Bragg peaks, and it may have a significant
gradient in the Bragg peak positions. At very small sizes the
latter may induce a systematic error also in the lattice con-
stant determination. However, in the x-ray case, for form �a�
R�q� is larger—and has a larger gradient in the Bragg peak
neighborhood—than the corresponding term for form �c�.

C. NP powder patterns

To obtain a powder diffraction pattern, we must inte-
grate Ix�q� �x=a,b,c; see Eqs. �1�–�3�� at constant q.
We write q in polar coordinates as q
= �q sin 
 cos � ,q sin 
 sin � ,q cos 
�
�q ,��, where � is
the orientation defined by the pair �
 ,��. We have to inte-
grate over the set of all orientations 

�0�
�� ,0��
�2�� �with d�
sin 
 d
 d��, as

sin 
 d
�
0

2�

d� Ip
x�q� = q2�




d� Ix�q,�� . �11�

In detail, considering the expressions for the different cases,
we have

Ip
a�q� = q2 �

h��*

�F�h��2�



d� S̃2�q − h� , �12�

Ip
b�q� = q2 �

h��*
�




d��F�q��2S̃2�q − h� , �13�

Ip
c�q� = q2 �

h��*

�F�h,q��2�



d� S̃2�q − h� . �14�

The integration in case �b� is much more difficult and it
cannot generally be expressed in closed form even for simple
shapes. Therefore, as a careful implementation of form �c� is
at least as good a description as form �b�, we shall disregard
�b� in the following. Suppose now that G is a sphere of
radius R and volume V=4�R3 /3, we have

S̃�q� = S̃�q� = 3V
 sin�y� − y cos�y�
y3 �

y=2�qR
�15�

and, as �q−h�= �q2+h2−2qh cos 
�1/2,

S̃�q − h� = 3V
 sin�y� − y cos�y�
y3 � �16�

with y=2��q2+h2−2qh cos 
�1/2R.
Substituting in Eqs. �12� and �14� yields32

Ip
a�q� =

3qVR

8�
�

h��*

�F�h��2
�A− − A+�

h
, �17�

Ip
c�q� =

3qVR

8�
�

h��*

�F�h,q��2
�A− − A+�

h
, �18�

where A±
y±
−2�1−sin�2y±� /y±+sin2�y±� /y±

2� for y±

=2�R�q±h�. Now we consider the crystal’s Laue group G so
that we can extend the summation on the asymmetric part
�* /G of the reciprocal lattice:

Ip
a�q� =

3qVR

8�
�

h��*/G
�h�F�h��2

�A− − A+�
h

, �19�

Ip
c�q� =

3qVR

8�
�

h��*/G
�h�F�h,q��2

�A− − A+�
h

, �20�

where �h is the multiplicity of h subject to G. Evaluation of
Ip

c�q� is only slightly more complex than for Ip
a�q�, and the

gain in accuracy justifies the effort.
We have computed test patterns to compare forms �a� and

�c�, considering NPs of diameter 	10a, this being the lower
size limit of validity of the shape-based approach.

We have considered Au3925 spherical fcc NPs of diameter
5 nm �a=0.407 86 nm�, constructed according to principle
�c� of Sec. II A. The diffraction pattern has been evaluated
for wavelength �=0.154 056 nm, 2�=20°–150°, including
Lorentz correction and Debye-Waller factor exp�−Bq2 /2�
�B=0.005 nm2�. In this case, as the monatomic fcc Wigner-
Seitz unit cell contains one atom, principle �c� coincides with
�b�. The powder pattern was calculated exactly by the Debye
sum10,15 and by Eqs. �19� and �20�. The profiles shown in
Fig. 1�a� have been calculated on an absolute scale. They
match quite well, but a maximum error 	2–3 % is present in
both cases �a� and �c�. The profile wR agreement index be-
tween Ip

Debye and Ip
c is 3.1%, between Ip

Debye and Ip
a is wR

=4.4%. The difference profiles �Fig. 1�b�� show that Ip
Debye

− Ip
c has a similar shape to Ip

Debye, while Ip
Debye− Ip

a is quite
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different. Accordingly, refining a scale factor between Ip
Debye

and Ip
c lowers wR to 2.0% �with featureless difference, Fig.

1�c��, while a scale factor between Ip
Debye and Ip

a yields wR
=3.5%, with still a characteristic difference profile. Further-
more, the peak positions are very little shifted ��0.002° �
between Ip

Debye and Ip
c, while they are shifted up to 0.04°

between Ip
Debye and Ip

a.

Then, we considered �ZnSe�1289 spherical NPs of diameter
4.8 nm of zinc-blende structure �a=0.5633 nm�, constructed
according to principle �c� of Sec. II A. The diffraction pattern
has been evaluated for wavelength �=0.154056 nm, 2�
=20°–135°, including Lorentz correction and Debye-Waller
factor exp�−Bq2 /2� �B=0.005 nm2�. In this case, as the fcc
Wigner-Seitz unit cell contains two atoms, construction �c�
differs from �b�. Once more, the powder pattern has been
calculated exactly by the Debye sum10,15 and also by Eqs.
�19� and �20�. The profiles—calculated on an absolute scale
�Fig. 2�a��- match with a maximum error 	1–2 % for both
cases �a� and �c�. The profile agreement index wR between
Ip

Debye and Ip
c is 1.8%, between Ip

Debye and Ip
a is wR=3.1%. The

difference profiles �Fig. 2�b�� show again that Ip
Debye− Ip

c has a
similar shape to Ip

Debye, while Ip
Debye− Ip

a is quite different. Ac-
cordingly, we have refined again a scale factor �and this time
also a different Debye-Waller factor B, assumed the same for
Zn and Se� between Ip

Debye and Ip
c. wR decreases to 1.6% with

featureless difference �Fig. 2�c��. In contrast, when refining
the scale factor and Debye-Waller factor between Ip

Debye and
Ip

a the agreement index does not go below wR=3.1%. Also
the difference profile is little changed �Fig. 2�c��. Again, the
peak positions are very little shifted ��0.001° � between
Ip

Debye and Ip
c, while peak shifts up to 0.05° between Ip

Debye and
Ip

a are found. Form �c� again turns out to be less affected than
�a� by neglecting the cross term R. A small variation of the
Debye-Waller factor �from 0.005 to 0.0047 nm2� is due to
the fact that the error due to neglect of R changes the inten-
sity ratios slightly. This is however less troublesome than the
peak shifts observed for form �a�.

It results that at NP diameters D	10a the errors in the
shape-based diffraction pattern calculations, whatever form
we choose, start to be evident. This approach should not be
used below this threshold. Also, form �a�—which is the stan-
dard choice for large particles—shows a much larger error
and should be avoided in favor of �c�.

D. The log-normal size distribution

There are several experimental and theoretical reasons38

to believe that NP powders have a log-normal distribution of
NP size. The log-normal distribution of NP radii is usually
written in terms of its mode Rm and width wR, as

L�R� =
1

wR
�2�

exp�−
�log�R� − log�Rm��2

2wR
2 � . �21�

The most direct information on a distribution is provided by
the distribution-averaged NP radius Rav and the relevant
standard deviation �R. For a log-normal distribution, the lat-
ter parameters are related to the former by

Rav = Rmexp�wR
2/2�, �R = Rm

2 exp�2wR
2� , �22�

and

Rm =
1

�1 + �R
2/Rav

2
,

FIG. 1. �Color online� A model 5.0-nm spherical Au cluster. �a�
The powder diffraction pattern. Continuous �red� line, exact inten-
sity Ip

D calculated by the Debye function �Ref. 15�; dashed �green�
line, 5% shifted up, Ip

c, see Eq. �20�; dotted �blue� line, 10% shifted
up, Ip

a, see Eq. �19�. All intensities are on the same scale and plotted
as percent of max�Ip

D�. �b� Bottom line �red�, difference Ip
D− Ip

c;
middle line �green�, difference Ip

D− Ip
a; top line �blue�, the exact

pattern ID/100 for comparison. �c� Bottom line, continuous �red�,
difference Ip

D−s Ip
c after refining with a scale factor s=1.024;

middle line, dashed �green�, difference Ip
D−sIp

a after refining with a
scale factor s=1.027; top line, dotted �blue�, the exact pattern
ID/100 for comparison.
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wR = �log�1 + �R
2/Rav

2 � . �23�

We shall use a form depending directly on Rav ,�R.39 Setting
two adimensional parameters �=R /Rav, c=1+�R

2 /Rav
2 , we

have

L�R� =
1

R�2� log�c�
exp
−

log2���c�
2 log�c�

� . �24�

Volume- and area-averaged NP diameters can be derived
from

DV =
3

2
Ravc

3, DA =
4

3
Ravc

2. �25�

III. NANOCRYSTALLINE CERIA

A. Experiment

X-ray powder diffraction patterns of a nanocrystalline
20-nm CeO2 sample, available for a round robin,39 were
downloaded.40 The NP size is well inside the limits of valid-
ity of the shape-based method. Among the available data
sets, the selected raw data were collected at the NSLS X3B1
beamline of the Brookhaven National Laboratory in flat-plate
geometry, with a double-crystal Si�111� monochromator on
the incident beam ��=0.6998 Å, 2�=12° �0.01° �60°� and a
Ge�111� analyzer crystal on the diffracted beam.

B. Data preprocessing

Three data preprocessing stages have been accomplished.
First, the instrumental function has been deconvoluted by an
original advanced technique, including denoising and back-
ground subtraction, described in Ref. 41.

Second, the pattern has been fitted by generic asymmetric
Voigt profiles so as to obtain information about peak posi-
tions and intensities. By comparing the intensities as evalu-
ated from the fit with the theoretical ones a small correction
for texture and/or microabsorption has been evaluated. The
intensity corrections so obtained have then been stored and
used in the subsequent stages.

Finally, the peak positions were found to be slightly an-
isotropically shifted. This has been attributed to a small re-
sidual stress, due, e.g., to dislocations. To confirm this point,
we have evaluated the average lattice spacing variations
��d /d�h=−�� /360�cot��h���2�h� for all single reflections h.
Then we have compared those values with a simple model of
elastic anisotropy.42 They resulted in good agreement. In Fig.
3 we show the fit of ��d /d�h’s with Eq. �28� of Ref. 42. The
magnitudes of the residual stress tensor components, at least
for those which can be determined in this way, resulted in the
range 1–10 MPa. The values of ���2�h�� are below 0.005°,
and ��d /d�h are in the range in �1–7��10−4, which are quite
small values. As the strain broadening is of the same order of
magnitude as the peak shifts,43 we can confirm that strain
broadening is rather small in the CeO2 sample and can be
neglected, as in Ref. 39. Also the residual-stress peak shifts
so obtained have been saved as fixed corrections for the sub-
sequent stages.

C. Full-pattern refinement

The total intensity diffracted by the powder NP sample is
described by the sum

FIG. 2. �Color online� A model 4.8-nm cubic ZnSe spherical NP.
�a� The powder diffraction pattern. Continuous �red� line, exact in-
tensity Ip

D calculated by the Debye function �Ref. 15�; dashed
�green� line, 5% shifted up, Ip

c, see Eq. �20�; dotted �blue� line, 10%
shifted up, Ip

a, see Eq. �19�. All intensities are on the same relative
scale, as percent of max�Ip

Debye�. �b� Bottom line �red�, difference
Ip
D− Ip

c; middle line �green�, difference Ip
D− Ip

a; top line �blue�, the
exact pattern ID/100 for comparison. �c� Bottom line �red�, differ-
ence Ip

D−sIp
c after refining with a scale factor s=0.999 and an

overall-isotropic Debye-Waller factor B=0.468; middle line
�green�, difference Ip

D−sIp
a after refining with a scale factor s

=0.996 and B=0.467; top line �blue�, the exact pattern ID/100 for
comparison.
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Ical�q� = Ibkg�q� + �
k=0

kmax

L�Rk�Ik�q� , �26�

where Rk= �k+1/2��R, k=1–kmax; Ik�q� is Ip
c�q� of Eq. �20�

evaluated at R=Rk; and Ibkg�q� is a polynomial modeling the
background. The step �R=a�2� /3�−1/3 is chosen so as to
have an integer number of atoms in each kth sphere of radius
Rk, while keeping the point density constant and preserving
stoichiometry. It is evidently possible to use a size-dependent
lattice parameter ak in the calculation of Ik�q�. For this
sample this has been deemed unnecessary. Indeed, for diam-
eters of 20 nm, the lattice parameter of CeO2 has been
found44 to be already equal to the bulk value. A least-squares
full-pattern refinement means minimizing the quantity

�2 = �
i=1

Nobs

�Ical�qi� − Ii
obs�2wi. �27�

Here Ii
obs is the ith point of the experimental pattern corre-

sponding to the scattering vector qi ,Nobs is the number of
experimental points, and the weights wi are the estimated
inverse variance of the observations. The refined parameters
are the average NP radius �Rav� and the radius dispersion �R,
the isotropic Debye-Waller factors B for O and Ce atoms, the
cubic unit-cell parameter a, and seven background coeffi-
cients. For the minimization, we have used �for this work� a
modified simplex algorithm,45 which is robust but time con-
suming; however, computing times were reasonable. A
derivative-based algorithm �Newton, in progress� should
give a handsome acceleration.

The final results are given in Table. I, together with the
corresponding values of Ref. 39. The Debye-Waller factors
result as BCe=0.0065 nm2 and BO=0.0084 nm2. The calcu-
lated profile is plotted in Fig. 4 with the experimental pattern
and the profile difference. The excellent fit quality and the
final goodness-of-fit value �1.21� indicate the achievement of

a reliable result. Indeed, the estimated parameters are in good
agreement with Ref. 39. The slight discrepancy �	0.2 nm�,
larger than the standard deviations, might be explained by
the improved deconvolution method here applied and by the
use of the whole pattern instead of a limited number of peaks
as in Ref. 39.

IV. CONCLUSIONS

The method of shape convolution to calculate the diffrac-
tion pattern of NP powders has been thoroughly discussed
with respect to its limits of validity. Concerns in applying
this method below its optimal size range have been demon-
strated theoretically and by simulated patterns. Finally, the
effectiveness of full-pattern powder data analysis based on
the shape-convolution method was proved in obtaining pre-
cise size distribution information on NP powder samples
with a log-normal distribution of spherical crystallites.

APPENDIX: ERROR EVALUATION

Assume we deal with particles of centrosymmetric shape
S�r�=S�−r� and equivalent spherical radius R �i.e., the radius

FIG. 3. �Color online� The measured �red, error bars� and cal-
culated �blue, diamonds� lattice spacing variations for all well-
isolated Bragg peaks of CeO2 plotted against the relevant peak dif-
fraction angles. Error bars have been evaluated assuming a constant
error of 0.0006° on the anisotropic angular peak shift. Calculated
values refer to the model of Ref. 42 where residual stress compo-
nents have been refined.

TABLE I. Comparison of size distribution results. Standard de-
viations are in parentheses. Units are nanometers, except for
�R

2 /Rav
2 , which is adimensional.

This work Ref. 39

Rav 9.58 �0.02� 9.33 �0.07�
�R 4.138 �0.003� 3.92

�R
2 /Rav

2 0.1866 �0.0008� 0.177 �0.003�
DV 24.01 �0.02� 22.8 �0.4�
DA 17.98 �0.02� 17.2 �0.2�

FIG. 4. �Color online� Nanosized CeO2 powder pattern final fit.
Violet Dark gray �violet� diamonds, the observed deconvoluted in-
tensity; light gray �orange� thick line, the calculated intensity; black
thin line, below, difference profile �same scale, shifted�.
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of the sphere of equal volume�. The shape Fourier transform

S̃�q� is then a real even function:

S̃�q� = S̃�− q� . �A1�

Recall also that the gradient of an even function is odd:

G̃�q� 
 �qS̃�q� = − G̃�− q� . �A2�

Our aim is to evaluate—for the different forms �a�, �b�, �c�
as introduced in Sec. II A and calculated in Secs. II B and
II C—the neglected residual intensity contribution R�q� of
Eq. �10� with respect to the corresponding retained term �cf.
Eqs. �7�–�9�� in the immediate vicinity of a Bragg peak.

Let h0 be the nearest Bragg peak to q. First note that, if
�q−h0��1/R, R�q� is of order �2�qR�−4, so we neglect it
altogether. If q is very close to h0, set q=h0+�q �so �q
�1/R�. We can drop in the sum over h all terms with h
�h0 because they are O�2�qR�−4 and reorder the second
sum, obtaining

Ra�h0 + �q� 	 S̃��q� �
k��*

k�0

S̃��q + k�F�h0�F̄�h0 − k� ,

�A3�

Rb�h0 + �q� 	 S̃��q��F�h0 + �q��2 �
k��*

k�0

S̃��q + k� ,

�A4�

Rc�h0 + �q� 	 S̃��q� �
k��*

k�0

S̃��q + k�F�h0,q�F̄�h0 − k,q� ,

�A5�

where q
�h0+�q�.
At the same time, for q=h0+�q with �q�1/R, the in-

tensities Ix�q� of Eqs. �7�–�9� can be approximated by the
h0th term of the sum on the right-hand side, neglecting terms

of O�2�qR�−4. Furthermore, in general, S̃��q�= S̃�0�
+O��q2�. Therefore, the ratios Rx�h0+�q� / Ix�h0+�q� are
given by

R̂a�h0,�q� 

Ra�h0 + �q�

S̃2��q��F�h0��2
	 �

k��*

k�0

s̃��q,k�
F̄�h0 − k�

F̄�h0�
,

�A6�

R̂b�h0,�q� 

Rb�h0 + �q�

S̃2��q��F�h0 + �q��2
	 �

k��*

k�0

s̃��q,k� ,

�A7�

R̂c�h0,�q� 

Rc�h0 + �q�

S̃2��q��F�h0,q��2
	 �

k��*

k�0

s̃��q,k�
F̄�h0 − k,q�

F̄�h0,q�

�A8�

where s̃��q ,k�
 S̃��q+k� / S̃�0�.
Note that, because of Eqs. �A1� and �A2�, we have

s̃��q,k� = s̃�− �q,− k� , �A9�

g̃��q,k� 
 ��qs̃��q,k� = G̃��q + k�/S̃�0� = − g̃�− �q,− k� .

�A10�

We can immediately verify that in case �b� the result is

��qR̂b�h0,�q� = �
k��*

k�0

g̃��q,k� . �A11�

In the sum above the term with index k is always accompa-
nied by a term with index −k. Setting also �q=0, and using
Eq. �A10�, we have

��qR̂b�h0,0� = �
k��*/2

�g̃�0,k� + g̃�0,− k�� = 0, �A12�

where �* /2 denotes an arbitrarily chosen half space of the
reciprocal lattice without the origin. Now, expanding

R̂b�h0 ,�q� in Taylor series at �q=0, we have

R̂b�h0,�q� 	 R̂b�h0,0� + O��q2� . �A13�

Note also in Eq. �A7� that R̂b�h0 ,0� does not depend on the
considered Bragg reflection h0. Therefore, we can write

Rb�q� � Ib�q� , �A14�

and the proportionality constant can be evaluated by Eq.
�A7� with �q=0. We can conclude that the effect of neglect-
ing Rb will be just a relative error on the global profile scale
factor. This factor is size dependent, however, therefore for
size distribution analysis at small sizes it may be necessary
to introduce a correction as from Eq. �A7�.

Cases �a� and �c�, are more complex. We are interested in
powder diffraction, where I�q� is to be integrated at constant
q; therefore we shall consider

R̄x�h0,�q� =
1

2
�R̂x�h0,�q� + R̂x�− h0,− �q�� . �A15�

Expanding R̄x�h0 ,�q� in Taylor series at �q=0, we have

R̄x�h0,�q� 	 R̄x�h0,0� + ��qR̄x�h0,0� · �q + O��q2� .

�A16�

We shall now develop R̄a�h0 ,�q� and ��qR̄a�h0 ,0� in cases
�a� and �c�.

1. Case (c)

First, recall that the atomic form factors f��q� are con-
stants for neutron scattering and monotonically decreasing
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smooth functions in the x-ray case. In the latter case, further-
more, the form factors of different elements have remarkably
similar profiles. For a structure with Na atoms in the unit cell,
it is then possible46 to approximate

f��q� 	 c��f�q�� 
 c�

1

Na
�
�=1

Na

f��q� �A17�

with c� appropriate constants. Therefore the structure factor
ratios appearing in Eq. �A8� can be simplified as

F̄�h0 − k,q�

F̄�h0,q�
	

�
�=1

Na

c�e−2�i�h0−k�·r�

�
�=1

Na

c�e−2�ih0·r�


 ��h0,k� , �A18�

independent of q= �h0+�q�. Note that

��− h0,− k� = �̄�h0,k�, ��− h0,k� = �̄�h0,− k� .

�A19�

Now we can write explicitly R̄c using Eqs. �A8� and �A15�
and

R̄c�h0,�q� =
1

2 �
k��*

k�0

�s̃��q,k���h0,k� + s̃�− �q,k��̄�h0,− k�� .

�A20�

Splitting the sum, reordering k→−k in one part, using Eq.
�A9�, and recombining, we have

R̄c�h0,�q� = �
k��*

k�0

s̃��q,k�Re���h0,k�� . �A21�

Again as in Eq. �A12�, we can pair terms with k and −k.
Using Eq. �A19�, we obtain

R̄c�h0,�q� = �
k��*/2

Re�s̃��q,k���h0,k�

+ s̃��q,− k���h0,− k�� . �A22�

Define now the arbitrary half lattice �* /2 as that defined by
a plane perpendicular to h0 passing through the origin and
containing h0. The origin is excluded. We have

R̄c�h0,0� = �
k��*/2

s̃�0,k�Re���h0,k� + ��h0,− k�� .

�A23�

Then, evaluating the gradient in �q=0, using Eq. �A2�, we
have finally

��qR̄c�h0,0� = �
k��*/2

g̃�0,k�Re���h0,k� − ��h0,− k�� .

�A24�

The gradient ��qR̄c�h0 ,0� is a vector. We have to take its
angular average to determine the effect on the powder pat-
tern. This is done by simply taking the scalar product with

ĥ0
h0 /h0:

��qR̄c�h0,0� · ĥ0 = �
k��*/2

�g̃�0,k� · ĥ0�Re���h0,k� − ��h0,

− k�� . �A25�

For a spherical shape, this will be g̃�0,k� �k; therefore
terms with k�h0 will be zero and those with k �h0 will be
most important. Both g̃�0,k� and s̃�0,k� are damped oscilla-
tory functions with amplitude ��2�kR�−2. As 1/a�k, the

magnitudes of both R̄c�h0 ,0� and ��qR̄c�h0 ,0� are of order
�a /R�2. Unfortunately, Eq. �A25� cannot be estimated in
more detail, because of the dependence on the “reduced”
structure factors ��h0 ,k�. However, we can assess that its
importance would be smaller than the corresponding term for
case �a� for x-ray scattering.

2. Case (a)

In case �a�, we can trace the same steps as in case �c� but
instead of the reduced structure factors ��h0 ,k� we have to
consider the ratios

��h0,k� =
F̄�h0 − k�

F̄�h0�
=

F̄�h0 − k�F�h0�
�F�h0��2

�A26�

and in the analogous sums of Eq. �A23� and Eq. �A25� for

R̄a�h0 ,0� and ��qR̄a�h0 ,0� there will appear terms such as

Re���h0,k� ± ��h0,− k�� . �A27�

The most important terms for the powder pattern are again
those with k �h0. The structure factors F�h0±k� �see Eq. �5��
depend on form factors f���h0±k��, and for k �h0 these will
be strongly different. This in turn will amplify the differ-
ences ��h0 ,k�. Therefore it is likely that for case �a� the
effect of the neglected term Ra will be significantly larger
than for case �c�. The examples reported in Sec. II C show
just that.
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