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We present a theoretical study based on the local field interaction for the reflectance anisotropy spectra of
organic molecular layers. Each layer is formed by an ordered two-dimensional array of polarizable organic
molecules that respond to the local electric field like point-like harmonic oscillators. We concentrate on the
morphological characteristics of the layers and its effect on the spectra, showing that the reorientation of the
molecules from layer to layer, as the system is assembled, gives rise to a line shape of the spectra that goes
from peak-like to derivative-like. Our spectra shows good qualitative agreement with experimental results of a
layered system of metalloporphyrin octaesters molecules deposited onto an isotropic gold substrate by the
Langmuir-Schaefer technique.
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I. INTRODUCTION

Optical spectroscopic techniques are increasingly used
nowadays to investigate surfaces and interfaces. Both linear
and nonlinear optical probes are employed to investigate
very different physical aspects of surfaces with great
success.1,2 In particular, reflectance anisotropy spectroscopy
�RAS� has received growing attention from the experimental
and theoretical sides, since it is one of the few optical tech-
niques that probes the surface and interface structure of cubic
materials directly. It measures the difference between the
normal-incidence optical reflectance of light polarized along
the two principal axes in the surface plane as a function of
the photon energy. RAS data are typically obtained in the
visible-ultraviolet spectral range, thus providing information
about electronic structure modifications due to the creation
of the surface, reconstructions, adsorbates, surface electric
fields, etc.1,2

In recent years, considerable interest in the study of mo-
lecular materials has been aroused due to their large potential
impact on nanotechnology. The characterization of electronic
states in the fabricated molecular structures is essential. Re-
cently, RAS has been applied to organic layers, showing that
the spectra are reliably connected to the electronic properties
of the molecule and to the morphological characteristics of
the layer.3–5 Optical techniques have been demonstrated to be
particularly useful to characterize the arrangements of met-
alloporphyrin octaesters molecules, which we simply call
porphyrins, in Langmuir-Schaefer films. In particular, the use
of polarized light offers the possibility of studying systems
that exhibit anisotropies due to electronic or morphological
characteristics of the organic layer grown onto an isotropic
substrate,6,7 in analogy to what has been done in the case of
semiconductor growth by means of RAS.1,2

In this article, we use a polarizable dipole model,8 based
on the local electric field interaction, to study the RAS ef-
fects due to the arrangement of organic molecular layered
systems. The molecular layers are deposited onto an isotro-
pic substrate by the Langmuir-Schaefer technique, which en-
sures a highly ordered deposition. We show how the line
shape of the RAS spectra changes as a function of the two-
dimensional �2D� arrangement of the molecules on the same
plane. Recently, in Ref. 4, RAS was measured as a function

of the number of layers for a porphyrin system, and an
abrupt change in the RAS line shape at 8–10 monolayer
coverage was found: the line shape, which at lower coverage
is essentially proportional to the Soret band absorption and
thus peak-like, becomes derivative-like. It is argued that this
change may be due to a structural change in the porphyrin
orientation. With the model presented here, we find that this
change could be readily related to morphological changes on
the layers of the films.

The article is organized as follows. In Sec. II we describe
the polarizable dipole model, show how the geometrical ar-
rangement of the molecules is taken into account, and ex-
plain the procedure to obtain RAS. In Sec. III we present and
discuss the theoretical results for different geometries, and in
Sec. IV we compared our results with those of the experi-
ment. Finally, in Sec. V we give our conclusions.

II. THEORY

We study the optical response of a system composed of L
molecular layers sitting on top of an optically isotropic sub-
strate �see Fig. 1�. Each layer consists of N identical non-
overlapping molecules that we take as polarizable entities
ordered in a 2D Bravais lattice �see Fig. 2�. In a given plane,

FIG. 1. Sketch of a system composed of molecular layers. The
arrows represent the molecules �polarizable entities� and the planes
with arrows represent a layer of molecules, with equal � and �. The
molecules on the upper plane show a change in the tilt and twist
angle with respect to those of the lower plane. x�x��, y�y��, and
z�z�� are the coordinates of the system �molecule�, and a1, a2, and
a3 represent the primitive lattice vectors.
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the polarizable entities have the same dipole orientation,
characterized by the polar angle � and azimuthal angle �
with respect to the sample coordinate system �see Fig. 1�.
However, in general, each plane has its own � and �. In
addition, the planes are evenly spaced by a distance d, and
we take, without loss of generality, that the first plane is at a
distance d /2 from the substrate.

We assume that each molecule responds to the incident
electric field like a harmonic oscillator, and take the long-
wavelength limit to represent the optical activity of the mol-
ecules by point dipoles located at the center of mass of the
molecule. We assume that the dipole polarizability, �ij� ���, is
diagonal in its own coordinate system �x� ,y� ,z��, and is
given by

�ij� ��� = �0 0 0

0 0 0

0 0 �0���
� , �1�

implying that the molecule only polarizes along its principal
axis taken as z�, where the indices i , j denote Cartesian co-
ordinates. For a harmonic oscillator we can write

�0��� =
e2f0/m�0

2

1 − ��/�0�2 − i��/�0��1/��0���
, �2�

where �0 is the resonant frequency, � is a damping parameter
related to the width of the resonance, f0 is the oscillator
strength, and m and e the electron’s mass and charge, respec-
tively.

In general, the induced dipole moment of molecule n in
plane � , pi�n ,� ,��, is given by

pi�n,�,�� = �ij�n,�,��E j�n,�,�� , �3�

where E is the local electric field of frequency �, and � is
the polarizability tensor expressed in the sample coordinate
system, given through

�ij�n,�,�� = Rik�n,��Rjl�n,���kl� �n,�,�� , �4�

where the sum over repeated indices is assumed. The rotation
matrix Rij is obtained from the multiplication of the follow-
ing two matrices:

Rz�n,�� = �cos �n� − sin �n� 0

sin �n� cos �n� 0

0 0 1
� , �5�

and

Ry��n,�� = �cos �n� 0 − sin �n�

0 1 0

sin �n� 0 cos �n�
� , �6�

where Rz �Ry�� is a rotation through an angle �� ���� around

the z �y�� axis, thus Rij =Rik
z Rkj

y� is the rotation that takes us
from the molecule’s coordinates to the sample coordinate
system. The plane index � implies that molecules sited on
different planes can have different orientation; i.e., ������
and/or ������.

The local field, in the long-wavelength approximation, is
given by

Ei�n,�,�� = Ei
ext��� + �

n���

�
Mij�n,�;n�,���pj�n�,��,�� ,

�7�

where the first term is the position-independent external
field, the second term is the dipolar field produced by all
other dipoles, and the prime in the sum means that n=n� and
�=��, being the self-interaction, is omitted from the sum.
The tensor

Mij�n,�;n���� = �i� j� 1

	r� − r�n���	
�

r�=r�n�

, �8�

yields the dipolar interaction between the dipoles n� and
n���. We assume that all the molecules of the system are
identical, and that for a given plane they have the same ori-
entation � and �. Then, the summation over n� in Eq. �7� can
be carried out assuming an infinite number of dipoles per
plane and using standard plane-wise schemes that produce
intra- and interplane terms.9 Therefore, the local field can be
written as

E j��,�� = Ej��� + �
��=1

L 
�Tjk�	a1	, 	a2	,������

+ T jk�	a1	, 	a2	,�, 	z� − z��	��1 − �������kl

+
	2��� − 	1���
	2��� + 	1���

T jk�	a1	, 	a2	,�, 	z� + z��	�Skl�

pl���,�� , �9�

where �, ��=1,2 , . . . ,L, with L the total number of planes.
As discussed above, Tij�	a1	 , 	a2	 ,��=�n�

� Mij�n ,� ;n� ,��, is
recognized as the intraplane dipolar interaction tensor that

FIG. 2. The five 2D Bravais lattices, with the choice of the
primitive unitary cell for each lattice �solid lines�. x, y are the sys-
tem’s coordinates, a1, a2 represent the primitive lattice vectors and
� is the angle between them.
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gives the local field contribution of the dipoles on the same
plane ��=���, and Tij�	a1	 , 	a2	 ,� ,z�=�n�

� Mij�n ,� ;n� ,��� as
the interplane dipolar interaction tensor that gives the local
field contribution of the dipoles in plane � with those of
plane ����, where z is the interplane separation and z� is the
vertical position of the �th plane. With these tensors, the
third term in Eq. �9� gives the contribution of the planes on
top of the substrate, whereas the fourth term gives the con-
tribution coming from the images located inside the sub-
strate, as can be recognized by the screening factor given by
the dielectric functions 	1��� of the system, and 	2��� for the
substrate, and Sij =diag�−1,−1,1� gives the correct orienta-
tion of the image dipoles. As we see, the notation has sim-
plified, since now, the induced dipole is the same for each
plane �, thus n has dropped from the aforementioned sums
that define both T and T. However, their arguments 	a1	, 	a2	,
�, and z, denote their dependence on these geometrically
related variables, that are inherited by the local field and the
induced polarization, but not shown explicitly in neither E
nor p. We can then rewrite Eq. �3� as

pi��,�� = �ij��,��E j��,�� . �10�

Since E�� ,��, also depends on p�� ,��, Eq. �10� defines a
system of equations that has to be solved for p�� ,��.

The solution of Eq. �10� is straightforward, and once we
have solved for p�� ,��, we follow Ref. 10, to calculate the
RAS signal of the system �R� as the normalized change in
reflectance through,

R � 8�
 d


� 1

po
�
�=1

L

�Im�px��,��� − Im�py��,���� , �11�

with  the wavelength of the incident light, d the aforemen-
tioned interplane distance, and po a normalization factor with
the units of dipole moment used to set the scale of R. Notice
that R depends on the 2D geometry of the array of dipoles
through the dipolar tensors T and T, and also depends on the
orientation angles � and � of the molecules through the po-
larizability �, as can be easily seen from above equations.

It is instructive to solve Eq. �10� for only one plane, since
the dependence of the polarization on the orientation angles
can be easily understood. This is equivalent to neglect the
interplane interaction. We get,

�px���,py���� =
e2f0

m�0
2 sin2 ��cos2 �Ex,sin2 �Ey�D ,

�12�

where

D−1 = 1 − 
 �

�0
�2

− i
 �

�0
�
 1

�0�
� −

e2f0

m�0
2�Tzz cos2 �

+ �Txx cos2 � + Tyy sin2��sin2 �� , �13�

and pz is not needed in Eq. �11�. From Eq. �12� we see that in
general, the magnitude and the resonant frequency of the
induced dipole moment, given through the poles of D, de-
pend on the angles � and �, as well as T, which has the
implicit dependence on the geometry of the Bravais lattice.

The subtle dependence on f0 is fixed as we take it as a
constant. Note that px= py =0 for �=0, since the dipoles
would point along z only, and thus R=0. From Eq. �13�, we
see that the resonance of the isolated dipole, centered at �0,
is shifted by the interaction with the neighboring dipoles, on
the same plane, through the local field. There are some spe-
cial cases, for example, when the lattice is cubic Txx=Tyy
=Tzz and the dependence on both angles cancels in D, then
the variation of � or � will produce only a change on the
magnitude of the induce dipole. In the case of a square or
hexagonal 2D lattice, Txx=Tyy, then D will depend only on �.
Finally we notice that px����py��� for a finite R, and thus
the geometry of the lattice and the orientation of the mol-
ecule should be such that the x and y components of the
induced dipole moment are different. For all the lattices,
R��=45° �=0.

III. RESULTS

In this section, we study how the RAS spectra changes as
a function of the Bravais lattice and the polar and azimuthal
orientation of the dipoles. To chose some of the parameters
involved in the calculation, we take the experimentally stud-
ied porphyrin layered system deposited onto a polished gold
substrate of Ref. 4. To compare on equal grounds the RAS
spectra of the different geometries, we take the 2D unit cell
area A= 	a1
a2	 as a constant. For instance, we use A
=55 Å2, which is equal to the area per molecule correspond-
ing to the surface pressure of 30 mN/m used at deposition
time in the samples of Ref. 4. We also take the separation
between each molecular plane d=43 Å, which corresponds
to the thickness measured by atomic force microscopy.4

Therefore, the density of molecules by plane will be also the
same for all our examples. From A=55 Å2, we can estimate
that 	a1	 and 	a2	 are of the order of 55 Å which is smaller
than the interplane distance d. In addition, the porphyrin
shows a well-defined absorption peak at 0=2�c /�0
=387 nm and width 1/ ��0��=0.25, which is known as the
Soret band, and it is around this band where the RAS experi-
ments are performed.4 For the parameters chosen for 	a1	 and
	a2	, f0�20 gives a resonance around 0=387 nm. Finally
the value of po is chosen such that it gives a similar ampli-
tude of the calculated and the experimentally measured R,11

and take 	1=2.5 for the porphyrins and 	2��� for gold from
Ref. 12.

To understand how the different parameters change R, we
fix the lattice and begin with the simplest of the Bravais
lattices, the square lattice. Besides the number of planes,
once the lattice is chosen, there is only the angles � and �
left as parameters. We first vary � for a given ��45°, since
for any lattice, R��=45° �=0. In Fig. 3 we show R for L
=1 as a function of  for different values of � and fixed �
=42°. We see that as � increases the peak-like structure shifts
to longer wavelengths, while its intensity and broadening
increase. Similar behavior is found for the hexagonal lattice.
The �-dependence on the numerator of Eq. �12� changes the
peak magnitude, while the �-dependence of D �Eq. �13��
shifts the resonant frequency through the local field. Since �
controls the position of the resonance, we take ��55° to
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coincide with the experimental RAS result �see Fig. 9 below�,
which gives a redshifted Soret band for �395 nm.4

Now we analyze how the spectrum changes as a function
of �. In Fig. 4 we show R for the same square lattice of the
previous figure, but for several values of � and a fixed �
=55°. The amplitude of R changes and its sign is reversed
when � crosses 45°. The same behavior is seen for the hex-
agonal geometry and is explained by the �-dependence of
Eqs. �12� and �13�. For the square and hexagonal lattices the
relation Txx=Tyy is satisfied, so that the �-dependence of D
drops out and only the simple �-dependence of Eq. �12�
remains, which only changes the projection of each compo-
nent of p and thus only changes the magnitude of R. For �
such that px� py, R is positive, otherwise is negative.

For the rectangular lattice R presents a red- or blueshift in
addition to the change of the peak magnitude and sign. The
direction of such a shift depends on which axis, x or y, is
parallel to the largest side of the rectangle, as is shown in
Fig. 5. For a1�a2 �a1�a2� the peak is redshifted �blue-

shifted� as � increases. In the case of the centered rectangu-
lar and oblique lattices the behavior of R with � depends on
the value of � �Fig. 2�. If � is equal to or around 45° the
behavior is similar to that of a square �and hexagonal� lattice,
because for this value of �, Txx�Tyy and the �-dependence
in D is negligible. However, if � is not around 45° we have
Txx�Tyy, and the �-dependence in D is strong, just as for the
rectangular lattice. The fact that Txx�Tyy can be seen as an
intrinsic surface anisotropy, which is responsible for the shift
in frequency of the peak-like structure shown in Fig. 5.

The behavior of Figs. 3–5, is actually found in all the 2D
lattices and is independent of the value of L. Therefore, from
these figures, we learn that for a system in which the polar-
izable entities of all the layers have the same values of � and
�, the spectrum always presents a peak-like structure and
that the magnitude and resonant frequency are functions of
the angles � and �. However, the experimental results of
Ref. 4 show that R, goes from a peak-like to a derivative-
like line shape as the number of deposited layers increases.
We find that our model reproduces such results, if we allow
for different values of � and � for each plane. Indeed, in Fig.
6 we show, for the square lattice, R for L=2, along with the
imaginary part of the dipole polarization components
Im�px���� and Im�py���� for the two planes. For �=1 �1

=42° and �1=55° and for �=2 �2=48°, and we take two
different values of �2=56° and 54°. First of all, we see that
R of both configurations has a derivative-like lineshape. For
�1��2 ��1��2�, R is positive �negative� for short wave-

FIG. 3. R vs  for a square 2D lattice with L=1 and �=42°, for
several values of �.

FIG. 4. R vs  for a square 2D lattice with L=1 and �=55°, and
for several values of �.

FIG. 5. R vs  for a rectangular 2D lattice with L=1 and �
=56°, for several values of �, taking x �a1. Upper �lower� panel
a1�a2 �a1�a2�.
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lengths and negative �positive� for large wavelengths. This
change from positive to negative or vice versa in R, is un-
derstood in terms of the induce dipole acquired by each
plane. As we explained above, both the resonant frequency
and magnitude of the polarization are in general a function of
the angles � and �, but for the square or hexagonal lattice the
resonant frequency is function only of �, and � only controls
the magnitude of p. In Fig. 6 we see that the resonant fre-
quency of the polarization of each plane is at different fre-
quency due to the fact that each has a different angle �, and
has different magnitude in view of the different values of �.
Thus, when we subtract Im�px���� from Im�py����, we get a
positive or a negative peak in R, which alternates as a the
wavelength is changed, and therefore gives the derivative-
like line shape. For instance, for �1��2, the first plane has
Im�px�� Im�py� and in the second plane the opposite occurs:
Im�py�� Im�px�. Therefore, in the first plane Im�px�
−Im�py� will be positive and in the second plane Im�px�
−Im�py� will be negative. Thus when we evaluate Eq. �11�,
we obtain that the RAS line shape has two peaks of different
sign forming a derivative like spectrum. Notice that the po-
sition for the resonance of the polarization for the second
plane is blueshifted as �2 is decreased �lower panel�, whereas
the polarization of the first plane remains fixed by the obvi-
ous reason that its parameters are fixed. Therefore, the nega-
tive peak in R comes from the second plane, and its negative

in view of �2�45°. If both �1 and �2 are smaller �larger�
than 45°, R would show two positive �negative� peaks. By
the same token for �1��2, if we take �1�45° ��2, we
would get R going from positive to negative values as  is
increased, but the positive �negative� peak will come from
the second �first� plane.

In Fig. 7, we show R and Im�p� for a rectangular lattice
with L=2, for a1�a2 and for both �1��2 and �1��2. For
�1��2 we see that since Im�p�x��=1�� Im�p�y��=1� and
Im�p�x��=2�� Im�p�y��=2�, R goes, as  increases, from a
positive peak to a negative peak, in a derivative-like fashion.
In contrast, when �1��2 we see that the resonant peaks of
the polarization in the first and second planes are separated in
 �notice the different range of  in Fig. 7�, such that there is
almost no overlap of the off-resonant part of the polarization,
giving a lineshape that resembles more two isolated reso-
nances, one positive and one negative, than a derivative-like
lineshape. To complement Fig. 7, in Fig. 8, we show R for
values of a1 smaller and larger than a2, passing through the
square lattice, and always using a2=A /a1, and taking a1 �x.
We see that the peaks in R change from positive to negative
for increasing , as the lattice goes from an oblate, a1�a2, to
a prolate rectangle, a1�a2, where we include the square lat-
tice, a1=a2.

From Figs. 6–8, and equivalent behavior found for the
other three lattices, we see that for a system with more than
one molecular layer, allowing the upper layers to reorient
with respect to the underlying ones, R acquires a derivative-
like line shape. This behavior is directly related to the mag-

FIG. 6. R, Im�px� and Im�py� vs  for a square 2D lattice with
L=2. �1=42°, �1=55°, �2=48°, and �2=56° �upper panel� or �2

=54° �lower panel�. Notice that Im�p���=1� is the same in both
panels but that Im�p���=2� moves from the right �upper panel� to
the left �lower panel�.

FIG. 7. R, Im�px�, and Im�p�y vs  for a rectangular 2D lattice
with L=2, �1=56° ��2=55° �top panel� and �1=56° ��2=57°
�bottom panel�. Notice the different range of  for both panels.
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nitude of the induced dipole along the two mutually perpen-
dicular surface directions x and y. We find that for the square,
hexagonal, and prolate rectangular, prolate centered rectan-
gular, and prolate oblique lattices, tilting the dipoles of the
upper layers towards �away� the surface normal, produces a
derivative-like line shape that goes from negative �positive�
to positive �negative� values of R as  is increased. The
opposite behavior is found for the oblate rectangular, oblate
centered rectangular, and oblate oblique lattices, in which for
dipoles that get closer to �farther from� the surface normal in
the upper layers, the derivative-like spectrum goes from
positive �negative� to negative �positive� values of R as  is
increased.

IV. COMPARISON WITH EXPERIMENT

The previous figures show a comprehensive overview of
the dependence of R on the different parameters that control
the signal. For a given 2D Bravais lattice, the orientation of
the dipoles in each plane, and the number of planes, basically
determine the spectra. Now, we proceed to compare with
experimental results. In a RAS experiment, one has to
choose a fixed direction in the sample, and from this specify
x and y. For instance, in crystalline surfaces, one of the sur-
face crystal axis is used as the x direction, which fixes y and
the subsequent sign of R. In our previous examples, the x
axis is always specified along a1; however, it should be clear
that if one chooses y to be along this direction, the sign of R
would be reversed, and thus one should be careful and aware
that when comparing with experiment, there is always the
possibility of not using the same coordinate system. The ex-
periments of Ref. 4 chose their coordinate system along the
directions of the sample holder and not necessarily along any
of the possible intrinsic directions of the porphyrin array. In
addition, there is not direct evidence of what the actual array
of porphyrins is like, so that we have to make some plausible
assumption. As the layers of porphyrin are deposited, we
could think that the interaction of the porphyrin’s � orbitals
with the substrate will be screened by the underlying layers,

thus producing top layers of porphyrins which will try to
align its dipole moment along the substrate normal.4 The
experimental results of Ref. 4 give a RAS signal with single
positive peak �near Soret band energy of an isolated porphy-
rin�, when the sample has less than eight layers, but as more
porphyrin layers are deposited, the RAS develops into a
derivative-like signal which goes from positive to negative
values of R as the wavelength is increased �see Fig. 9�. As
we saw in Sec. III, we not only need a varying � but also a
changing � in order to be able to produce the RAS signals
with derivative-like line shapes. Recall that both � and �
control the position and relative strength of the resonance in
Im�px� and Im�py� of Eq. �12�, that in turn control the line
shape of R.

Regardless of the chosen axes a positive R for low layer
coverage, means that Im�px�� Im�py�, for which ��45°.
Going back to Fig. 6 for the square lattice, we see that the
positive peak in R always comes from the polarization of the
first plane ��=1� and for �1��2 ��1��2� the second plane
��=2� has a negative peak at higher �lower� , thus giving

FIG. 8. R vs  for an oblate �a1�a2, solid line�, square �a1

=a2, dotted line�, and prolate �a1�a2, dashed-dotted line�, lattice,
with a2=55/a1 Å, a3=43 Å, L=2, �1=42° ��2=48°, �1=56°
��2=55°, and a1 �x.

FIG. 9. Upper panel: R vs  for a rectangular 2D lattice and
several values of L. �=42, �=56°, a1=9.4 Å, a2=55/a1 Å, a3

=43 Å, ��=−0.2, and ��=0.8. In this case the largest side of the
rectangle is parallel to the x axis. Lower panel: experimental results
take from Ref. 4. For an explanation of the y-axis notation used in
lower panel �see Appendix A�.

B. S. MENDOZA AND R. A. VÁZQUEZ-NAVA PHYSICAL REVIEW B 72, 035411 �2005�

035411-6



the derivative-like behavior, however the case for which R
goes from positive to negative, corresponds to the top layer
having a larger polar angle, contrary to the argument given
above for the screening of the interaction by the lower layer.
Now, for the rectangular lattice �Fig. 7�, we see that for �1
��2 if x is along the larger side of the oblate rectangle, the
positive �negative� peak in R corresponds to the resonance
of the polarization in the first �second� layer, giving a line
shape in agreement with experiment. Notice that even if we
interchange a1 and a2 in the square lattice, thus changing R
into −R, although we get the correct lineshape when �1
��2, it would be wrongly identified, because the negative
peak in R corresponds to the first layer, and we assumed, in
agreement with the experiment, that the first layer gives a
positive peak.13

Thus, for the experimental results of Ref. 4, our model
implies that the porphyrins 2D unit cell could be an oblate
lattice, in any of its three flavors, a simple rectangle, a cen-
tered rectangle, or an oblique rectangle, where the experi-
mental x axis is along the larger side of the unit cell. Based
on this assumption, we do a more detailed analysis and pro-
gressively change � and � as we increase L. In Fig. 9, we
show R for the rectangular lattice of Fig. 7 for different
values of L. For each corresponding growing change in L we
decrease � by 0.2° and increase � by 0.8°, starting at �
=56° and �=42° for L=1. Indeed, as L is increased the
spectra goes from peak-like to derivative-like, and R goes
from positive to negative values as  is increased, in quali-
tative agreement with the experimental results also shown in
Fig. 9.

We see in the experimental results that above 10 mono-
layers, the amplitude of the signal diminishes at all photon
energies, rapidly converging to a limit value which remains
steady up to the maximum thickness of 22 monolayers. The
general trend of this behavior could be qualitatively repro-
duced by the model, if after some given plane, we take �
=45° or �=0°, for the remaining of the top planes, since for
either case the signal of these planes will be zero, and the

total RAS will then be constant. For instance, in Fig. 10 we
have taken for L=10 an smaller value of �, such that ��L
=8����L=10��45°, and after the tenth plane we fix ��L
�10�=45° and/or take �=0°. Now, the overall signal is
more similar to the experiment. However, if these top layers
are randomly disordered, one would expect equal projections
of the induced dipoles along x and along y, giving also R
=0 for these layers, and disorder would explain the satura-
tion of the signal. Our model could be extended for disor-
dered layers in order to study the subsequent changes in the
RAS signal, and thus give further insight into the morpho-
logical behavior of the possibly disordered top most layers,
but this is out of the scope of the present article.

Finally, we mention that since the interplane local field
interaction of a planar array, decays exponentially with z,9 it
follows that Eq. �12� is a good approximation for the total
induced polarization of any given plane. Thus, the interpre-
tation that we have given of the RAS spectra so far can be
easily extended to any number of layers. As an example, we
decompose R of Fig. 9 for L=8 into Im�px���� and
Im�py����, as shown in Fig. 11. The resonances of p���
readily allow us to interpret each plane’s contribution to-
wards R, and the same analysis could be carried out for any
value of L. We have also checked that changes of up to 10%
in the interplane separation d, and the distance of the first
layer to the substrate d /2, which up to now we fixed at d
=43 Å, leave the results of Fig. 9 or Fig. 10 almost un-
changed. The exponentially decaying interaction along z,
also implies a negligible image contribution, which gives a
lack of sensitivity to the substrate. Therefore, changing the
substrate from a metal to a dielectric, by choosing the appro-
priate 	2��� in Eq. �9�, has a negligible effect in the spectra.
Thus, our model would apply to the films of Ref. 3, grown
by the Langmuir-Blodgett technique on a quartz substrate.

All things considered, we readily see that the combined
tilting and twisting of the dipoles in the different layers
changes their polarization, through the local field effect, in
such a way that the experimental signal can be accounted for
in simple physical terms.

FIG. 10. Same as upper panel of Fig. 9, but �=45° or �=0°
after L=10. See text for details.

FIG. 11. R of Fig. 9 for L=8, along with the Im�px���� and
Im�py����.
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V. CONCLUSIONS

We have presented a theoretical study for the reflectance
anisotropy spectroscopy �RAS�, of molecular layers grown
onto an isotropic substrate. The excitation of each molecule
is modeled by an effective harmonic oscillator dipole mo-
ment that responds to local electric field. This local field
includes the external electric field and the field induced by
all the molecules of the system, avoiding self-interaction. We
have obtained the RAS signal through the total polarization,
and have shown that it depends on the structural parameters
of the layers. In particular, we find a strong dependence on
the polar and azimuthal angles, which describe the orienta-
tion of the dipole in any given layer, and the 2D Bravais
lattice, that describes the ordering of the dipoles. As the tilt-
ing and twisting of the dipoles is varied for every molecular
layer, we have shown that the spectra changes from a peak-
like to derivative-like line shape. We have compared our the-
oretical predictions with experimental results on samples
grown by the Langmuir-Schaefer technique on top of an iso-
tropic gold substrate, and find that an oblate rectangular unit
cell with an appropriate orientation of every layer qualita-
tively reproduces the measured RAS. The model supports the
idea that at low coverage the molecules tend to be more
inclined relative to the substrate, due to stronger interaction
with it, but as the number of layers is increased the substrate
influence decreases as it is screened by the underlying layers,
and the molecules tend to straighten up. The model shows
that the behavior of the system is ultimately driven by the
local field among the molecules, and that their geometrical
reordering, from layer to layer, as the sample is grown, quali-
tatively reproduces the experimental trend.

We expect our model to work equally well with any other
molecule for which the long wavelength approximation
holds, in particular molecules of the same size or smaller
than the porphyrins of the experimental results shown here.
If we would like to go beyond the harmonic point dipole
approximation, a model like the one discussed in Ref. 7, that
deals with elongated molecules, could be a good starting
point to treat the porphyrins with a subtler microscopic
model.

In conclusion, with the polarizable dipole model, we are
able to explain qualitatively the optical RAS behavior of the
growth process, and in principle determine parameters such
as the tilt and twist angle and the 2D arrangement of the
molecules of this very fascinating films.
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APPENDIX A: RELATION BETWEEN THEORETICAL
AND MEASURED RESULTS

In this appendix, we derive the relationship between R of
Eq. �11� and �r /r of the experimental results of Ref. 4. The
RAS experiment measures a normalized difference �r /r in
the reflection coefficients, defined as

�r

r
=

rx − ry

�rx + ry�/2
, �A1�

where rx and ry are complex reflection coefficients, for light
polarized along x and y, respectively, with �r=rx−ry, their
difference and r= �rx+ry� /2, their average. �r /r is a complex
quantity, whose real and imaginary parts exhibit different
modulation frequencies which allow their measurement, one
at a time, with a lock-in amplifier.4 We can express �r /r in
terms of reflectivity coefficients Ri=riri

* �with i=x ,y� and
R�rr* �the average reflectance�, as follows:

�r

r
=

�rx − ry�r*

rr* =
�rxrx

* − ryry
* + rxry

* − ryrx
*�

2rr*

=
Rx − Ry + rxry

* − ryrx
*

2R
, �A2�

where the real part is

Re
�r

r
� =

Rx − Ry

2R
. �A3�

Our R, of Eq. �11�, was calculated through the following
definition:10

R =
Rx − Ry

R
, �A4�

that in view of Eq. �A3�, gives

R = 2 Re
�r

r
� . �A5�

In conclusion, the calculated reflectance R is twice the mea-
sured RAS data.
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