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The quantum phase diagram of disordered wires in a strong magnetic field is studied as a function of wire
width and energy. The two-terminal conductance shows zero-temperature discontinuous transitions between
exactly integer plateau values and zero. In the vicinity of this transition, the chiral metal-insulator transition
�CMIT�, states are identified that are superpositions of edge states with opposite chirality. The bulk contribu-
tion of such states is found to decrease with increasing wire width. Based on exact diagonalization results for
the eigenstates and their participation ratios, we conclude that these states are characteristic for the CMIT, have
the appearance of nonchiral edges states, and are thereby distinguishable from other states in the quantum Hall
wire, namely, extended edge states, two-dimensionally �2D� localized, quasi-1D localized, and 2D critical
states.
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I. INTRODUCTION

Recently, there has been renewed interest in quantum Hall
bars of finite width, where the interplay between localized
states in the bulk of the two-dimensional electron system
�2DES� and edge states with energies lifted by the confine-
ment potential above the energies of centers of bulk Landau
bands, En0,1 results in the quantization of the Hall conduc-
tance. The study of mesoscopically narrow quantum Hall
bars2 revealed additional types of conductance
fluctuations,3,4 edge state mixing,5–7,9,23 the breakdown of the
quantum Hall effect,10 and the quenching of the Hall effect
due to classical commensurability effects.11 In the presence
of white noise disorder the edge states do mix with the bulk
states when the Fermi energy is moved into the center of a
Landau band. It had been suggested that this might result in
localization of edge states.7–9 Recently, it has been shown
that at zero temperature the two-terminal conductance of a
quantum wire in a magnetic field exhibits for uncorrelated
disorder and hard wall confinement discontinuous transitions
between integer plateau values and zero.12 These transitions
have been argued to be due to sharp localization transitions
of chiral edge states, where the localization length of the
edge states jumps from exponentially large to finite values,
driven by the dimensional crossover of localized bulk states,
and are accordingly called chiral metal-insulator transitions
�CMIT’s�.

In this article, we will study the nature of this transition in
more detail, and in particular find that at this transition there
exists a type of state with properties distinguishable from
both localized and extended bulk states, and extended edge
states. This state is a superposition of edge states with oppo-
site chirality. Since it is still located mainly close to the
edges, we will call this state a nonchiral edge state.

The article is organized in the following way. In the next
section, we present transfer matrix calculations of the quan-
tum phase diagram of a quantum Hall bar with uncorrelated
disorder, being characterized by the two-terminal conduc-
tance G as a function of energy E and width w of the wire.
Sharp jumps in the conductance from integer values to zero

are found as a function of energy. These CMIT’s are seen to
become more pronounced with increasing wire widths w.

In the third section we will study with exact diagonaliza-
tion the eigenstates of a disordered quantum Hall wire. We
will classify these states into five classes, the edge states, the
2D localized states, the quasi-1D localized states, the 2D
extended states, and the nonchiral edge states at the chiral
metal-insulator transition. These states are characterized by
their specific participation ratio as a function of energy and
wire width w, their distribution of coefficients in an expan-
sion in eigenstates of the clean 2DES, and the spatial distri-
bution of the eigenfunction amplitudes. This allows us to
identify the state at the transition as a superposition of edge
states of opposite chirality.

The final section contains our conclusions, and a discus-
sion on how the CMIT could be observed experimentally.

II. THE QUANTUM PHASE DIAGRAM
OF THE CMIT

Using the transfer matrix method,13 we have calculated
the two-terminal conductance14 G as a function of energy E
in a tight-binding model with bandwidth 8t, where t is the
hopping amplitude, of a disordered quantum wire in a per-
pendicular magnetic field �Fig. 1�, with hard wall boundary
conditions at y= ±Lbulk /2 and finite length L=2000a.12 Here
we have assumed a square lattice with lattice spacing a. The
disorder potential is uniformly distributed in an interval
�−W /2 ,W /2�. These results are summarized in the phase
diagram �Fig. 1�, where the value of G, in units of e2 /h, is
given as a function of bulk width Lbulk and energy E in units
of ��B, for a disorder strength W=0.8t. As expected, G=m,
where m is the number of extended edge states between the
Landau bands. Close to the middle of the Landau bands,
however, the conductance plateaus collapse abruptly to G
=0.

When the wires are so narrow that the edge states cannot
form, as is the case when the width is smaller than the cy-
clotron length, or when edge states of opposite chirality are
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mixed by backscattering, then all the states become localized
and the conductance is vanishing with only small meso-
scopic fluctuations due to the finite length L of the wire.
Previously, it has been pointed out that, when the bulk local-
ization length � is smaller than the physical wire width w,
backscattering between edges is exponentially suppressed.
As a result, the localization length of edge states increases
strongly.

The overlap of opposite edge states is known to decrease
exponentially with increasing wire width w.6 Thus, the back-
scattering rate between edges, being proportional to the
square of the overlap integral, is 1 /��exp�−2w /��. Since
the edge states are one dimensional, their localization length
due to the backscattering is given by �edge=2vF�, with Fermi
velocity vF. On the other hand, when the bulk localization
length � becomes equal to the wire width, one expects that
the edge states become mixed with the bulk states, and lo-
calized with a length proportional to the bulk localization
length �. Therefore, we conjectured the edge localization
length to behave like12

�edge = � exp�2w/�� . �1�

In Fig. 2�a�, the localization length is plotted as a function
of energy, as obtained with the transfer matrix method in a
tight-binding model of a disordered quantum wire in a per-
pendicular magnetic field with hard wall boundary condi-
tions �dashed line�. Since the edge states are the most ex-
tended states in the wire, this localization length can be
identified with the edge localization length �edge.

Using the transfer matrix method,13 we have also calcu-
lated the localization length � as a function of energy E for a
disordered quantum wire with identical properties, but with
periodic boundary conditions �Fig. 2�a�, solid curve�. Since
there are no edge states this bulk localization length is small

in the tails of Landau bands, and has maxima, which are seen
to increase linearly with n.

Indeed the behavior of the edge state localization length
follows qualitatively the behavior suggested by Eq. �1�. The
edge localization length does increase sharply, whenever the
bulk localization length becomes smaller than the wire width
w �full straight line�. Note that the minima in the middle of
the Landau bands do increase linearly with the Landau band
number n. In Fig. 2�c�, we have explicitly plotted �edge/� and
exp�2w /��, using the numerically calculated values for �edge

and �, as functions of E. We find that both functions coincide
for all energies above the lowest Landau band and for lcyc
�w, so that edge states exist in the tails of the Landau bands.

An abrupt decrease of the inverse localization length has
been found before for energies in the upper tail of the lowest
Landau level and the tails of the second Landau level in Ref.
8. In agreement with our above results, it has been found
there that the inverse localization length decays exponen-
tially in the tails, as 1 /�edge�exp�−��E�w�. The fitted values
of � were found there to depend weakly on energy, whereas
we identified � directly with the energy-dependent inverse
bulk localization length 1/��E�.

From these results we can conclude that the energy at
which edges states backscatter and become localized is given
by the condition that the bulk localization length is on the
order of the wire width, ��Em,p�=w. At this energy, m edge
states mix and transitions from extended edge states to insu-
lating states occur. This causes sharp jumps of G from finite
integer to vanishingly small values, as seen in Fig. 1. This
can be explained by the exponential decrease of the edge
state localization length, Fig. 2. We note that m=n when the
energy is above the nth Landau band, whereas m=n−1 if it
is below.

FIG. 1. The conductance as a function of energy for increasing
values of the width Lbulk �left�, and in a contour plot as a function of
energy and Lbulk �lower right�, as compared with the schematic
phase diagram �upper right�. Finite integer values of the conduc-
tance correspond to the number of extended edge states. The disor-
der is uniformly distributed in an interval of width W=0.8t. There
are x=0.025 magnetic flux quanta per elementary cell of area a2.

FIG. 2. �Color online� �a� The localization length for a disor-
dered wire calculated with the transfer matrix method with periodic
boundary conditions �full line� and with hard wall boundary condi-
tions �dashed line� for uniformly distributed uncorrelated disorder
in an interval of width W=0.8t. The straight line indicates the bulk
width w=40a. There are x=0.025 magnetic flux quanta per elemen-
tary cell of area a2. �b� Enlargement of the low-energy region of �a�.
Edge and bulk localization lengths coincide as long as no edge state
is present. �c� The functions �edge/��E� �black� and e2w/� �gray
�green��.
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A more detailed understanding of this drastic behavior of
the conductance can be obtained by considering the dimen-
sional crossover of the bulk localization length in disordered
wires.12,15 In a 2DES with broken time reversal symmetry,
scaling theory16–19 and numerical scaling studies13,20 find that
the bulk localization length � is independent of the wire
width, �2D= l0 exp��2g2�. Here, g is the 2D conductance pa-
rameter per spin channel. l0 is the short-distance cutoff, and
the elastic mean free path l=2g�B=0� /kF �kF is the Fermi
wave number� at weak magnetic fields b��B��1. For
stronger magnetic fields b�1, the short length scale l0 be-
comes the cyclotron length lcyc. The conductance parameter
g exhibits Shubnikov–de Haas oscillations as a function of
magnetic field for b�1. Maxima occur when the Fermi en-
ergy is in the center of the Landau bands. The localization
length in the tails of the Landau bands, where g	1 is very
small, is of the order of the cyclotron length lcyc=vF /�B

=�2n+1lB. It increases toward the centers of the Landau
bands, En0=��B�n+1/2� �n=0,1 ,2 , . . . �, with �B=eB /m*

the cyclotron frequency �e is the elementary charge and m*

the effective mass�, vF the Fermi velocity, and lB
2 =� /eB the

magnetic length. In an infinite 2DES in perpendicular mag-
netic field, the localization length at energy E diverges as �
��E−En0�−
. The critical exponent 
 is known from numeri-
cal finite-size scaling studies for the lowest two Landau
bands, n=0,1, to be 
=2.33±0.04 for spin-split Landau
levels,21,22 in agreement with analytical24 and experimental
studies.25 In a finite 2DES, a region of state exists in the
centers of disorder-broadened Landau bands, which cover
the whole system of size L. The width of these regions is
given by �E= �lcyc/L�1/
�, where �=��2�B /���1/2 is the
bandwidth, with elastic scattering time �.

However, the 2D localization length is seen to increase
strongly from band tails to band centers, even when the wire
width w is so narrow that it is far from the critical point at
w→. One can estimate the noncritical localization length
for uncorrelated impurities, by inserting g, as obtained within
self-consistent Born approximation.23 Its maxima are g�E
=En0�= �2n+1� /�=gn. Thus, �2D�En0�= lcyc exp��2gn

2� are
macroscopically large in the centers of higher Landau bands,
n�1.22,26 When the width of the system w is smaller than
�2D, electrons in the centers of Landau bands can diffuse
between the edges of the system. In long wires, however, the
electrons are localized due to quantum interference along the
wire with a localization length that is found to depend lin-
early on g and w,12,27–29

�1D = 2g�B�w . �2�

The conductance per spin channel g�b�=�xx�B� /�0 is given
by the Drude formula g�b�=g0 / �1+b2� �g0=E� /�, b=�B��
for weak magnetic fields b�1. For b�1, when the cyclotron
length lcyc is smaller than the mean free path l, disregarding
the overlap between Landau bands, g is obtained in the self-
consistent Born approximation,23 g�B�= �1/���2n+1��1
− �EF−En�2 /�2�, for �E−En���. One obtains the localization
length for b�1 and �� /b−n−1/2��1 by inserting g. It os-
cillates between maximal values in the centers of Landau

bands, and minimal values in the band tails. For n�1, one
finds in the band centers

�n =
2

�
�2n + 1�w	1 −

ln �1 + �w/lcyc�2

�n + 1/2�2 
1/2

. �3�

Thus, the localization length in the center of the Landau
bands is found to increase linearly with Landau band index
n. This is exactly the behavior observed above in the numeri-
cal results, Fig. 2.

While it is reasonable to conclude that the edge states do
mix with the bulk states at the energy where the bulk local-
ization length is equal to the wire width, and the electrons
diffuse freely from edge to edge but are localized along the
wire, the question arises as to how exactly this transition
from extended edge states to localized states occurs. One can
gain some further insight by connecting the two ends of the
wire together to form an annulus. Piercing magnetic flux
through the annulus affects only states whose localization
length is larger than the circumference of the annulus. The
guiding centers of those states that extend around the annulus
do shift in position and energy1 with a change in magnetic
flux. As shown above, in the middle of the Landau band, the
electrons can diffuse freely from edge to edge, but are local-
ized along the annulus with ��w. When the magnetic flux
changes adiabatically, the energy of an edge state changes
continuously. However, it cannot enter the band of localized
states, so that at the energy Em, with ��Em�=w, the edge state
must be transferred to the opposite edge. There it moves up
in energy when the magnetic flux is increased further.1

In the following, we study the states at this transition in
detail in order to find out whether the edge states become
localized mainly by mixing completely with the bulk states,
or rather the transition from extended chiral edge states to
localized states occurs due to the nonlocal coherent superpo-
sition of edge states with opposite chirality, located at oppo-
site edges.

III. EXACT DIAGONALIZATION

In this section, we study the localization properties of
electrons in quasi-one-dimensional wires in the presence of
disorder and a strong magnetic field by means of exact di-
agonalization.

A. The model

The Hamiltonian of the quasi-1D wire in the presence of a
disorder potential Vdis and a confinement potential Vconf is
given by

H =
1

2m* �p − eA�2 + Vdis�r� + Vconf�r� , �4�

where e�0 is the elementary charge and m* the effective
electron mass.

The disorder potential is modeled as
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Vdis�r� = �
i=1

Nimp

Vi��r − ri� , �5�

where Nimp is the number of impurities with uniformly dis-
tributed amplitude Vi� �−V0 ,V0�. ri is the random position
of the impurity.

As we seek to investigate the interplay between and lo-
calization of edge states and bulk states in a quantum wire,
we assume periodic boundary conditions in the x direction
along the wire and choose

Vconf�y� = �
1
2m�p

2�y − Lbulk/2�2, y � Lbulk/2,

0, − 1
2Lbulk � y �

1
2Lbulk,

1
2m�p

2�y + Lbulk/2�2, y � − Lbulk/2,

�6�

as confinement potential in the transversal direction �see Fig.
3�. This model allows us to tune the confinement strength
with the parameter �p. The wire width is now defined by the
bulk width Lbulk. In the limit Lbulk=L, we get the usual 2D
model for the quantum Hall effect,30 while for Lbulk=0 we
have the parabolic wire model.31 In the limit of large con-
finement frequency �p��c, one approaches hard wall
boundary conditions. This type of confinement provides a
smooth transition between the edge potential and the
potential-free bulk region and renders the situation in real
wires better than assuming hard wall boundaries.

The physical width w of parabolic wires w is a function of
the Fermi energy E,

w�E,Lbulk� = 2�2E − ��

��B

�B

�p
lB + Lbulk, �7�

with �=��p
2 +�B

2 . It is obtained by finding the energy eigen-
value of the clean wire that is equal to E and has its guiding
center at ±w /2. We fix the basis width Lbasis to be larger than
the physical width w�Emax� at the highest considered energy
Emax. The total number of magnetic flux quanta in the model
system is then fixed to N�=LbasisL / �2�lB

2�.

B. Wave function analysis

The Hamiltonian Eq. �4� is diagonalized in the Landau
representation with basis functions

�r�nX� =
1

�lBL��2nn!�1/2
e−�y − X�2/2lB

2
Hn� y − X

lB
�e−iXx/lB

2
.

�8�

Here we have assumed the Landau gauge for the vector po-
tential. The matrix elements of the confinement potential in
the Landau representation are given in the Appendix.

The exact diagonalization of the Hamiltonian �4� yields
eigenenergies E� with corresponding wave functions

���r� = �
nX

�r�nX��nX��� . �9�

The spatial extension of these wave functions is character-
ized by their participation ratio

P� = �LbulkL� d2r����r��4�−1

, �10�

which is small for localized states and large for extended
states. Note that in this definition, P� relates to the fixed bulk
area LbulkL while the wave functions can cover a larger area
due to the smooth confinement, so that P��1 is possible for
all states.

In clean 2D systems all states in a Landau level are de-
generate. In a disordered wire this degeneracy is lifted by the
disorder, and at the edges by the confinement potential.
Therefore, localized states in the tail of the Landau bands in
the bulk region near the center of the wire coexist with states
at the edges at the same energy, and, in principle, mixing of
states from the bulk with edge states is possible.

These features are clearly seen in the left part of Fig. 4.
For a wire of length L=40.1lB in a perpendicular magnetic
field of B=8 T, corresponding for m*=0.067 in units of the

FIG. 3. �Color online� Model of a quantum wire with length L,
parabolic confinement, and finite bulk region of width Lbulk. The
physical width w�Emax� is indicated, where Emax is the largest en-
ergy considered.

FIG. 4. Left: The energy eigenvalues E� of all states in a wire of
length L=40.1lB in a perpendicular magnetic field of 8 T for three
different bulk widths are plotted versus the expectation value of the
transversal position ���y���. The disorder amplitude is fixed to V0

=0.73��c with Ni=150 impurities and the confinement energy is
chosen to have the same magnitude with ��p=0.73��c. The basis
width is chosen as Lbasis=1.5w�Emax�, Eq. �7�, with Emax=2��c.
Right: Corresponding participation ratio P� versus E�.
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bare electron mass to ��c=13.82 meV, for three different
bulk widths Lbulk the eigenenergies are plotted versus the
expectation value of their transversal position ���y���. Al-
though we have chosen a smooth confinement potential,
these results are in good agreement with earlier results with
short-ranged disorder in Ref. �7�. Obviously, the edge states
between the Landau bands are hardly affected by the disor-
der potential. There is a coupling of edge states of the same
chirality in the second and higher Landau bands which leads
to the formation of minibands in between the Landau band,7

as seen most clearly in Fig. 5. There, we show the same
quantities for a longer system with L=100lB and Lbulk=8lB at
B=8 T. The disorder is realized by 400 scatterers with V0
=0.73��c, with the same value as the confinement energy
��p=0.73��c. However, there is an abrupt shift of the center
of the eigenstates toward the middle of the wire, when their
energy is approaching the middle of the Landau band. Still,
one cannot conclude whether this fact is mainly due to the
backscattering between edge states from opposite edges hav-
ing opposite chirality, or whether it is mainly due to a mixing
with the bulk localized states.

In order to learn more about the nature of these states, we
have calculated the Fermi energy dependence of the partici-
pation ratio for different bulk widths with fixed disorder po-
tential and constant magnetic field as shown in the right part
of Figs. 4 and 5. It is observed for all three widths that the
participation ratio and the eigenenergies fluctuate as a result
of disorder especially in the center of the wire. The partici-
pation ratio increases with energy in the tails of the Landau
bands and reaches a maximum close to the corresponding
center energy �between 0.5��c for Lbulk→ and 0.5���c

2

+�p
2�1/2 for Lbulk→0�. The participation ratio saturates to a

constant value between the Landau bands, where only edges
states exist, as confirmed by comparison with the left side of
Fig. 4.

In the following, we scrutinize the localization behavior
in the different energy regions identified above by the energy

dispersion and the participation ratio. To determine the na-
ture of the states, we plot the basis state contributions and
spatially resolved probabilities for a sample with L=100lB
and Lbulk=8lB at typical energies, with disorder amplitude
and confinement energy comparable to the cyclotron energy.
We concentrate on the lowest Landau level and investigate
wave functions at energies in characteristic regions of the
participation ratio. The result is displayed in Fig. 6.

We find states at E=0.3��c �Fig. 6�a�� which are 2D lo-
calized, as confirmed by the fact that they have contributions
from basis states with guiding centers in the bulk region
only. In the band center around E=0.5��c the participation
ratio fluctuates strongly. In this region we find 2D localized
states as well as 1D localized states with a localization length
larger than the bulk width, but much smaller than the wire
length �Fig. 6�b��. In the latter case, basis states from bulk
and edge regions mix with comparable contributions. Fur-
thermore, we can identify states that cover the whole sample,
as shown in Fig. 6�c�. These states couple to all regions as
well, although the contributions from the left and right edges
seem to prevail slightly. The trend indicated by the maxima
close to the edges intensifies in the transition region �Fig.
6�d��. At a specific energy, the contribution of the bulk states

FIG. 5. Energy dispersion E�X� and corresponding participation
ratio P�E� for a longer system with L=100lB and Lbulk=8lB at B
=8 T. The disorder is realized by 400 scatterers with uniformally
distributed amplitude with maximal value V0=0.73��c which
equals the confinement energy ��p=0.73��c.

FIG. 6. �Color online� Basis state contributions to eigenstates at
selected energies. The right insets show the corresponding probabil-
ity densities �blue �dark� for low, red �bright� for high values�, solid
lines mark the bulk region. System parameters are the same as in
Fig. 5.
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is small compared to the sharp maxima at the edges, while
the electron is found with the same probability on the right
or the left edge of the wire �Fig. 6�e��. We believe that this
nonchiral edge state is unique at least in the thermodynamic
limit of w→ and governs the chiral metal-insulator transi-
tion in quasi-1D quantum Hall wires. This state exhibits no-
table localization features: being an edge state concerning
the participation ratio, it has to be considered localized con-
cerning the conductance, since current flows with equal
probability but reversed sign on both edges. This behavior is
consistent with the sudden breakdown of the conductance
observed in Fig. 1.

At higher energies, below the next Landau band, edge
states are formed as seen in Fig. 6. These states are found to
be insensitive to disorder.

This sequence of transitions from 2D bulk states,
quasi-1D localized states, states with peaks on both edges of
the wire, and decoupled edge states is visible in Fig. 7�a�,
where we show the basis state contributions for every fifth
state in the lowest Landau level. All features discussed above
are seen clearly, with a remarkably narrow transition region
from 1D localized states to edge states, as one moves from
state 125 to state 145.

In order to visualize this transition in detail, we plot in
this interval all states in Fig. 7�b�. The higher-energy states
are clearly edge states, which are decoupled from the bulk,
and are altenatingly located either on the left or on the right
side of the wire. The lower the energy, the smaller becomes
that peak in intensity at the edge. Still, each state stays lo-
cated in the edge region, with only a small coupling to the
nearest part of the bulk. Then, suddenly, at state ��=143 in
Fig. 7�, there appear two peaks of comparable amplitude on
both edges, while the contribution of the bulk is still small.
All states �=139–143 share the two pronounced peaks at
the edges, while the bulk contribution increaes only slowly
with lowering energy. Before the transition to quasi-1D
states with more or less uniform distribution across the bulk,
there is a reappearance of edgelike states �=135–138,
which we attribute to mesoscopic fluctuations due to the ran-
dom distribution of disorder in this rather mesoscopic
sample. The transition that we observed here thus happens
rather smoothly as compared to the sharp transitions in the
transfer matrix results shown in Fig. 1. This can be attributed
to the fact that the finite system with L=100lB that we have
diagonalized here is much smaller than the system that was
handled by the transfer matrix method. As expected far away
from the thermodynamic limit, L ,w→ ,L /w=const, the
transition occurs in a finite energy interval rather than at a
single point. Finite-size effects can be revealed further by
studying the dependence of the states on the bulk width.

To this end we next study the system size dependence of
the participation ratio. Figure 8 shows the participation ratio
of all states in a given energy interval for systems with dif-
ferent bulk widths Lbulk. Disorder configuration, wire length,
and confinement energy ��p are kept fixed for all the sys-
tems. As a characteristic example for the behavior in the
low-energy region, we investigate states in an interval
around energy E=0.2��c �Fig. 8�a��. In this region, the par-
ticipation ratio scales with the wire width approximately as
P�Lbulk

−1 . This is in agreement with the expected scaling of

2D localized states, which give a contribution ��
2 �1/�2D

2

only within a localization area �2D
2 where �2D is the 2D lo-

calization length of the wave function, which is independent
of the wire length L and width Lbulk. It follows that

P2D � �2D
2 L−1Lbulk

−1 	 1, �11�

in good agreement with Fig. 8�a�.
The behavior changes in the center of the Landau band

�Fig. 8�b��. There, the density of states is higher, and the
disorder results in a wide range of participation ratios. For
large bulk widths Lbulk�5lB, the range of participation ratios
becomes constant and saturates to a finite value. Note that
quasi-1D localized states cover approximately an area
Lbulk�1D�gLbulk

2 , and contribute in this area with probability
density ��

2 �1/ ��1DLbulk�. As a result, one expects for
quasi-1D localized states, according to Eq. �2�,

FIG. 7. �Color online� Basis state contributions ��nX ����2 to
eigenstates � at different energies �a� for every fifth state in the
lowest Landau level and �b� for every state with energy between
0.6��c and 0.8��c. System parameters are the same as in Fig. 5.
Different shades are used for adjacent curves in order to distinguish
them clearly.
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P1D �
�1D

L
� g

Lbulk

L
, �12�

increasing linearly with Lbulk. When the wire is comparable
to or shorter than the quasi-1D localization length, however,
the participation rato shows rather the behavior of 2D ex-
tended states which cover the whole wire area Lw with prob-
ability density 1/ �Lw�, yielding the typical participation rato
of extended states

Pext � w/Lbulk = const � 1, �13�

independent of the width Lbulk. Note that for extended states
one would expect P�=w /Lbulk, which according to Eq. �7�
converges to 1 for Lbulk→. Whereas P� in Fig. 8�b� is
indeed seen to saturate to a constant mean value, this value is
found not to exceed 1. This is consistent with the fact that the
wave function is multifractal.34

The scaling of the participation ratios in the high-energy
tail of the lowest Landau band �Figs. 8�c� and 8�d�� is again
a power law P�Lbulk

−1 , but with an absolute value much larger
than in Fig. 8�a�. This resembles the expected feature for
edge states, which cover an area lBL with probability density
1/ �lBL�, yielding

Pedge � lB/Lbulk, �14�

which is both in magnitude and in the functional dependence
on Lbulk in good agreement with Fig. 8�d�. Note that in the
transition region, Fig. 8�c�, the large mesoscopic fluctuations
do not allow one to distinguish characteristic features of the
nonchiral edge states at the transition; the functional depen-
dence on Lbulk is that expected for edge states and localized
bulk states alike, which both coexist in this energy region, as
we saw above in Fig. 7.

In summary, our model allows us to study the mutual
influence between the states in the bulk region, where the
influence of the disorder potential is strong, and states in the

edge region, where the confinement potential prevails. We
found that in the narrow energy region of the CMIT the
disorder-induced coupling between the edges creates non-
chiral edge states which have comparable weights on both
edges, but only a negligible mixing with the bulk.

IV. CONCLUSIONS

We conclude that in quantum Hall bars of finite width w
	�n at low temperatures quantum phase transitions occur
between extended chiral edge states and a quasi-1D insulator.
These are driven by the crossover from 2D to 1D localization
of bulk states. These metal-insulator transitions resemble
first-order phase transitions in the sense that the localization
length abruptly jumps between exponentially large and finite
values, which we confirmed by calculating the edge state
localization length explicitly. In the thermodynamic limit,
fixing the aspect ratio c=L /w, when sending L→ and then
c→, the two-terminal conductance jumps between exactly
integer values and zero. The transitions occur at energies
where the localization length of bulk states is equal to the
geometrical wire width. Then, m edge states mix and elec-
trons are free to diffuse between the wire boundaries but
become Anderson localized along the wire. Close to that
transition we found with exact diagonalization studies that
particular states exist which are superpositions of edge states
with opposite chirality, with an order of magnitude smaller
bulk contribution. Although these states are located at the
edges, they are nonlocal states, having comparable weights
on opposite sides of the sample. Thus, it can have a meso-
scopic extension across the width of the Hall bar, if it is
narrower than the phase coherence length. The chiral metal-
insulator transition is of mesoscopic nature since, at finite
temperature, the phenomenon of the CMIT can only be ob-
served when the phase coherence length exceeds the
quasi-1D localization length in the centers of Landau bands,
L���n. One then should observe transitions of the two-
terminal resistance from integer quantized plateaus Rn
=h /ne2 to a Mott variable-range hopping regime of exponen-
tially diverging resistance. Such experiments would yield in-
formation about the coupling between edge and bulk states in
quantum Hall bars. At higher temperature, when L���n, the
conventional form of the integer quantum Hall effect is
recovered.32,33

We have studied the modification of the CMIT by corre-
lations in the disorder potential and due to interactions.
These results will be presented in a subsequent publication.
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APPENDIX: MATRIX ELEMENTS FOR CONFINEMENT
IN LANDAU REPRESENTATION

The matrix element of the confinement potential defined
by Eq. �6� in Landau representation �nX�Vconf�n�X�� is given
by

FIG. 8. Participation ratio in dependence on bulk width for dif-
ferent energies. EC is determined for each bulk width as the energy
at which the system reaches the maximal participation ratio in the
lowest Landau band. System parameters are the same as in Fig. 4.
Solid lines are fitting functions: �a� P�=0.21 �Lbulk/ lB�−0.86, �c�
P�=2.62 �Lbulk/ lB�−1.09, and �d� P�=2.41 �Lbulk/ lB�−1.02.
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�nX�Vconf�n�X�� = �XX�
1

��lB2�n+n��n!n�!
	Mnn��Lbulk

2
,X�

+ �− 1��n+n��Mnn��Lbulk

2
,− X�
 �A1�

and

Mnn��Lbulk

2
,X� = �

Lbulk/2



dy e−�y − X�2/lB
2
Hn� y − X

lB
�

�Hn�� y − X

lB
�� y − Lbulk/2

lB
�2

�A2�

=lB�
b



d� e−�2
�� − b�2Hn���Hn���� , �A3�

where �= �y−X� / lB and b= �Lbulk /2−X� / lB.
By expanding all polynomials in Eq. �A3� in monomials

in � using the relation

Hn��� = n! �
m=0

�n/2�

�− 1�m 2n−2m

m!�n − 2m�!
�n−2m, �A4�

where �x� denotes the largest integer smaller than x, one gets

Mnn��b,X� = lBn!n�! �
l=0

�n/2�

�
k=0

�n�/2� 	�− 1�l+k 2n−2l+n�−2k

l!k!�n − 2l�!�n� − 2k�!

� �f �2+n−2l+n�−2k��b� − 2bf �1+n−2l+n�−2k��b�

+ b2f �n−2l+n�−2k��b��
 .

In the last expression,

f �M��b� = �
b



d� �Me−�2
=

M − 1

2
f �M−2��b� + bM−11

2
e−b2

.

�A5�

This recursive formula can be obtained by repeated partial
integration and is valid for even and odd M �1. An explicit
evaluation requires the inital expressions

f �0��b� =
1

2
e−b2

, �A6�

f �1��b� =
1

2
�� erfc�b� , �A7�

with the complementary error function

erfc�b� = �
b



d� e−�2
. �A8�
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