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Electronic and phononic states and their interactions in one-dimensional arrays of Si quantum dots inter-
connected with thin oxide layers is theoretically investigated. Electronic states under low electric field condi-
tion are obtained in the Kronig-Penny potential. Approximate expression for phonon wave functions is devel-
oped and numerically calculated using the linear atomic chain model. Simulated dispersion relation shows
acoustic phonon modes, phonon band gaps, and confined optical phonon modes. Electron-phonon scattering
rate is written using a one-dimensional expression. Intraminiband scattering rates and energy relaxation rates
are simulated both for absorption and emission processes. The scattering rate varies from ~10'> to ~10'4,
depending on the initial electron energy. The scattering rate for absorption/emission processes rapidly de-
creases at near the top/bottom of minibands due to limited number of phonon branches that can mediate the
scattering processes. Negative energy relaxation rate is observed near the bottom of minibands, which is due to
larger scattering rate for absorption process and smaller phonon energy mediating the scatterings for emission
process. The scattering rate for absorption decreases rapidly with decreasing temperature. Once the temperature

drops down to 100 K, the energy relaxation rate for emission process dominates the absorption process.
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I. INTRODUCTION

The recent development of electron-beam lithography has
enabled fabrication of the silicon quantum wires (SiQW)
with lateral dimensions of several nanometers. Electron
transport in such a structure has been systematically ex-
plored, and researchers have revealed various phenomena at
low temperature such as the variable range hopping
conduction,!  single-electron  behavior,>®  quantized
conductance,*® and quantum interference.” The porous sili-
con (PS) is the alternative of obtaining SiQW structure. The
PS is formed on silicon substrates by electrochemical etching
(chemical anodization), leading to self-assembled tree-like
network of SiQW.%10 Tt is remarkable that, despite indirect
band structure of Si, the PS shows efficient visible lumines-
cence, which has greatly stimulated theoretical and experi-
mental studies.!! More interestingly, there are reports of
high-energy electron emission at room temperature.'>~!#
Similar structure also exhibits the electron emission.'” En-
ergy distribution of emitted electrons have been studied in
detail .!® Recently, theoretical calculation of electron trans-
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port properties in SIQW was made by Sanders et al..'” The
electronic states were obtained from an empirical tight-
binding calculation, and scattering rates were calculated to
perform Monte Carlo simulation of electron transport. How-
ever, most of PS light/electron emission devices undergo an
oxidation process,9 and the SiQWs in the PS are rather one-
dimensional arrays of Si quantum dots interconnected with
thin oxide layers (1DSiQDA).>'%!3 Therefore, theoretical
study of the 1DSiQDA, rather than simple SiQW structure,
should be done. Such study also gives insights into electronic
behaviors in similar Si/SiO, coupled structures investigated
for quantum computation and memory applications.!®1?

In this paper, we theoretically investigate the electronic/
phononic states and their interactions in an ideal 1DSiQDA
structure under low electric field condition. Temperature de-
pendence of phonon scattering rate and energy relaxation
rate are also investigated.

We present in Sec. II a theoretical framework to calculate
the electron-phonon interactions in the 1DSiQDA. In Sec.
III, we show numerical calculation results of electronic and
phononic states, as well as electron phonon interactions. Sev-
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FIG. 1. Model of the idealized one-dimensional Si quantum dot
array interconnected with thin oxide layers (IDSiQDA).

eral issues are discussed in Sec. IV, and Sec. V is devoted to
concluding remarks.

II. THEORY AND SIMULATION
A. Model

Figure 1 shows schematic illustration of our idealized
model of the 1DSiQDA. The x, y, and z axes are set as
shown in the figure, and the Si dots are modeled as cubes of
L., L,, and L, each side. These Si dots are interconnected by
oxide layers of thickness T,,. The period of this structure in
the x direction, d, is therefore given by d=L,+T,. This array
of Si dots infinitely extends in the x direction, and it is as-
sumed to be surrounded by vacuum.

Major phonon scattering mechanism in the 1DSiQDA is
the deformation potential scattering. Although the oxide lay-
ers are polar material, the polar-optical phonon scattering
from those layers would be negligible as far as T, is small
compared to L,. The deformation potential scattering in simi-
lar structure was investigated in detail by Noguchi et al.?®
and Stocker et al.?! They assumed bulk acoustic phonons in
one-dimensional coupled quantum-box structures of
GaAs/Al,Ga,_,As heterostructure. The assumption of bulk
phonon is valid in their case, because there is almost no
mechanical mismatch between GaAs and Al,Ga,_.As [85.3
—1.8x GPa (see Ref. 22)]. However, it is not the case in the
1DSiQDA, because there is considerable difference in the
mechanical properties of the Si and the oxide layer; the
Young’s moduli for Si and SiO, film are 180 and 70 GPa,
respectively.”>?* Therefore, the periodic mechanical mis-
match of the structure should be properly considered in our
calculation, which alters some of the techniques employed in
the reports from Noguchi and Stocker.

B. Electronic states

In the SiQW, there are three energy minima in the k
space; that is, two X valleys and one I'-like valley on the &,
axis.!” However, in the 1DSiQDA, the two X valleys are
folded into smaller first Brillouin zone ranging —m/d <k,
<r/d. As a result, these folded X valleys are mixed with the
I'-like valley, forming a new single valley near k,=0. In this
paper, we employ the effective mass approximation in this
single valley.

As we assume low electric field applied across the
1DSiQDA, the Schrédinger equation is solved in the Kronig-
Penny potential. Strictly speaking, the equation cannot be
separated in terms of three coordinates, because the effective
mass for electron is different in Si and oxide layers. How-
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ever, to simplify the calculation, we assume that the simple
approach of variable separation in the literatures?®?' can be
used in the 1DSiQDA. This is acceptable because the elec-
tron effective masses in Si and SiO, are relatively close [0.33
and 0.42, respectively (see Ref. 25)]. The solution to the
Schrodinger equation is then written as

(

1 .
<x kxbe> ="ru (x)el k"cx,
| \’/z kb,

 Olny) = \/Lzsin{%iiry], (1

Y y

2 n.
(zln)y =1/ —sin{z—z} ,
\ LZ LZ
where b, is the band index, L is length of the 1DSiQDA in
the x direction, n, and n, take natural numbers, and uk\_,,,e(x)

is the Bloch function.
The total energy E,y, is given by

ki (n? n?
Etotal=Ex(kx7be) + m’ Z% + L_é s (2)

where m" is the electron effective mass. The x energy com-
ponent E (k.,b,) and the Bloch function ”kvae(x) are easily
obtained by solving the Schrédinger equation in a given pe-
riodic potential profile. Although we have ignored the differ-
ence in the effective masses in Si and oxide in the above
derivation, we took into account of the difference in the cal-
culation of the Bloch states ukwbe(x) to minimize the error
due to the assumption. '

C. Phononic states

Acording to Morse,”® the phonon normal modes in a

quantum wire having square cross sections can be given by
VQ(R)ei"X", (3)

where e/9* is a plane wave propagating in the x direction, g,
is the phonon wave vector, and vq is a vector as a function of
R and Q defined as

el) o)
b4 q.

The vector vo(R) includes the trigonometric functions,
and is often approximated as plane waves having antinodes
at the side edge of the structure.?®>”28 This is also true in the
IDSiQDA. However, the x component is no longer a plane
wave because of the large mechanical mismatch between Si
dots and oxide layers, as discussed in the previous subsec-
tion. Therefore the phonon wave functions in the 1DSiQDA
are written as

S(r)=>, Cylaq+ afq)ei Q'RSqX()c)Sq,
q

. 5)
C,=

q 2(1)q NN >

where q is the phonon wave vector, afq and aq are the cre-

ation and annihilation operators, S, (x) 1s a one-dimensional
X
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phonon wave, s is the unit vector in the direction of atomic
vibrations, w, is the frequancy of the phonon vibration, and
NN, is the total number of atoms in a cross section.

The function S, (x) is numerically obtained using the lin-
ear atomic chain model shown in Fig. 2. In this model, the
1DSiQDA consists of Si region containing only Si atoms and
the oxide region containing Si and O atoms alternating with
each other. The lattice potential energy is expanded as a
power series of the displacement of the atoms from their
minimum energy positions, but only to the second order. This
leads to atomic force proportional to the displacement. The
proportional coefficient acts as “spring constant” of a bond.
As we are interested in the first-order effects, we consider
interaction between the nearest atoms only. In addition elec-
trical force caused by dipole momentum of Si—O bond was
neglected, that is, the oxide layers are treated as nonpolar
material. Therefore, the optical interface mode does not ap-
pear in our simulation, as in GaAs/AlGaAs systems. The
distance between the neighboring atoms (a) was determined
from the mass density of atoms in Si, and we used the same
distance for Si—O bonds. The number of atoms included in a
Si or SiO, region were obtained by dividing the size by a.
The number of atoms in a period (N,,;) is then given by d/a.
The mass of Si and O atoms were set based on their atomic
weights. The spring constant between each Si—-Si bond
(Kgi_si) was determined so that the phonon maximum energy
obtained by the calculation for the SiQW is identical to the
maximum energy of longitudinal phonons in bulk Si (100)

C \e”n—
<k, CI|HADP(r)|k C>:Daco( 1 d
C_g\n_q+1
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direction. The spring constant between each Si—O bond,
Kgi_o, was determined from the ratio of Young’s modulus for
bulk Si and SiO, film.

The phonon normal modes and energy dispersion relation
are obtained by solving equations of motion for these atoms
under periodic boundary condition.?® The equations of mo-
tion reduce to an eigenequation for phonon normal modes.
The eigenvectors give phonon wave functions qu(x), and the
eigenenergies as a function of phonon wave vector ¢, give
the dispersion relation. Because of the periodic nature of the
structure, the phonon dispersion relation is folded into
smaller first Brillouin zone with the edge value of 7/d. As a
result, there are N,; phonon branches in the first Brillouin
zone.

D. Electron-phonon interaction
1. Acoustic and optical deformation potential scattering

The probability of the transition from an initial electronic/
phononic state [kc) to a final state [k’c’) is calculated using
Fermi’s golden rule, and the perturbation Hamiltonian for the
acoustic deformation potential (ADP) scattering can be writ-
ten as>”

HADP(r) =Dyeo V. S(I‘) (6)

Using the phonon wave function Eq. (5), the matrix element
reads

,—) n;nz'|eii Q R|nynz>

. 1yt rpr aSiqx(x)
X il(sttq,y + QZstq,zxkxbe|Sth(x)|kxbe> + stq,x<kxbe|T|kxbe> . (7)

The integral in the y and z directions is the Fourier transform
of a function localized within 0<y<L, and 0<z<L..
Therefore the integral is nonzero only when the y and z
components of the phonon wave vectors satisfy g,~1/L,
and g,~ 1/L,. For L,=L_=4 nm, which is typical Si dot size
in the literatures,'>!*3! a phonon vector satisfying the above
criteria has energy of ~1 meV in the y and z directions. As
the x component of the phonon energy can range up to about

N 2w fi 1
k=K== VN
Wyg NylV;

aS:qX(x)
Hel—ph(x) = Daco Ix >

2

60 meV,*?> majority of phonons contributing to the electron-
phonon scattering have wave vector parallel to the x axis.
Therefore, we can approximate the matrix element as

2

2 1y aSth(x)
(k" ¢'[H opplk c)|* o <kxbe|DacoT|kxbe> (®)

and the transition probability is written as

nqx 1 1 1y ’ —
n_q +1 (1 + _5nyn;><1 + Eénzné)|<kxbe|Hel-ph(x)|kxbe>|25[E(k ) _E(k) + ﬁwth]s

9)
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FIG. 2. Linear atomic chain model used for phonon
calculation.

where the integral in the y and z directions was performed
using the formula in the literature.

Same result is obtained for the optical deformation poten-
tial (ODP) scattering, and the one-dimensional scattering po-
tential is written as

Hel—ph(x) = Doptsth(x) . (10)

Thus, in the 1DSiQDA, the transition probability can be re-
duced to a one-dimensional expression.

2. General form of deformation potential scattering

In the IDSiQDA, phonon scatterings occur in a single-
electron energy minimum located in —7/d <k, </d. These
scattering processes are mediated by N, phonon branches
folded in —w/d<g,<m/d. Therefore, phonons at any en-
ergy could contribute to the phonon scattering, and we need
to extend the expression Eq. (9) to be applicable to scatter-
ings mediated by arbitrary energy phonons. Such an issue is
unique to the 1DSiQDA, and cannot be seen in the SiQW or
the one-dimensional coupled quantum-box structures of
GaAs/AlGa,_,As.

In principle, the deformation potential is defined as the
change in the electron conduction band minimum caused by
the local change in lattice spacing.>* This can be formally
expressed as

oa
Hel-ph(x)=D;’ (11)

where a is the lattice spacing at position x. Using the one-
dimensional phonon wave function, this can be written as

S

Ho o (x)=D qx(x+a)—qu(x)
el-ph\X) = .

(12)

This expression is valid for phonons at any energy. Note that
this expression should approach to the perturbation Hamil-
tonian for ADP scattering as the phonon wave length be-
comes much larger than a, and that for the ODP as the wave-
length becomes comparable to a. The coupling constant D in
the Eq. (12) must then satisfy

PHYSICAL REVIEW B 72, 035337 (2005)

a8 qx(x)

ax - aco

as, (x) o
—=— (at acoustic limit),

5 (13)
D=S, (x) = DoyS, (x)  (at optical limit).

a X X
In order that the coupling constant D satisfy these conditions,
it should vary depending on the phonon modes. In this work,
we assume

ho (a
D(ﬁw)=Daco+K(EDopt_Daco)- (14)

max

Such a phonon-dependent coupling constant has been re-
ported for bulk material by Zoilner et al.®

The scattering rate mediated by one phonon branch b, is
given by the sum of all possible transition as

d < T(kb, — kb))
45 TP 7 KaDe)

Walkob) =3 ST 09
where
_ T(k b, — k']
Tlkbe = kibo) = a[Eac;,b;g ig(kx,zfe)e): omy ]
FkLb0) = BKLb) ~ E(ky b) F oy,
(16)

and kjf(i=1,2,...) is the jth root of F(k,,b))=0.
The scattering rate as a function of initial electronic state
is then obtained by summing for all phonon branches as

N

unit

W(kx»be) = E Wbp(kx’be)~ (17)
bp=l

This is calculated for absorption and emission processes.
The energy relaxation rate is calculated using3®

d < Tlhkb,— kb)) [ _ foy,
Rrelax=_2 ( 4 ), (18)

=
27 [F'le =kl \ Elkb)

where upper and lower sings denote absorption and emission
processes, respectively.

Finally, the parameters used in our simulations are listed
in Table 1.

III. RESULTS
A. Electronic states

Figure 3(a) shows electron eigenenergies in the IDSiQDA
as a function of electron wave vector in the x direction. The
broken line shows the barrier height of the oxide layers. The
horizontal axis is normalized to the edge value of the first
Brillouin zone, 7/d. The energy levels of the electrons are
grouped in so called minibands, each of which corresponds
to a quantized level for motion in the x direction. The energy
gaps between minibands are called minibandgaps. For com-
parison, the result calculated for one-dimensional coupled
quantum-box structures of GaAs/AlAs (IDGaAsQDA) is
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TABLE 1. Parameters used in our simulation.

Parameter Symbol [unit] Value
Si dot size L, Ly, L[nm] 4.0 (Ref. 31)
Oxide thickness T,y [nm] 1.0 (Ref. 37)
Period d[nm] 5.0
Electron effective mass in Si mg; 0.33 (Ref. 25)
Electron effective mass in oxide m, 0.42 (Ref. 25)
Oxide barrier height V[eV] 1.0 (Ref. 37)
Atom spacing a[nm] 0.25 (see text)
Number of atoms in a unit cell Nunit 20 (see text)
Atomic mass of Si Mg[kg] 46.622 % 107%7 (see text)
Atomic mass of O Molkg] 26.559 X 10727 (see text)
Spring constant Si-Si Kgi_gilN/m] 103.4 (see text)
Spring constant Si-O Kgi_o[N/m] 41.36 (see text)
Acoustic deformation potential in Si D,.o[eV] 9.0 (Ref. 30)
Acoustic deformation potential in oxide D,.o[eV] 3.5 (Ref. 38)
Optical deformation potential in Si Dy[eV/em] 11108 (Ref. 30)
Optical deformation potential in oxide Dy[eV/em] 20 10 (Ref. 39)

shown in Fig. 3(b). The barrier height is 0.75 eV, and the
effective masses in GaAs and AlAs are set 0.067 and 0.150,
respectively.*!

Note that the minibands are more closely spaced in the
1DSiQDA than in the 1DGaAsQDA. This is due to the large
electron effective masses in Si and the oxide layers com-
pared to those in GaAs and AlAs. As a result, the minibands
in the 1DSiQDA are less dispersive than those in the
1DGaAsQDA, indicating larger miniband effective mass and
hence less electron mobility in the 1DSiQDA.

B. Phononic states
Figure 4(a) shows phonon dispersion relation in the

IDSiQDA. The horizontal axis shows the phonon wave vec-

1DSiQDA (b) 1DGaAsQDA

(@),

Electron Energy [eV]
[\S]
T
1

Normalized Electron Wave Vector

FIG. 3. One-dimensional electron energy dispersion in (a)
1DSiQDA and (b) one-dimensional coupled quantum-box structures
of GaAs/AlAs (1DGaAsQDA). The horizontal axis is normalized
to the edge value of the first Brillouin zone, 7/d. Broken line shows
the barrier height. Parameters used in the calculation for the
1DSiQDA is shown in Table 1. For the 1DGaAsQDA, the barrier
height is 0.75 eV, and the effective masses in GaAs and AlAs are set
0.067 and 0.150, respectively.

tor ¢, and is normalized to 7/d. The phonon energy gaps
(also known as phonon stop bands*’) are observed, and the
longitudinal acoustic sound velocity decreases about 16%
compared to the result obtained from Si. In the energy range
of 0.025 eV<Aw<0.035 eV, the phonon branches are
nearly flat, and those in 0.045 eV <7iw are completely dis-
persionless. These characteristics are qualitatively explained
by comparing with dispersion relations calculated for Si and
oxide quantum wires. Figure 4(b) shows phonon dispersion
in SiQW, which was calculated using an atomic chain con-
sisting of Si atoms only. In the calculation, all the O atoms in
Fig. 2 were replaced by Si atoms, and the spring constant for
Si, Kg;_g;, was used all over the structure. Figure 4(c) shows
the dispersion relation for oxide quantum wire, which was
calculated using an atomic chain consisting of Si and O at-
oms alternating with each other. In this calculation, Kg; o was
used all over the structure, and the electrical force caused by
dipole momentum of Si—O bond was neglected. In these two
limiting cases, the edge value of the first Brillouin zone is

0.08 —————— —— ——
1@ 1psigpa | ®) siticon | [©) Oxide |

= 0.06

Phonon Energy [eV’
=}
=
s

e
1<)
5

1-1 0
Normalized Wave Vector

1-1 0 1

FIG. 4. One-dimensional phonon energy dispersions for (a)
IDSiIQDA (b) Si quantum wire, and (c) oxide quantum wire. The
horizontal axis is normalized to the edge value of the first Brillouin
zone, m/d.
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FIG. 5. (Color online) One-dimensional phonon wave functions
in the 1DSIQDA, S, (x) (a) Real part of S, (x) calculated for an
acoustic phonon havmg phonon energy of 0. 003 eV. (b) Same plot
for an optical phonon. (c) Squared amplitude of the acoustic phonon
wave shown in (a). (d) Squared amplitude of the optical phonon
wave shown in (b).

larger than 7/d. However, the dispersion relations are folded
into —m/d<q,<m/d and the wave vector is normalized to
7/ d for visualization. In Fig. 4(b), the phonon dispersion is
continuous in energy, while that in Fig. 4(c) clearly shows
optical branch (0.035 eV<Aw<0.045¢eV) and acoustic
branch (Aw<0.025 eV). In the 1DSiQDA, phonon vibration
can exist both in the Si dots and the oxide layers only when
phonon energy is within 7w <<0.025 eV or 0.035 eV <fw
<0.045 eV. Such phonon normal modes should be charac-
terized by a parameter of translational symmetry, that is, ¢,,
and therefore the phonon branches have certain dispersion.
The phonon dispersion is then a “mixture” of those in Figs.
4(b) and 4(c). The phonon energy gaps appeared because of
the mismatch of the spring constants in the Si dot region and
the oxide layers.*> On the other hand, when phonon energy
lies in 0.025 eV<Aw<0.035 eV or 0.045 eV<fw, such
phonon vibration cannot exist in the oxide layers, and there-
fore it is localized only in the Si dot regions. Such localized
phonons are not affected by ¢,, and hence the phonon
branches are dispersionless.

Figure 5(a) shows the real part of an acoustic phonon
wave function, Re[qu(x)], having phonon energy of 0.003
eV. The regions 5.0n—1.0<x<5.0n, (n=1,2,...) correspond
to oxide layers. Each open circle represents an atom, and the
interpolating solid line is merely for visualization. The wave
form apparently differs from a plane wave expected in the
SiQW, and is distorted at the oxide layers. In the oxide lay-
ers, difference of the displacement between neighboring at-
oms is larger than that in the Si dot region. This is due to the
fact that the atoms tend to be separated apart because of
smaller spring constant in the oxides. Figure 5(c) shows
squared amplitude of the acoustic phonon wave, .
The phonon vibration occurs all over the IDSiQDA as men-
tioned above. Note that the amplitude is larger in the Si dot
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FIG. 6. Scattering rates as a function of initial electron energy
calculated for absorption (broken lines) and emission (solid lines)
processes. Each group of curves was obtained from the second to
sixth electron minibands. The calculation was performed at
T=300 K. The inset is the blow-up of the results calculated for the
fifth miniband.

regions than in the oxide layers. This indicates that the atoms
in the Si dots are far more displaced from their equilibrium
position than those in the oxide layers. This leads to large
phonon-generated strain in the oxide layers.!® Figures 5(b)
and 5(d) show Re[S,, (x)] and S, (%) )|? for an optical phonon
wave at the highest phonon branch respectively. As men-
tioned above, the optical phonon vibrations are confined in
the Si dot regions.

C. Intraminiband scattering

Figure 6 shows the scattering rates W as a function of
initial electron energy calculated using Eq. (17). The broken
lines and the solid lines show results of phonon absorption
and emission processes, respectively. The calculation was
performed at 7=300 K. Each group of curves was obtained
from the second to sixth lowest electron minibands. We
could not calculate intra-miniband scattering for the 1st low-
est miniband, because the dispersion of the miniband was
much smaller than that of the lowest phonon branch. The
inset is a blow-up of the curves calculated for the fifth mini-
band. The sharp spikes occur when the final electron state
approaches to the miniband minimum or maximum, where
the denominator in Eq. (15) approaches to zero. The scatter-
ing rate for the second miniband is of the order of 10'#, and
it decreases by two orders of magnitude as the miniband
index increases. This decrease of the scattering rate attributes
to the decrease of the density of states caused by the increase
of the miniband dispersion seen in Fig. 3(a). The scattering
rates are slightly higher than that calculated for bulk Si.*
The scattering rate for emission is 2 to 3 times larger than
that for absorption. This is caused by the term n, and n_g
+1 in Eq. (9). This difference vanishes at high temperatures.
Note that the scattering rate for absorption/emission pro-
cesses rapidly decreases at near the top/bottom of minibands.
In order to understand this, we plotted in Fig. 7 the scattering
rate (absorption) for electrons in the fifth miniband mediated
by (a) the lowest to the fifth phonon branch, (b) sixth to
tenth, (c) eleventh to fifteenth, and (d) sixteenth to twentieth.
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4 FIG. 7. Scattering rate for ab-
sorption process calculated for
miniband 5 mediated by the

1015

phonons on branches (a) 1-5, (b)
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Scattering Rate (Absorption) [s'l]
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6-10, (c) 10-15, and (d) 16-20.
Gray curve shows total scattering
rate for absorption, which is given
by the sum of the results for each
phonon branch.

Initial Electron Energy [eV]

The total scattering rate for absorption W, denoted by the
gray curve, is given as the sum of the curves obtained for
each phonon branch W . It is observed that the scattering
rate mediated by the ﬁrsti second, sixth, eleventh, and twelfth
phonon branches are of the order of 10'!, and greatly con-
tribute to W. On the other hand, the scatterings mediated by
the fifteenth to twentieth phonon branches are so small that
they have minimal impact on W. This is due to the small
number of phonons in high-energy phonon branches. It is
important to note that, when the initial electron energy is
near the top of the miniband, high-energy phonon branches
do not contribute to W. In this case, scattering events medi-
ated by high-energy phonon branches are not allowed be-
cause the final electron states fall in the minibandgap lying
above the fifth miniband. Therefore, the number of available
phonon branches decreases with increasing initial electron
energy, and ultimately, the lowest phonon branch is the only
available one. This is the reason for the rapid decrease of
phonon absorption at near the top of minibands. A similar

10" —— T T T
101 (a) Miniband No. 5 BranchNo. 1-5| [ (b) Branch No. 6-10_|
13 Emission
107+ T=300K 1 F B
1L b}« . - |

T
Branch No. 16-20 |

[ — @’T

1 105 1.1 115 1.2 125 13 1351 105 1.1 115 1.2 125 13 135
Initial Electron Energy [eV]

Initial |

FIG. 8. Same plot as Fig. 7 calculated for emission process.

effect occurs in emission processes shown in Figs. 8(a)-8(d),
which causes reduction of phonon emission at near the bot-
tom of the miniband. Of course, these phenomena and expla-
nations are applicable to other minibands as well.

D. Energy relaxation rate

Figure 9 shows the energy relaxation rate as a function of
initial electron energy. The calculation was performed at
T=300 K, and the broken and solid lines show results for
absorption and emission processes, respectively. The gray
solid line is the total energy relaxation rate, which is defined
as the sum of the results for absorption and emission. The
energy relaxation rates are about 0.5X10''s™!, and the
emission processes have larger values than absorption pro-
cesses for the same reason as the scattering rates. As a result,
total energy relaxation rate is positive at most energies. How-
ever, it has negative value at near the bottom of the mini-
bands. This can be observed more clearly in Fig. 10, where

1 T T T T T
T=300K
- # iad ]
S 05k w3 s i
E - #6
5
3 I
g 0
A ) - -
: 1
3 L
Q
Z0SE .
%" ---- Absorption
=} —— Emission
= 1 i — Total
0 0.5 1 1.5 2

Initial Electron Energy [eV]

FIG. 9. Energy relaxation rate as a function of initial electron

energy. Solid lines: emission processes; broken lines: absorption
processes; and gray lines: total energy relaxation rate. The calcula-
tion was performed at 7=300 K.
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FIG. 10. Blow-up of the results for the fifth miniband shown in
Fig. 9.

the results calculated for electrons in the fifth miniband is
shown. The negative energy relaxation rate is unique to the
IDSiQDA, and is not usually observed in the bulk Si or the
SiQW. This occurs partly because the scattering rate for ab-
sorption process is larger than that for emission process, as
seen in the inset in Fig. 6. Another reason is that the phonon
emission at near the bottom of minibands are mediated only
by low-energy phonons, and hence the energy relaxation rate
for emission process is decreased.

E. Temperature dependence

Figure 11 shows temeperature dependence of the scatter-
ing rates for (a) absorption and (b) emission processes. The
scattering rate for absorption decreases rapidly with decreas-
ing temperature; 108~ 10'" at 77 K and 10°~ 10° at 4.2 K.

10" . .
10" L{a)
10" 1
1021 \
10 L H
101
10° |
108 |-
107 |
10° |-
10° |
10* |
10° ) I 1 |
10 T T T T T T
10:: _(b) Emission
1812: 300K |
1011 | F f % 100-4.2K| _
10" - 4
10° | -
108 .
107 |- .
10° .
10° | .
10* - .
103 L | 1 A 1 L

0 0.5 1 15 2

Initial Electron Energy [eV]

T T T

T
Absorption -

= Cq ¥

< d

Scattering Rate (Absorption) [s‘l]

Scattering Rate (Emission) [s'l]

FIG. 11. Scattering rate for (a) absorption and (b) emission pro-
cesses calculated for 7=300, 100, 77, 33, 10, and 4.2 K.
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FIG. 12. Energy relaxation rate for absorption (broken line) and
emission process (solid line) calculated for 7=300, 100, 77, 33, 10,
and 4.2 K.

This temperature dependence occurs solely from that of ng,
and is described by the Bose-Einstein statistics. Note that the
scattering rate becomes V-shaped as temperature decreases.
This shape results from that of the scattering rate mediated
by the lowest phonon branch, as seen in Fig. 7(a). This scat-
tering becomes dominant at low temperature because major-
ity of phonons exist at the lowest phonon branch. On the
other hand, the scattering rate for emission process does not
decrease once the temperature becomes lower than 100 K.
Once ny becomes much smaller than unity, n_g+1 term in
Eq. (9) is approximated as unity. As a result, the scattering
rate becomes independent of temperature.

Figure 12 shows temperature dependence of the energy
relaxation rate calculated for absorption (broken line) and
emission (solid line) processes. Once the temperature be-
comes below 100 K, the energy relaxation rate for emission
process dominates the absorption process, as seen in the scat-
tering rates. Because of this, the negative energy relaxation
rate observed in Fig. 10 is not observed at low temperature.
The negative energy relaxation rate, however, should be
more prominent at high temperatures.

F. Suppression of interminiband scattering

One of the most unique features of the 1DSiQDA is sup-
pression of the interminiband scattering. As the transverse
energy can change during the interminiband scatterings,
minibands are now redefined as allowed total energy ranges,
which is obtained by superposing the minibands in Fig. 3(a)
with added transverse energies.

Figure 13 shows such energy minibands. Electrons can
take total energies within the filled energy ranges denoted as
“Total.” This is obtained by superposing the minibands in
Fig. 3(a) with added transverse energies at various excita-
tions, as shown in Fig. 13 for different excitation. In the
calculation of the transverse energies, electron effective mass
in Si was used.

Figure 14(a) shows minibandgap energies as a function of
minibandgap number n. The nth minibandgap is defined as
energy gaps between nth and n+ 1st minibands. Note that
minibandgaps 1, 3, 6, 9, and 12 are above the maximum
phonon energy denoted by the broken line. Interminiband
scatterings over such minibandgaps are not allowed because
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FIG. 13. Minibands considering transverse electron energy ex-
citation. Excitation index indicates different transverse excitation
energies, and “Total” denotes result obtained by superposing the
minibands obtained for each excitation index.

of the energy conservation law. Considering that the number
of phonons is extremely small at the maximum phonon en-
ergy, interminiband scattering rate over minibandgaps 2 and
13 would be virtually negligible. Figure 14(b) shows mini-
bandgap energies calculated for L,=L =L ,=3.0 nm and
L,=L,=L.=7.0 nm. When the dot size is 3.0 nm, most mini-
bandgaps are larger than the phonon maximum energy, re-
sulting in suppression of interminiband scattering over many
minibandgaps. On the other hand, when the dot size is 7.0
nm, all minibandgaps are below the maximum phonon en-
ergy, and no interminiband suppression occurs.

IV. DISCUSSION

In this section, we discuss several issues regarding the
theoretical assumptions and the simulation results.

Firstly, we discuss validity of the ideal 1DSiQDA struc-
ture. As mentioned in Sec. I, the ideal 1DSiQDA is a model
to give theoretical footings for understanding the electron
emission phenomena from PS and related structures,'> '3

0.25 T

T
| (@) IDSIQDA |
021 e
5,
w 0.15
% ©
o
2
2 0.1
§
0.05
0 & ¥
0 5 10 15 0 5 10 15

Minibandgap Number

FIG. 14. Minibandgap energies as a function of minibandgap
number n calculated for different Si dot sizes. (a) 4.0 nm, (b) 3.0
and 7.0 nm. The nth minibandgap is defined as energy gaps between
nth and n+ 1st minibands. The broken lines indicate the maximum
phonon energy in the 1DSiQDA, 0.062 eV.
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poly-Si point contact transistors facilitating coherent quan-
tum states of electrons,'® electromechanical memory
devices,'? and so on. As for the PS devices,'2"15 several ex-
periments indicate that the periodicity and one-
dimensionality of the Si/oxide array are essential for effi-
cient electron emission. In PS devices prepared under an
appropriate anodization conditions, the sequential structure
of silicon dot interconnected by thin oxide films has been
observed in the samples formed on both single-crystal Si
substrate** and poly-Si substrate*> by transmission electron
microscope (TEM) measurements. It has also been con-
firmed that the structures observed in these TEM photo-
graphs closely correlate to both the high emission efficiency
and the ballistic feature of emitted electron energy
distribution.*>*6 For the poly-Si point contact transistor and
electromechanical memory devices, the Si dot size is well
controlled and the structure is highly periodic.'®!° Thus, our
idealized model is a reasonable starting point to predict
electronic/phononic properties at the best condition.

Secondly, we comment on the impact of the realistic pho-
non calculation introduced in Sec. II C. The major differ-
ences from the phononic states in mechanically homoge-
neous quantum wires are the phonon bandgaps [Fig. 4(a)],
the distorted acoustic phonon waves [Fig. 5(a)], and the con-
fined phonon waves [Fig. 5(b)]. The phonon bandgaps would
not have significant influence on electron transport phenom-
ena as far as electric field applied across the 1DSiQDA is
small enough to exhibit minibands, in which allowed energy
levels are continuous. The optical phonons confined in Si
dots would not affect electron transport characteristics either,
because the scatterings mediated by such high-energy pho-
non states are relatively weak, as shown in Figs. 7 and 8.
However, the distorted acoustic phonon waves have certain
influence on electron transport. It has been reported that the
distorted acoustic phonon waves result in phonon-generated
strain redistribution in the 1DSiQDA.*7*8 This effect even-
tually leads to reduction of the scattering potential of ADP
scattering by about 20%. Therefore, the realistic phonon cal-
culation is necessary in modeling the electron transport char-
acteristics at energies where scattering mediated by low-
energy phonon branches are dominant.

Finally, we discuss electron transport characteristics along
the 1DSiQDA. As mentioned in Sec. III C, the intraminiband
scattering rates are slightly higher than that calculated for
bulk Si.’9 Furthermore, several lowest minibands, where the
majority of electrons exists assuming a Maxwell-Boltzmann
distribution, have small dispersion, leading to high miniband
effective mass. Therefore, electron mobility along the
I1DSiQDA becomes much smaller than that of the SiQW.
This is quite obvious because the oxide layers impede elec-
tron transport along the x direction. However, negative en-
ergy relaxation rate shown in Sec. III E, and suppression of
the interminiband scatterings mentioned in Sec. III F are
unique to the IDSiQDA. These characteristics might become
important when nonequilibrium electron transport is consid-
ered. Hot electrons injected at energies within which the en-
ergy relaxation rate is negative might gain energy by absorp-
tion of phonons, maintaining the initial energy for long
duration of time. In addition, as the interminiband scatterings
are restricted in some of the minibands, electrons in mini-
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bands above large minibandgaps keep the bottom energy of
the miniband, as predicted by Sakaki for the polar-optical
phonon scattering in GaAs/AlAs superlattice structures.*’
Thus, insertion of the oxide layers in a SiQW leads to low
electron mobility, but instead, it might lead to longer energy
relaxation time for hot electrons.

V. CONCLUSION

The electronic/phononic states and their interactions in
the 1DSiQDA structure under low electric field condition
have been theoretically investigated. The electronic states
were obtained by solving the Schrodinger equation in the
Kronig-Penny potential. The approximate expression for the
phonon wave functions in the 1DSiQDA were developed,
and the one-dimensional phonon wave and dispersion rela-
tion were numerically simulated using the linear atomic
chain model. The simulated dispersion relation showed the
acoustic phonon modes, the phonon bandgaps, and the con-
fined optical phonon modes. It has been shown that the
electron-phonon scattering rate can be reduced to the one-
dimensional expression. Using the simplified expression, in-
traminiband scattering rates and energy relaxation rates have
been simulated both for absorption and emission processes.
The scattering rate varies from 10'2 to 10'*, depending on the
initial electron energy. The scattering rate for absorption/

PHYSICAL REVIEW B 72, 035337 (2005)

emission processes rapidly decreases at near the top/bottom
of minibands due to the limited number of phonon branches
which can mediate the scattering processes. The scatterings
mediated by the first, second, sixth, eleventh, and twelfth
phonon branches are of the order of 10'!. On the other hand,
the scatterings mediated by the fifteenth to twentieth phonon
branches are so weak that they have minimal impact on the
total scattering rate. The negative energy relaxation rate has
been observed near the bottom of minibands, which is due to
larger scattering rate for absorption process and smaller pho-
non energy mediating the scatterings for emission process.
The temperature dependences of the scattering rate and the
energy relaxation rate were also investigated, and revealed
that the scattering rate for absorption decreases rapidly with
decreasing temperature. The energy relaxation rate for emis-
sion process dominates the absorption process, once the tem-
perature drops down to 100 K. Because of this, the negative
energy relaxation rate is not observed at low temperature.
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