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We propose a two-terminal method to measure shot noise in mesoscopic systems based on an instability in
the current-voltage characteristic of an on-chip detector. The microscopic noise drives the instability, which
leads to random switching of the current between two values, the telegraph process. In the Gaussian regime,
the shot noise power driving the instability may be extracted from the I-V curve, with the noise power as a
fitting parameter. In the threshold regime, the extreme value statistics of the mesoscopic conductor can be
extracted from the switching rates, which reorganize the complete information about the current statistics in an
indirect way, “telegraphing” the size of a fluctuation. We propose the use of a quantum double dot as a
mesoscopic threshold detector.
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I. INTRODUCTION

Shot noise in mesoscopic conductors,1,2 has attracted
great interest, both theoretically and experimentally. While
shot noise measurements are an important tool in experimen-
tal labs, the measurement of non-Gaussian noise presents an
experimental challenge.3,4 Noise characteristics beyond the
size of the typical fluctuation, known as full counting statis-
tics �FCS�,5–7 are interesting because they bring additional
information about the transport properties of the measured
conductor. In particular, the extreme value statistics �EVS�
can have qualitatively different behavior than typical
fluctuations,8–10 and thus gives rise to different physical ef-
fects. How these rare fluctuations can be measured is one
outstanding question that this paper is concerned with, and
has only recently received attention.8,11

The standard measurement method runs the current
through a series of cables, filters, and amplifiers before the
noise is detected. While this works well for the noise power,
and can be extended to the third cumulant with great effort,3,4

it is very hard to experimentally measure rare current fluc-
tuations. A breakthrough in measurement technology came
with on-chip detectors, which use superconducting devices,
or quantum dots for a variety of functions, such as fast
qubit readout12,13 or high-frequency quantum noise
measurement.14,15

In addition to the many advantages of going on-chip, a
further possibility advanced in this paper is the use of two-
terminal, rather than four-terminal measurements for low fre-
quency noise. Four-terminal measurements are intrinsically
limited by the small coupling constant between the measure-
ment circuit and the conductor, as well as by the fact that the
low-frequency noise can evade the measurement device by
leakage through the bias line.16 In contrast, a two-terminal
noise detector is strongly coupled, and detection is funda-
mentally a nonperturbative process that serves as a preamp-
lifier of the low frequency microscopic noise.

In order to exploit the above advantages, we propose cir-
cuits with an instability as detectors of low frequency noise,
as well as FCS. The considered on-chip circuit consists of a
mesoscopic conductor with a parallel mesoscopic capacitor,
connected in series with the nonlinear element �see Fig. 1�.9

The nonlinear element has a region of negative differential
resistance, which allows bistability. The mesoscopic conduc-
tor loads the instability, so that there are two stable charge
points on the capacitor, corresponding to two different cur-
rents through the circuit. In this bistable range, the shot noise
occasionally causes the circuit to transit from one stable state
to the other, producing a random telegraph signal in the cur-
rent output.17 The rate of transition is exponentially sensitive
to the size of the fluctuation,9 and thus serves as a threshold
detector for the rare current fluctuations. Although the
threshold rates are not a direct measurement of the FCS, they
reorganize the complete information about the noise statistics
in an indirect way, “telegraphing” the size of a fluctuation.
Therefore, bistable systems are a promising candidate for
low-frequency noise detectors, and can confirm or falsify a
given prediction for FCS.

The paper is organized as follows. In Sec. II we first re-
view the statistical properties of the general telegraph pro-
cess, as well as the instanton dynamics for noise driven cir-
cuits, and the results for the bistable switching rates. This
sets the stage for the application of this physical process. The
implications of the Gaussian noise limit are considered in

FIG. 1. The currents of the circuit elements are plotted as a
function of the charge on the capacitor Q. The left element �NL� has
a region of negative differential resistance, allowing bistability: The
average current in the circuit is conserved at two stable points, Q1,2,
and one unstable point, Qu. Inset: Noise measurement circuit. The
mesoscopic conductor with a parallel capacitor is connected in se-
ries with the nonlinear element.
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Sec. III, and we find that the I-V curve may be used to
extract the noise power as a fitting parameter. The results for
the second and third cumulant are also given, and the role of
the asymmetry in the rates is discussed. In Sec. IV, we ex-
amine several effects that arise when the bistable circuit is
combined with an external circuit. The threshold detector of
the EVS is introduced in Sec. V. We give results for the
threshold rates of several processes, and discuss stabilization
effects that arise when the tails of the distribution have a
cutoff. The quantum double dot is proposed as an implemen-
tation of the threshold detector in Sec. VI. We discuss the
mesoscopic circuit, needed conditions and constraints, as
well as feasibility. Section VII contains our conclusions.

II. SETUP AND BISTABILITY RESULTS

We first review the essential results on the transport sta-
tistics of bistable systems.9 Consider the circuit shown in the
inset of Fig. 1, biased with voltage V. The average current
through both circuit elements is plotted in Fig. 1 versus the
charge on the parallel capacitor C �we choose to speak about
the charge on the capacitor, rather than the voltage across the
right element Q /C.� The nonlinear element on the left has a
range of negative differential resistance, which leads to the
possibility of three charge/current points,
�Q1 , I1� , �Q2 , I2� , �Qu , Iu�, where the I-Q curves intersect, so
the average current is conserved in the circuit. The central
intersection at Qu is unstable to small charge perturbations,
while the outer two intersections Q1,2 are stable. The micro-
scopic nonequilibrium noise is correlated on a short time
scale �0�� / eV, and drives the collective system on the
longer RC-time of the circuit, �C��0. Occasionally, the mi-
croscopic noise causes the system to transit between stable
states. As a result, the measured current switches back and
forth between I1 and I2, with rates �1,2. These rates contain
valuable information about the statistical nature of the driv-
ing noise that will be examined later. On a long time scale,
the system relaxes with the rate �S=�1+�2 to the stationary
state. This stationary state has constant probabilities to oc-
cupy one of the two stable points

P1 = �2/�S, P2 = �1/�S. �1�

Therefore, the average current is

�I� = �
n=1,2

InPn. �2�

The randomness of the duration in either of the stable states
leads to the fluctuation of the transmitted charge

Q�t� = �
0

t

dt�I�t�� . �3�

This random variable has a probability distribution P�Q�t�	,
which may be specified by its moments. In the stationary
limit, it is more convenient to consider the cumulants �irre-
ducible correlators� because they are linear in time, ��Qn��

 t��In��, and may be used to define time-independent current
cumulants, ��In��. The second cumulant and third cumulant
of the switching current described above are given respec-
tively by9

��I2�� = �
n=1,2

FnPn + 2��I�2�1�2/�S
3, �4�

��I3�� = �
n=1,2

LnPn + 6��I�3�1�2��/�S
5, �5�

where �I= I2− I1, while Fn and Ln are the noise power and
third cumulant of the stable points, which describe the small
fluctuations around I1,2. The first term in Eq. �4� is the
weighted noise power of the stationary states, and the second
term is the well-known result for zero-frequency telegraph
noise.17 The telegraph contribution dominates the bare con-
tribution because it scales as �S

−1 in the second cumulant, and
as �S

−2 in the third.9

An important feature of bistable systems is that the I-V
curve makes a rapid transition from I1 to I2 as a function of
the bias voltage �see Fig. 2 and the discussion below�, while
the current cumulants show a peak structure. During this
transition, the specific values of the currents I1,2 may be con-
sidered constant. If one has access to the first three cumu-
lants of an unknown process, one may utilize these cumu-

FIG. 2. �Color online� The average current �I�, the noise ��I2��,
and third cumulant ��I3�� are plotted as a function of the scaled
voltage, for different asymmetry parameters, �. �a� The asymmetry
is invisible in the current, but it produces a shift in the peak location
of the noise. �b� The asymmetry is further magnified in the third
cumulant, that shows a weighted peak and dip. �c� By plotting the
logarithm of the ratio G= �dI /dV� / ��I2�� vs voltage, the asymmetry
parameter � is given asymptotically by the negative difference of
the slopes, divided by the sum of the slopes. We have taken I1=0,
I2=1, V0=0, and �0= .1.

A. N. JORDAN AND E. V. SUKHORUKOV PHYSICAL REVIEW B 72, 035335 �2005�

035335-2



lants, Eqs. �2�, �4�, and �5�, to diagnose whether bistability
exists or not. The dominant telegraph contribution to Eqs. �2�
and �4� may be used to eliminate the rates, and substitution
into Eq. �5� then yields the third cumulant of the telegraph
process in terms of the first two18

��I3��tel = 3��I2��tel
2 �I1 + I2�/2 − I

�I2 − I��I − I1�
. �6�

This equation may serve as a valuable test of experimental
data because there is no fitting parameter. The above proce-
dure was used by Flindt, Novotný, and Jauho to demonstrate
bistability in numerical studies of the nanomechanical
shuttle.19

The above results �2�, �4�, and �6� are general and apply to
any telegraph process, independent of its microscopic origin.
We now turn to the bistable circuit driven by current noise.

The microscopic current fluctuations ĨL,R of the two circuit
elements may be described with generating functions of the
current cumulants �that are Markovian after the correlation
time �0�,

H	�
	� = �
n

�
	
n /n!���Ĩ	

n��, 	 = L,R , �7�

where the cumulants ��Ĩ	
n�� are functions of the charge on the

capacitor Q �we set the electron charge e=1 throughout the
paper�. The fact that the correlation time �0 is much smaller
than the RC-time �C of the circuit, means the slow dynamics
is classical.20 The circuit dynamics may now be described
with the stochastic path integral formalism.20,21 This formal-
ism is quite general and has been applied to a wide variety of
stochastic problems in mesoscopic physics.9,10,22–25 In addi-
tion to the separation of time scales, we require that the
instability is well developed, so that the stochastic bistable
switching rates are given by9

�1,2 = �1,2 exp�− A1,2� , �8�

where the action

A1,2 = �
Q1,2

Qu

dQ
in�Q� , �9�

must be larger than one. The attempt frequency �1,2 is sub-
dominant and will be neglected. The function 
in�Q� �which
we refer to as the instanton line� is implicitly defined by the
nontrivial solution of the algebraic equation9

H�Q,
� = HL�Q,
� + HR�Q,− 
� = 0, �10�

which can be found for arbitrary noise statistics by a rever-
sion of the power series

H�
� = �IL − IR�
 + �1/2��FL + FR�
2 + . . . = 0, �11�

where IL,R
�ĨL,R� and FL,R
��Ĩ L,R
2 ��.

There are two physical limits that we now consider, based
on the comparison of the maximum current difference
through the instability �I=max��IL− IR� �referred to as the
current threshold� to the total noise power at the instability,
F= �FL+FR�. In the Gaussian limit, discussed in the next
section, the current threshold is small compared to the total

noise power, �IF so the system is effectively driven by
Gaussian noise alone, with higher current cumulants making
only small corrections. In the threshold limit, discussed in
Sec. V, the current threshold is large compared to the total
noise power, �I�F, so it will be the tails of the distribution
that drive the switch.

In the counting statistics literature, it is usually the gener-
ating function of the stochastic process that is sought. We
would like to comment that the instanton line �10� for a
noiseless nonlinear element characterizes the stochastic pro-
cess in a different way that nevertheless contains all the in-
formation about the rare events. Furthermore, it is directly
related to a physical quantity that is readily observed in ex-
periments, the switching rate �8�, and therefore provides a
more useful characterization of the EVS.

III. I-V CURVE IN THE GAUSSIAN LIMIT

We now consider the Gaussian limit, �IF, and demon-
strate how to extract the noise alone from the telegraph pro-
cess. Keeping only the first two terms in Eq. �11�, the instan-
ton line is given by


in�Q� = − 2�IL − IR�/�FL + FR� , �12�

implying that �
in�1 and justifying the series truncation. To
leading order in �I /F, the microscopic noise is constant, F
=FL+FR=const, and may be taken out of the action integral.
For a well developed instability, A1,2�1, the current will
make a transition from I1 to I2 on a voltage scale smaller than
the total instability scale �Q2−Q1� /C �see below�. On this
smaller voltage scale, the currents I1,2 are approximately
constant, and we may linearize the actions A1,2 in voltage
around the point V0 where they are equal, A1=A2. This lin-
earization gives the transition rates

�1,2 = �0 exp�− �2C/F��I1,2 − Iu��V − V0�	 , �13�

where I1,2 and Iu are taken at V=V0. The rates have an acti-
vation form with �in general� different energy scales. Never-
theless, the I-V curve, Eq. �2�, depends only on the ratio of
the rates, and therefore has a universal form

I�V� =
I1 + I2

2
+

�I

2
tanh��C�I/F��V − V0�	 . �14�

Thus, as a function of V, the current has a step on a voltage
scale �V=F / �C�I�. The conditions A1,2��Q1,2−Qu��I /F
�1 and �I��I, imply �V� �Q2−Q1� /C, so the action lin-
earization is justified.

Assuming the capacitance C is known, the noise power
driving the instability can be accurately obtained by fitting
data with Eq. �14�, with F as the only fitting parameter. In
contrast, the noise power and third cumulant of the telegraph
process do not have a universal form because they depend on
the rates directly. The behavior of the cumulants may be
characterized by an asymmetry parameter �= �I1+ I2

−2Iu� /�I that describes the difference in the activation en-
ergy scales of the rates �13�. In Fig. 2, we plot the first three
cumulants, Eqs. �2�, �4�, and �5� for the rates in Eq. �13�
versus the normalized external voltage for different values of
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the asymmetry parameter. The asymmetry is invisible in the
current, creates a small shift in the noise peak, and is further
magnified in the third cumulant. We would like to stress that
the third cumulant may have either a peak or dip, depending
on the sign of the asymmetry parameter. The asymmetry may
be directly extracted by plotting the logarithm of the ratio
G= �dI /dV� / ��I2�� versus bias and reading off the asymptotic
slope as done in Fig. 2�c�. The asymmetry parameter � is
given by the negative difference of the slopes, divided by the
sum of the slopes.

By first calibrating with an equivalent resistor to deter-
mine FL and C, �where the bistable system is driven by the
noise of the nonlinear system alone�, the shot noise power FR
of the mesoscopic sample may be extracted. Alternatively,
one may use a nonlinear system with known noise proper-
ties. Note also, that the detailed shape of the nonlinear I-V is
not important, so long as the above assumptions are met. The
accuracy of the measurement is limited by the accuracy of
the I-V curve. The signal-to-noise ratio grows as the square
root of the number of switches, and should be large. To move
to another bias point, the nonlinear I-V curve should be
shifted up. This can be done by attaching an additional cur-
rent bias line between the circuit elements, e.g., with a sepa-
rate bias and tunnel junction. The external voltage and cur-
rent bias allow a fully tunable bistability. This method may
be applied even for macroscopic unstable systems, such as
resonant tunneling diodes,26–28 because while C is large, �I
can always be made smaller by shifting the bias to reduce the
current barrier.

IV. EXTERNAL CIRCUIT EFFECTS

In this section, we investigate how the external circuit can
influence the statistical properties of the bistable system. In
the first experiment on non-Gaussian noise, feedback effects
from the external circuit played an important role.3,29 If the
mesoscopic system is imperfectly voltage biased, the voltage
across the mesoscopic sample will fluctuate on a long time
scale. These slow fluctuations alter the transport conditions,
and provide additional contributions to the individual current
cumulants, named “cascade corrections.”21,30,31 We argue be-
low that the voltage fluctuations across the circuit may also
affect the switching rates.

We begin this analysis by considering a common experi-
mental setup, the current biased circuit, where the external
circuit resistance is much larger than the sample resistance.
The large circuit resistor fixes the current through the sample
so current fluctuations vanish, creating voltage fluctuations
instead. The transport dynamics is characterized by three rel-
evant time scales. The RC time of the system �C, the RC time
of the external circuit �RC, and the inverse switching rate �S

−1.
Any realistic measurement circuit is current biased on the
external RC time, longer than the system relaxation time,
leading to the ordering,

�C  �RC,�S
−1. �15�

We first consider the experimental situation when the
typical time spent in the stable states is much longer than the
external circuit RC time

�RC  �S
−1. �16�

In this parameter range, the dynamics is sketched in Fig. 3.
On the time scale �C, the average voltage across the nonlin-
ear system changes very little, so the dynamics is effectively
voltage biased. The system transitions from V1 or V2 to the
black dot along the slanted load line. On the time scale �RC,
the voltage across the nonlinear element adiabatically relaxes
to restore the current to its proper value. The system then
switches again on the other slanted line after a time �S

−1. The
main difference with respect to the voltage biased case is that
the step will be in voltage, not current, and therefore the
I-V curve will have a plateau, not a step. Repeating the deri-
vation that lead to Eq. �14�, we find

V�I� =
V1 + V2

2
+

�V

2
tanh��C�V˜/F��I − I0�	 , �17�

where I0 is the current value where the rates are equal, and

�V˜=�V+Vu
�1�−Vu

�2� is not the same as in the prefactor be-
cause the values of the unstable voltage are different in the
shifted curves of Fig. 3. This nonuniversality will be small if
the mesoscopic element has a large resistance, so Vu

�1�−Vu
�2� is

small. As the above analysis shows, the usual experimental
procedure of taking voltage noise data, and converting it into
current noise fails if there is an instability.

A separate circuit effect arises because the stable current
state produces its own shot noise, that the external resistor
suppresses, creating voltage noise on a time scale �RC across
the mesoscopic part of the circuit. This voltage noise adia-
batically rocks the current threshold, increasing the average
transition rate. The relative magnitude of this effect can be
estimated by comparing the variance of the rocking potential
with the voltage scale of the transition, �V, and is small if
�C�RC, as we have assumed.

Considering now the regime

FIG. 3. System dynamics in the case of a current biased circuit.
Starting at V1, the system can hop to the empty circle at Vu

�1� on the
time scale �C, and then fall to the black dot on the lower dashed
load line. This creates a current below the external current bias, so
the circuit adiabatically adjusts by moving along the arrow to V2 on
the time scale �RC. After a time on the order of �S

−1, the system can
then hop over the barrier to the empty circle at voltage Vu

�2�, and fall
to the black dot on the upper dashed load line. This state has a
current above the bias current, so the system adiabatically follows
the arrow back down to V1 on the time scale �RC, completing the
cycle.
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�S
−1  �RC, �18�

where the telegraph switching is fast compared to the exter-
nal circuit response time, we see that the voltage across the
sample has no time to change until after the next switching
event restores the current to its original value. In this regime,
the switching is always voltage biased. Furthermore, we may
consider the whole sample as a fast Langevin noise source
with telegraph current statistics that drives the charge fluc-
tuations in the external circuit. Current cumulants may now
be computed in the usual way for stable systems with a
nonlinearity.21,32

V. THRESHOLD DETECTORS AND FULL
COUNTING STATISTICS

We now propose a measurement scheme for the EVS of a
mesoscopic conductor. The idea is to use the bistable system
as threshold detector, in the limit �I�F, where the switch
will be driven by the non-Gaussian tails of the current dis-
tribution. We consider the shot noise regime, where the cur-
rent cumulants are proportional to the average current,
H	�Q ,
�= I	�Q�h	�
�, and h	 generates the generalized
Fano factors. Then, Eq. �10� for the instanton line takes the
following form:

− hL�
�/hR�− 
� = IR�Q�/IL�Q� 
 R�Q� . �19�

In this equation, all the nonuniversal details of the charge
dependence of the instability appear on the right-hand side in
the current ratio R, while the statistical nature of the fluc-
tuations appears on the left-hand side. In order to probe the
probability of having a very large �small� current in the me-
soscopic system, the threshold limit we are now concerned
with implies that the extremal value of R through the insta-
bility is much smaller �larger� than 1. This means that in
contrast to the Gaussian limit, where Eq. �19� gives 
m

max��
in�1, the threshold limit implies 
m�1. This cor-
responds to large action, or a very small switching rate,
which makes the measurement of the FCS experimentally
challenging. To overcome this difficulty a general strategy
should be based on the following ingredients.

�1� A separation of time scales, that allows the measure-
ment of the Markovian FCS of the fast microscopic noise
sources that drive the classical circuit on a longer time scale.

�2� The action A��Q
m must be larger than one, but not
so large that the system never switches on experimental time
scales.

�3� The instability must be such that the current ratio R
= IR / IL is larger �or smaller� than one in the bistable range, so
that 
m�1.

�4� A sufficiently large bias, so that the circuit is both in
the bistable range, and the bias across the mesoscopic ele-
ment exceeds the temperature.

�5� A further useful �but not essential� ingredient is that
the nonlinear element is noiseless, so that the transition is
driven by the mesoscopic element alone.

Condition �2� is the most severe constraint. In order to
have the action not too large, �Q must be comparable to the
electron charge, implying that the capacitance of the circuit

is in the mesoscopic range. This excludes macroscopic non-
linear elements such as tunnel diodes from measuring full
counting statistics �though not Gaussian noise, see Sec. III�.
Conditions �2� and �3� together determine the necessary
shape of the instability. In order to have �Q small, and R
= IR / IL large, the I-Q characteristic of the nonlinear element
should have a sharp peak or dip, the first of which is shown
in Fig. 4.

To measure the FCS using this peak, the switching rate
should be measured as a function of the external bias, that
moves the mesoscopic load line down the peak. This proce-
dure is sketched in the inset of Fig. 5, which shows the real
time switching from the stable point with average current Im,
via the current peak, to the other stable point with zero cur-
rent. The dependence of Im vs V−Vth is shown in Fig. 5,
where Vth is the value of the external bias at the current
maximum. A direct measure of the current EVS may be ob-
tained by dividing the log rate by the voltage jump, in order

FIG. 4. Schematic of the average current flowing through the
threshold detector and Ohmic mesoscopic conductor as a function
of the charge. The detector current has a peak with center Q0, width
�Q, and maximum current I0. The mesoscopic conductor is defined
to have currents I= Im and I=0 at the stable states.

FIG. 5. Sketch of the experimental procedure to extract the EVS
of a mesoscopic conductor. The current in the conductive state Im

decays as a function of the external bias on the scale of the peak
width �. Inset: The system will switch from the conducting state to
the insulating state on a time scale 1 /�2
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to remove the effect of the shape of the current peak, and
plotting

S = �log ��/C�V − Vth� , �20�

versus Im / I0.
We now consider the switching rate for Poissonian,

Gaussian, and Binomial noise sources while assuming a
noiseless nonlinear element �hL=
� so that the switching dy-
namics is governed solely by the system noise. The charac-
terization of the EVS can be extracted from the divergence of
the action, which corresponds to large values of 
m. We com-
pare the most important processes: Gaussian, hR�
�=

+
2 /2 �Fano factor is 1�; Poissonian, hR�
�=exp 
−1; and
Binomial, hR�
�=T−1 log�1+T�exp 
−1�	. In the asymptotic
limit ��
�→��, Eq. �19� may be solved to obtain


in = �− 1/R , Gaussian

log R , Poissonian

�T log T�/�R − T� , Binomial,
� �21�

which replaces Eq. �12�.
It is important that all three processes have very different

asymptotic behaviors that make it relatively easy to distin-
guish them in experiments. However, the most surprising
fact is that the Binomial process, characteristic of a quantum
point contact �QPC� with transparency T, has a sharp power-
law singularity at R=T. It persists even at small T �the tun-
neling limit� which is usually considered to give a Poissonian
process. This behavior �discussed previously by Tobiska and
Nazarov in Ref. 8� has the following physical interpretation:
The total charge that passes the conductor is the sum of
independent electron attempts, with success probability T,
and failure probability 1−T. The Pauli principle allows only
one electron at a time to make an attempt. Therefore, the
current distribution has a sharp cutoff at the maximum al-
lowed current, when all attempts are successful. This maxi-
mum current is given by Imax= �I� /T. If the current threshold
ratio R is lowered below T, the mesoscopic conductor has no
chance to have a large enough fluctuation to overcome the
barrier, and the system never switches. We propose the name
Pauli stabilization to describe this impotency. To further il-
lustrate the effect, we plot S, Eq. �20�, for a Lorentzian peak
in Fig. 6, using a QPC with different transparencies. Even if
the transparency is fairly small, where Poissonian statistics is
naively expected, there is still a power-law divergence in S.
This divergence may be estimated by expanding R�R0
+	Q2 near the peak, to obtain

S � − �T log T�/�	�R0 − T� . �22�

An interesting situation occurs when the bistable system
is driven by a microscopic noise that is itself a random tele-
graph process. For instance, a charge trap near the right me-
soscopic conductor may switch the current between Ia and Ib,
with rates �a,b. The generating function of this random pro-
cess is9

HR = 1
2 �Ia + Ib�
 − 1

2 ��a + �b�

+ ���Ib − Ia�
 − �b + �a	2/4 + �a�b. �23�

The instanton line �10� has an exact solution for a noiseless
nonlinear element


in�Q� =
�a

IL − Ia
+

�b

IL − Ib
. �24�

An important check is 
in=0 when IL= IR= ��bIa+�aIb� / ��a

+�b�. On the other hand, the instanton solution diverges
when IL approaches Ia or Ib, where the distribution has a
cutoff,9 and thus also displays a stabilization effect. As IL
approaches Ia or Ib, the currents may be approximated as Ib
− IL��Ib

0− IL
0�+�Q2, so the action itself has a power-law di-

vergence as

S � − �a,b/���Ib
0 − IL

0� . �25�

It is important to note that because the telegraph process
has a much larger noise power than shot noise, this stabili-
zation effect should be able to be observed even with mac-
roscopic nonlinearities, such as tunnel diodes. To see why
this is so, we estimate the action away from the divergence
as S��a,b�C. Our time scale separation demands that �a,b
��C, so S�1. Other than this requirement, �a,b is an inde-
pendent parameter. Therefore, the action can be made of or-
der one even with a large capacitance, so the action diver-
gence from the EVS stabilization behavior in Eqs. �24� and
�25� should be able to be seen on experimental time scales.

VI. DOUBLE QUANTUM DOT AS A THRESHOLD
DETECTOR

While the discussion has thus far been rather general, we
now concentrate on a specific implementation of the mesos-

FIG. 6. �Color online� The normalized log-rate S is plotted vs
Im / I0 for a quantum point contact with transparencies T=0.5 and
T=0.2 measured by a noiseless detector with current peak of
Lorentzian shape. S has a power-law divergence as Im / I0 ap-
proaches T, which is a manifestation of the “Pauli stabilization”
effect �see text�. Comparison is also shown with the Poissonian
limit, whose divergence at the origin is cutoff by the finite conduc-
tance of the QPC.
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copic threshold detector, a quantum double dot �DD�.33 We
consider the resonant tunneling regime, where each dot has a
Breit–Wigner resonance of Lorentzian shape.34,35 The trans-
mission as a function of energy is

T�E� =
4�2t2

��E − E0 + i���E + E0 + i���2
, �26�

where � is the total decay width of the symmetric resonant
levels, t is the tunnel coupling of the middle barrier, E0

2= t2

+ ��E�2 /4 is the hybridized energy of the levels, and �E is
the energy difference between the levels that can be adjusted
with gate voltages. The total current through the DD also has
a Lorentzian shape as a function of �E,

I =
2��t2

�2 + E0
2 , �27�

and is maximal at Imax=�� for �= t, and �E=0. Despite the
fact that the transparencies of the barriers are low, the total
current is large in the resonant tunneling limit. In Fig. 4,
�E�Q, where the coefficient is relative capacitance of the
two levels to the cavity, and �Q��. The Fano factor f at
�E=0 as a function of the dimensionless ratio r is

f =
2r4 − r2 + 1

2�1 + r2�2 , r = �/t , �28�

that is equal to 1/4 when r=1, where the current is maxi-
mum, and has a minimum at r=�3/5, where the Fano factor
is fmin=7/32�0.219. At this point, the noise is suppressed,
but not zero. It is well known that a single Breit–Wigner
resonance has a Fano factor of 1 /2, and here with a DD, it is
suppressed below 1/4. These results naturally lead to the
idea that a series of quantum dots, or a ballistic narrow-band
conductor, may be used as an ideal noise detector.

This DD is fabricated together with a QPC connected
through a mesoscopic cavity36 as sketched in Fig. 7. The
physics of the switch is as follows. Current is flowing
through the DD with the right level slightly above the left,
and flowing out the QPC. The QPC has a rare event, where
many subsequent electrons succeed in exiting the right con-
tact. This depresses the charge in the cavity below the aver-
age, lowering the potential on the cavity. The potential ca-
pacitively couples asymmetrically to the two quantum dots
which aligns the levels on the DD, producing more current
flowing into the cavity. The QPC continues in its rare event,
further lowering the potential in the cavity, finally misalign-

ing the levels to the unstable point, and cutting off transport.
We now make some estimates of the energy scales and

parameter ranges for the circuit to function as we wish.
There should only be a few resonant levels in the transport
window, so the typical energy spacing between the adjacent
peaks in the I-V curve will be the mean level spacing of the
quantum dots, �D. The width of the current peak is ���D,
implying the peaks are separated. The current at the top of
the peak is given by the peak conductance times the width of
the barrier, I0��, where equality is reached in the perfect
resonant tunneling limit.

The first condition is on the conductance of the mesos-
copic sample TM �we set the conductance quantum equal to
1�, so the load line crosses one peak only, as shown in Fig. 4,

I0/� � TM � I0/�D. �29�

The left inequality is most strict for an open QPC, which
requires perfect resonant tunneling. The right inequality is
not very restrictive, since I0 /�D= �I0 /���� /�D��1, which
allows the pinch-off limit.

The next condition is the time scale separation between
the RC time of the cavity, and the tunneling time through the
DD. In the case, C��C

−1, where C is the geometrical capaci-
tance, and �C is the mean level spacing in the connecting
cavity at the Fermi energy, C�

−1= �C−1+�C���C. The time
scale separation condition ���CTM, simply means that the
cavity is larger than the quantum dots. Additionally, the ac-
tion must not be too large, so for the FCS measurement
�where 
m�1�, the charge difference, �Q, must not be too
large. The charge width is given by the density of states of
the cavity, times the peak’s voltage width, �Q�� /�C. To-
gether, these two conditions constrain the size of the cavity

�/TM � �C � �/�Q , �30�

which gives a rather small parameter range.
Finally, to go out of equilibrium, the system must be

cooled to mesoscopic temperatures, T� I0 /TM, much smaller
than the mean level spacing of the small quantum dots. How-
ever, it would be also interesting to observe the EVS even in
equilibrium. While the noise power in equilibrium is simply
a consequence of the fluctuation-dissipation theorem, the
EVS is nontrivial.

We now compare our idea with other proposals for mea-
suring noise and the EVS of mesoscopic conductors. In the
proposals discussed below, the measurement device is in a
separate circuit weakly coupled to the mesoscopic conductor
that acts as an external noise source. Aguado and Kouwen-
hoven proposed a double quantum dot as a detector of high
frequency noise.14 The quantum noise causes inelastic tran-
sitions between the states of quantum dot, and therefore the
double dot current is proportional to the noise power at that
frequency. Tobiska and Nazarov proposed using Josephson
junctions as a measurement device.8 A rare current fluctua-
tion causes the quantum phase to jump over the top of its
effective potential, creating a transition from the supercon-
ducting phase to the normal conducting phase. The switching
rate gives information about the probability of the rare cur-
rent fluctuation. Macroscopic quantum tunneling is sup-
pressed by having an array of Josephson junctions to make

FIG. 7. A double quantum dot in series with a mesoscopic quan-
tum point contact with transmission TM. A metallic side gate pro-
vides a tunable capacitance.
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the potential barrier width large. Pekola also proposed using
Josephson junctions as a measurement device.11 In this pro-
posal, the noise first creates a transition from the ground state
to the first excited state, where macroscopic quantum tunnel-
ing causes escape.

The noise experiment implementing this last proposal,
Ref. 16, provided additional clarification of the difficulties
involved in measuring the FCS. Similarly to the double-dot
detector,14 the Josephson junction measured noise at the
plasma frequency of the junction, while the low frequency
noise leaked through the bias line. This also explained why
the expected exponential dependence of the rate on the cur-
rent threshold was not found.

Our proposal is based on essentially different physics: The
threshold detector is supposed to work in a regime where
detection is a nonperturbative process due to strong coupling
to the measured system. Although a realization of this thresh-
old detector is an experimental challenge, there are several
advantages of our proposal. The separation of time scales
requirement �C��0 is necessary to measure low frequency
noise: The finite response time allows many electrons to en-
ter and leave the cavity, so the Markovian limit is reached.
This limit also implies that quantum effects are not relevant.
Detector feedback, usually a liability, is completely ac-
counted for. In fact, detector feedback is an essential ingre-
dient for our proposal.

VII. CONCLUSIONS

We have proposed the use of circuit instabilities as two-
terminal detectors of low-frequency noise. The considered
circuit consists of a mesoscopic conductor with parallel ca-
pacitor, in series with a nonlinear element. The nonlinear
device contains a region of negative differential resistance,
which allows bistability. There are two regimes of interest,
from the point of view of shot noise measurement.

The first is the Gaussian regime, where the noise power is
much larger than the current threshold. In this limit, the noise

power is effectively constant, and the higher cumulants may
be neglected. The noise drives a transition between two cur-
rent values, the telegraph process. This process produces a
step in the I-V curve of universal form, with only one vari-
able parameter, from which the noise power may be ex-
tracted. The second cumulant has a peak at the current step,
while the third cumulant has a peak and a dip, the relative
weight depending on an asymmetry parameter of the switch-
ing rates. We further considered external circuit effects. In
the current biased case, the dominant effect is that the I-V
curve has a plateau, not a step, because it is the voltage that
switches, not the current. The measurement of Gaussian
noise may be carried out with macroscopic conductors con-
taining nonlinearities, such as resonant tunneling wells.

The second regime is the threshold regime, where the
noise power is smaller than the current threshold. In this
limit, the switch comes from the tails of the distribution, and
is a direct signature of the extreme value statistics of the
mesoscopic conductor. The most interesting effect occurs for
charge distributions that have a cutoff. This cutoff manifests
itself in a divergence of the switching rate, that stabilizes the
state. We considered both Pauli stabilization from a quantum
point contact, as well as stabilization from a microscopic
random telegraph process. While the measurement of full
counting statistics requires a mesoscopic instability because
of the long time scales involved, the stabilization effect from
the random telegraph process should be visible in macro-
scopic nonlinear elements. We proposed a quantum double
dot operating in the resonant tunneling regime as an imple-
mentation of the threshold detector of rare shot noise
fluctuations. Constrains on the conductance of the measured
conductor, and the capacitance of the central dot were
discussed.
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