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We consider a phenomenological model for a 1/ f� classical intermittent noise and study its effects on the
dephasing of a two-level system. Within this model, the evolution of the relative phase between the �± � states
is described as a continuous time random walk �CTRW�. Using renewal theory, we find exact expressions for
the dephasing factor and identify the physically relevant various regimes in terms of the coupling to the noise.
In particular, we point out the consequences of the nonstationarity and pronounced non-Gaussian features of
this noise, including some anomalous and aging dephasing scenarios.
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I. INTRODUCTION

Recent experimental progress in the study of solid-state
quantum bits �Josephson qubits�1 has stressed the importance
of low-frequency noise in the dephasing or decoherence of
these two-level systems.2–4 It now appears that the coupling
to low-frequency noise is the main limitation in obtaining
long lived phase coherent states of qubits necessary for quan-
tum computation. However, a complete understanding of the
microscopic origin of 1 / f noise in solid state physics is not
available yet5 and therefore, theoretical studies of the
dephasing by such a noise are based on phenomenological
models. In the spin-boson model, the environment of the
qubit is modeled by a set of harmonic oscillators, with an
adequate frequency spectrum.6,7 Another commonly used
model for a low-frequency noise consists in considering the
contributions from many independent bistable fluctuators.8,9

In the semiclassical limit, the noise from each fluctuator is
approximated by a telegraph noise of characteristic switching
rate �. For a broad distribution �1/� of switching rates �, a
1 / f spectrum is recovered when summing contributions of
all fluctuators. Such a model is based on observations of
telegraph like fluctuations in nanoscale devices,10,11 but a
precise characterization and justification of the broad distri-
bution of switching rates is still lacking although the local-
ization of these fluctuators12,13 as well as their collective or
individual nature16 have been investigated for a long
time.14,15

In this paper, we consider a phenomenological model for
the classical low-frequency noise. This model can be viewed
as the intermittent limit of the sum of telegraphic signals. In
this limit, the duration of each plateau of the telegraphic
signal is assumed to be much shorter than the waiting time
between plateaus.10 A 1/ f power spectrum for the intermit-
tent noise is then recovered for a distribution of waiting
times � behaving as �−2 for large times. Because the average
waiting time is infinite, no time scale characterizes the evo-
lution of the noise which is nonstationary. The purpose of
this paper is to study the effects of such a low-frequency
intermittent noise on the dephasing of a two-level system in
order to identify possible signatures of intermittence.

As we will show, in this model the relative phase � be-
tween the states of the qubit performs a continuous time

random walk17,18 �CTRW� as time goes on. Such a CTRW
was considered in the context of 1 / f current noise by
Tunaley,19 extending the previous work of Montroll and
Scher on electronic transport.20 However, in the present pa-
per it is the integral of noise, and not the noise itself, which
performs a CTRW. Moreover to our knowledge, the precise
consequences of CTRWs nonstationarity on dephasing have
not been studied. On the other hand aging CTRW were pre-
viously considered in the context of trap models in glassy
materials21 and in the study of fluorescence of single
nanocrystals.22,23 Technically, the dephasing factor that we
will consider corresponds to the average Fourier transform of
the positional correlation function of the random walk. Some
of the asymptotic behaviors of this correlation function were
already obtained in Ref. 21. However, in the present paper
we will extend these results to all possible regimes and we
will present all of these results in a unified framework. The
use of renewal theory24 greatly enlightens the origin of non-
stationarity and enables us to interpret some features of the
dephasing scenario.

This paper is organized as follows: in Sec. II, we present
our model for the noise and define the quantity of interest,
i.e., the dephasing factor of a two-level system coupled to
this noise. In Sec. III, the exact expression for the single
Laplace transform of the dephasing factor will be derived
and, from this result, the physically relevant weak and strong
coupling regimes are identified. Moreover, we clarify the ori-
gin of nonstationarity and show the relation of our problem
to renewal theory. For completeness and pedagogy, the ef-
fects of standard anomalous diffusion of the phase and of
randomness of waiting times on dephasing are compared
showing the importance of intermittence in the nonstationar-
ity properties of the dephasing scenario. In Secs. IV and V,
we present a complete study of the behavior of the dephasing
factor, respectively, for a noise with a vanishing average am-
plitude �symmetric noise� and with a finite average one
�asymmetric noise�. The general discussion of the results is
postponed to Sec. VI.

II. MODEL

A. Pure dephasing by an intermittent noise

In this paper, we consider a quantum bit defined as a
two-level system with controllable energy difference ��0
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and tunneling amplitude � between the two states �−� and
�+ � �eigenstates of 	z�. The effect of the environment on this
two-level system will be accounted for by a fluctuating shift
�X of the energy difference ��0. Thus the Hamiltonian de-
scribing this model is written as

H =
�

2
��0	z + � 	x − X 	z� . �1�

In this paper, we will mainly focus on the case of pure
dephasing ��=0�. However, as explained below in Sec. II C,
our discussion will also apply to other operating points ��
�0�, including the special points where a careful choice of
control parameters considerably lowers the qubit sensitivity
to low frequency noise.3

Here, we will focus on the effects of a low-frequency
classical noise on the qubit. The noise is represented by a
classical stochastic function corresponding to the fluctuations
of the noise in a given sample. Within this statistical ap-
proach, we focus on the statistical properties �e.g., the aver-
age� of physical quantities associated with the qubit such as
the so-called �average� dephasing factor. As we shall see
now, its meaning can be understood by considering a typical
Ramsey �interference� experiment on the qubit.25,26

In such an experiment, the qubit is prepared at initial time
tp in a superposition of the eigenstates of 	z, e.g., �+ �
= ��↑ �+ �↓ �� /�2. Note that throughout this paper, t=0 will
correspond to the origin of time for the noise �e.g., the time
at which the sample reached the experiment’s temperature�.
At some later time tp+�exp
 tp, we consider the projection of
the evolved qubit state on �↑ �. In the meantime, the state has
evolved under Hamiltonian �1� ��=0� and both states �↑ �
and �↓ � have accumulated a random relative phase ��tp ,�exp�
defined by

��tp,�exp� = �
tp

tp+�exp

X�t�dt . �2�

For a given accumulated phase �=��tp ,�exp�, the quantum
probability P�,�exp

��↑ �� to find the qubit in state �+ � at time
tp+�exp is given by

P�,�exp
�� + �� =

1

2
�1 + cos	�0�exp − ��tp,�exp�
� . �3�

Note that in a given sample, P�,�exp
��+ �� oscillates between 0

and 1 as a function of �exp �although possibly nonperiodi-
cally�. The experimental determination of the probability for
finding the qubit in the �+ � state at time tp+ t usually requires
many experimental runs of same duration �exp. The phase
fluctuations between different runs induce an attenuation of
the amplitudes of these oscillations �analogously to destruc-
tive interference effects in optics�. Using Bayes theorem, the
corresponding statistical frequency to find the qubit in state
�+ � after a duration �exp is given by the probability

Ptp,�exp
�� + �� =� d� P�,�exp

�� + ��P	� = ��tp,�exp�


=
1

2
�1 + R	Dtp

��exp�e−i�0�exp
� . �4�

In this expression, the decay rate of these oscillations is en-
coded in the dephasing factor Dtp

��exp� defined as

Dtp
��exp� = exp	i��tp,�exp�
 . �5�

In this formula �and only here�, the overline denotes an av-
erage over all possible configurations of noise X�t� during the
experiment.

Note that in deriving Eq. �4�, statistical independence of
the phases � between different runs has been assumed. This
is not necessarily true for successive runs in a given sample
as correlations of the noise might lead to a dependence of the
distribution of the phase ��tp ,�exp� on the starting date tp of
the run. Hence throughout this paper, for self-consistency, we
will keep track of this effect through a possible tp depen-
dence of the dephasing factor Dtp

��exp�. Its possible implica-
tions will be discussed together with our results in Sec. VI.

B. Model for classical intermittent noise

In several experimental situations, the low-frequency
noise acting on the qubit is supposed to be due to contribu-
tions from background charges in the substrate.8,9 When the
dephasing is dominated by the low-frequency fluctuators, a
semiclassical approach, in which the noise is modeled by a
classical field, appears sufficient.8,9,27 In this case, the noise
is described by a Dutta-Horn model.28 In its simplest form,
the potential X�t� is written as the sum of the contributions of
many telegraphic signals, each with a characteristic switch-
ing rate � between the up and down states 	see Fig. 1�a�
. For
switching rates distributed according to an algebraic distri-
bution p����1/�, the power spectrum of the corresponding
noise has a 1/ f low-frequency behavior.

In this paper we propose a different noise model, moti-
vated by several noise signatures in various setups.10–15 In-

FIG. 1. Representation of a low-frequency noise as a sum of
contributions from telegraphic signals �a�. In this first case, the
switching rates for the up ��+� and down ��−� states are comparable,
and a 1/ f spectrum is recovered for a distribution of switching rates
�1/�. The intermittent limit �b� corresponds to the limit where the
noise stays in the down states most of the time ��+��−�. In this
paper, we will approximate this intermittent noise by a spike field.
For this intermittent noise, a 1 / f spectrum implies a nonstationarity
whose consequences on dephasing are studied in this paper.
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deed asymmetric telegraphic signals, with longer stays in the
down state than in the up state, have been observed in MOS
tunnel diodes �see Fig. 3 in Ref. 12� and tunnel junctions �see
Fig. 1 in Ref. 11�. The extreme asymmetric case of a spike
field was even detected in �SET� electrometer �see Fig. 3 of
Ref. 13�. In all cases, the signal exhibits a 1 / f spectrum at
low frequencies. This suggests a description of the 1/ f noise
in terms of a single asymmetric telegraphic fluctuator. More-
over, as we will show below, such a description is naturally
associated with nonstationarity, which has already been re-
ported and studied in other experiments on tunnel junctions
by Covington et al.14 and Kautz et al.15 More precisely the
amplitude of this 1 / f nonequilibrium noise was shown to
decay over several weeks �Fig. 2 of Ref. 15�. These experi-
mental evidences call for a description of a signal which
captures the 1/ f spectrum, the intermittence, and the nonsta-
tionarity. The model we propose in this paper can be seen as
the intermittent limit for the Dutta-Horn model mentioned
above. We will focus on the consequence of this intermittent
noise on the qubit dephasing. By intermittence, we mean for
the case of the telegraphic noise that the switching rate �+
from the up to the down states is much larger than the
switching rate �− from the down to the up states �or vice
versa�. In this limit, the total noise reduces to a collection of
well defined events, separated by waiting times �i 	see Fig.
1�b�
. If considered on times much longer than the typical
duration �0 of these events �or at frequencies smaller than
1/�0�, we can approximate this noise by a spike field con-
sisting of a succession of delta functions of weight xi corre-
sponding to the integral over time of the corresponding
events of the intermittent field 	Fig. 1�b�
.

More precisely, denoting by t=0 the origin of time, and
by �i the successive waiting times between the spikes �or
events�, we know that the nth spike occurs at time tn
=i=1,n�i. The value of the stochastic intermittent classical
noise X�t� �see Fig. 2� is then

X�t� = 
i

xi��t − ti� . �6�

In the following, we will consider the dephasing produced
by this spike field. We expect any short time details like the
specific shape of the real pulses to be irrelevant in the limit
of typical dephasing time long compared to �0. Within this
approximation, a noise signal is fully characterized by the
collection of waiting times �i and pulse amplitudes xi that
occur as time goes on. We will assume these two quantities

to be independent from each other, and completely uncorre-
lated in time. We will then characterize such a noise solely
by two independent probability distributions ��� and p�x�
for the �i and xi, respectively.

The distribution of pulse amplitudes p�x� will be assumed
to have at least its two first moments finite, and denoted in
the following by

h = x̄ = �
−�

+�

xp�x�dx , �7a�

g = �x2 = ��
−�

+�

x2p�x�dx�1/2

. �7b�

We will consider separately the case of zero average �sym-
metric noise� and of nonzero average �asymmetric noise�
since the latter induces specific features of the dephasing
factor, discussed in Sec. V.

We will consider algebraic distribution of waiting times
���, parametrized by a single parameter �

��� =
�

�0
� �0

�0 + �
�1+�

, � 
 0. �8�

As we will show in Sec. II D, a 1/ f� power spectrum for this
intermittent spike field follows naturally from such a choice
for ���. As we shall see in this paper, the above algebraic
distribution of waiting times allows us to correctly capture
the essential features of the dephasing scenario generated by
an intermittent noise. The first and second moments of  are
finite, respectively, for �
1 and �
2 and are given by

��� =
�0

� − 1
; ��2� =

2�0
2

�� − 1��� − 2�
. �9�

Let us note that the above defined-pulse noise contains two
independent potential sources of dephasing: The randomness
of the pulse weights and the randomness of the waiting
times. Their respective effects will be compared in Sec. III.

C. Decoherence at optimal points

Before turning to the detailed study of pure dephasing
	�=0 in �1�
, let us mention that our discussion can be easily
extended to the study of dephasing in the presence of a trans-
verse coupling in Eq. �1�, in particular at the so-called opti-
mal points. They correspond to configurations where the
fluctuations of the effective qubit level splitting are only qua-
dratic in the noise amplitude. The qubit can be operated at
these optimal points by a careful choice of the control pa-
rameters �0 and � of the qubit and then, the influence of
low-frequency noise can be reduced considerably.3 For the
Hamiltonian considered in the present work �1� such an op-
timal point is reached for transverse coupling to the noise
��0=0 and ��0�. In this case and assuming the amplitude
of the noise to be small compared to the control parameter �,
the effective qubit level splitting is given by ��2+X�t�2

��+X�t�2 / �2��. Hence, the dephasing effect of a linear
transverse noise can be accounted for using an effective qua-
dratic longitudinal noise. The corresponding dephasing fac-

FIG. 2. Representation of the random spike field used to model
the intermittent low-frequency noise in this work. This noise is
described by the distributions of the phase pulses xi and of the
waiting time intervals �i between the spikes.

DEPHASING BY A NONSTATIONARY CLASSICAL… PHYSICAL REVIEW B 72, 035328 �2005�

035328-3



tor is then given by Eqs. �2� and �5� with the replacement
X→X2 / �2��.

In addition, the transverse noise at an optimal point in-
duces transitions between the eigenstates of the qubit, i.e., it
leads to relaxation. The Fermi golden rule relaxation rate �r,
which is used for estimating the relaxation contribution to
dephasing, involves the power spectrum of the noise at the
resonance frequency of the qubit.1 The total dephasing rate is
obtained by summing the contribution of relaxation given by
�r /2 and the contribution of pure dephasing due to the above
effective longitudinal noise.

In general the statistics of X and X2 are very different and
a special treatment is needed to derive the dephasing factor at
optimal points.6 However, for the noise considered in the
present work, the effective quadratically coupled longitudi-
nal noise can be viewed as en effective linearly coupled
noise of the same type but with renormalized parameters.
The renormalized distribution of the spike intensities is now
given by �x�0�

p̃�x� =���0

8x
�p��2x��0� + p�− �2x��� , �10�

where �0 is a microscopic time scale needed to regularize the
square of delta functions. Therefore, our results for the lon-
gitudinal noise presented in Sec. II A can also be used to
describe the effect of a transverse noise.

D. Spectral properties of the intermittent noise

1. One and two point correlation functions

To make contact with other descriptions of low-frequency
noise, we will determine the behavior of the two-time corre-
lation function of our noise, or equivalently of its spectral
density. However, as we will see, this spectral density is far
from enough to characterize the statistics of the noise for
small �, in particular due to its nonstationarity. We will con-
sider for simplicity the case of a nonzero average h= x̄.

a. Time dependent average. Let us consider the average of
the noise amplitude X�t�. In our case, it reduces to two inde-
pendent averages: over the amplitudes xi of the spikes and
over the waiting times �i between them. Noting that X�t�
vanishes except if a spike occurs at time t, we can express its
average in terms of the average density S�t� of pulses at time
t also called the sprinkling time distribution in Ref. 29

�X�t�� = h S�t� . �11�

Using the expressions �A4� and �A5� for S�t� �see Appendix
A�, we obtain for the average of X

�X�t�� =
h

���
=

h

�0
�� − 1� for � 
 2, �12a�

�X�t�� =
h

����1 + � �0

t
��−1� for 1 � � � 2, �12b�

�X�t�� =
sin����

�

h

�0
� �0

t
�1−�

for � � 1. �12c�

Hence the nonstationarity of the noise manifests itself al-
ready in the time dependence of this single time average.
While it is only a subleading algebraic correction for 1��
�2, this time dependence becomes dominant for 0���1.

b. Two time function. Following the same lines of reason-
ing, we can derive the expression of the two time correlation
functions �with t
0�

�X�tp�X�tp + t�� = h2S�tp�S�t� . �13�

The first factor S�tp� corresponds to the probability that a
spike occurs at time tp, while the second factor S�t� reads the
probability of having a pulse at time tp+ t, knowing that there
was one at tp. This reflects the reinitialization of the noise
once a spike has occurred at time tp. From Eqs. �11� and �13�,
we obtain the connected two points functions

C�tp,t� = �X�tp�X�tp + t��c = h2S�tp�	S�t� − S�tp + t�
 .

�14�

2. 1/ f noise spectrum

We will define the spectral density of the noise as the
Fourier transform of the connected two points functions re-
stricted to t
0

SX�tp,�� = 2�
0

+�

C�tp,t�cos��t�dt . �15�

The correlation function C�tp , t� generically depends on both
times tp and tp+ t thus showing that in general X is not a
stationary process. However, to extract the low-frequency
behavior of SX�tp ,��, it appears sufficient to consider the
quasistationary regime �t�� tp which corresponds to experi-
ment durations much smaller than the age of the noise. In
this regime, the connected correlation function �14� reduces
for t
0 to

C�tp,t� � h2S�tp�	S�t� − S�tp�
 . �16�

The associated effective power spectrum is defined for fre-
quencies � large compared to 1/ tp and reads

SX�tp,�� � 2h2S�tp�R„L	S
�− i��… , �17�

where L	S
 denotes the Laplace transform of S�t�. Note that
in this quasistationary regime, the nonstationarity of the
noise manifests itself only through the tp dependent ampli-
tude S�tp�. Using explicit expressions for L	S
 �see Appendix
A�, we obtain the effective power spectra

SX�tp,�� � �h2S�tp�
cos���/2�
��1 − �� ����0�−� �18�

for 0���1, and
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SX�tp,�� � �h2S�tp�sin���� − 1�
2

��� − 1��−1��������−2

�19�

for the intermediate class 1���2. The common 1/� de-
pendence of the spectral density is recovered in the limit �
→1. More precisely, the Laplace transform of S for �=1,
obtained in Appendix A, gives a logarithmic correction to a
1/� effective power spectrum

SX�tp,�� �
�h2S�tp�

��0	log���0�
2 . �20�

Let us stress finally that this effective power spectrum, al-
though useful to compare our approach with other noise
models, is not sufficient to characterize the statistical prop-
erties of the spike field noise relevant for dephasing. As we
shall see in this paper, it does not account precisely for the
nonstationarity of the dephasing factor. Besides this, non-
Gaussian properties of the noise have strong effects on the
dephasing factor in many regimes.

III. DEPHASING, CONTINUOUS TIME RANDOM WALK
OF THE PHASE AND RENEWAL THEORY

A. Continuous time random walk of the phase

Having defined our model for the intermittent noise field
X�t�, we will now study its effects on the dephasing of the
two-level system, characterized by the dephasing factor �5�.
Note that a priori this dephasing has several origins: the
randomness of the pulses amplitudes xi, and the randomness
of the waiting times �i. These two dephasing sources are
assumed to be independent from each other in this work. For
clarity and pedagogical reasons, we first start by considering
the effect of randomness of the pulse amplitudes before turn-
ing to the effect of waiting time randomness.

1. Dephasing by random phase pulses: The random walk
of the phase

Here, we assume that all waiting times are equal �i= ti
− ti−1= �̃. In this case, the phase ��tp , t� accumulated between

tp and tp+ t performs a usual random walk characterized by
the distribution p�x� of phase pulses: At the dates tn

=n�̃ , ��tp , t� is increased by a random value xi. In the limit
�x��1, the phase slowly diffuses and dephasing is achieved
only after a large number of pulses n= tn / �̃. Then, the distri-
bution of the phase ��tp , tn� can be well approximated by a
Gaussian distribution �apart from some irrelevant tails� and
the dephasing factor is easily computed. It decays exponen-
tially with characteristic time ��=2�̃ / �g2−h2�.

Note that this diffusive regime can also be studied when
the distribution p�x� lacks a finite second or even first mo-
ment. An anomalous diffusion of the phase is expected.31 Let
us assume that xi=h+��i where the probability distribution
of �i has zero average and belongs to the attraction bassin of
the stable law L�,� characterized by the exponent 0���2 of
the algebraic tails for large values of �i and the asymmetry
parameter ����1. Then, according to the generalized central
limit theorem, the accumulated phase after n pulses is �n
=nh+�n1/�� where � is distributed according to L�,�. Conse-
quently, in the diffusive limit �n�1�, the dephasing factor is
the product of the homogenous phase eiht/�̃ by the character-
istic function of L�,� evaluated for k�g�t / �̃�1/�. For ��2
and ��1, this leads to

Dtp
�t� = e−C��t/�̃ei	h−C� tan���/2���
t/�̃, �21�

where C is a numerical constant which can be absorbed in a
rescaling of �. Thus, in this case, the decay is still exponen-
tial and stationary although non-Gaussian features of the
noise lead to an anomalous dependance of the dephasing
time on the coupling constant � that characterizes the scale
of the fluctuations of phase pulses.30

2. Dephasing by random waiting times and continuous time
random walk

Let us now turn to the situation where the phase pulses
happen at random times. In this case, the accumulated rela-
tive phase ��tp ,�� 	see Eq. �2�
 does not perform a random
walk as � increases, but rather a continuous time random
walk17,18 �CTRW� on the unit circle. In other words, after

FIG. 3. A configuration of the noise X�tp+��
in our model �as a function of �� between tp

=105�0 and tp+�=1.1 105�0. In this figure, h=0
and the waiting times are distributed with an al-
gebraic distribution P��i���i

−2.1. The bottom part
of the figure shows the corresponding continuous
time random walk of the accumulated phase of
the TLS between tp and tp+�.

DEPHASING BY A NONSTATIONARY CLASSICAL… PHYSICAL REVIEW B 72, 035328 �2005�

035328-5



some random waiting time �i , ��tp ,�� is incremented by a
random value xi �see Fig. 3�. Thus, on a technical level, the
dephasing properties of the two level system are now related
to some correlation function of the corresponding CTRW.
The corresponding dephasing factor can differ from results
obtained in the previous section due to the additional source
of dephasing given by the randomness of waiting times. To
illustrate this point, let us consider the case where all phase
pulses have the same intensity p�x�=��x−h�. The accumu-
lated phase after N events is exactly Nh. Thus, dephasing
comes only from the randomness of the number N	tp , tp+ t

of events occurring between tp and tp+ t and the phase diffu-
sion is governed by the probability distribution for N	tp , tp

+ t
. The time needed to obtain N events is the sum over the
N first waiting times after tp : tN= j=1

N � j. At tp=0, all �is are
distributed according to the same probability distribution and
therefore, in the limit of large N, the generalized central limit
theorem31 can be used �the case tp�0 will be discussed be-
low�. It provides the limit law for tN at large N which in turn
determines the probability law for the number of events. Ac-
cording to this theorem, three classes must be considered
depending on whether the moments �9� are finite:

1. The case �
2 where both ��� and ��2� are finite. In
this case, the probability distribution for the number of
events is Gaussian with a vanishing relative uncertainty.

2. The case 1���2 where the average of � is finite but
the second moment diverges.

3. The case ��1 where all moments diverge.
The usual model for telegraphic noise assumes a Poissonian
distribution for the number of events in a given time interval
and corresponds to ���=�e−��. We will refer it as the Pois-
sonian case and it belongs to the �
2 class.

Note that nontrivial behavior is expected in the last two
cases where  has infinite first or second moments. In par-
ticular, for ��1, as ��� does not have any average, no time
scale characterizes the evolution of the noise and, as we will
see, nonstationarity follows. This case deserves a special at-
tention as we showed that a 1 / f spectrum is found precisely
for �→1. Before turning to the general formal expressions
for the dephasing factor, we will focus on the origin of this
nonstationarity.

3. Origin of the non-stationarity in CTRW: The first waiting
time distribution

Within our model, the waiting times between successive
pulses are chosen independently according to the distribution
. Consequently, all the tp dependence of ��tp , t� will come
from the choice of �1 defined as the waiting time between tp

and the first spike that follows tp �see Fig. 4�. Indeed, at time
tp+�1, the CTRW starts anew: �2 is chosen without any cor-
relation to the history of the CTRW. Hence given the prob-
ability distribution of �1, we can forget about the history of
the CTRW of the phase and describe its behavior starting at
tp. This remark is at the core of the use of renewal theory. In
the following, the probability distribution of �1 will be de-
noted by tp

and a priori, it may depend on tp. In fact, as we
shall see later, its behavior can be quite counter-intuitive.

First of all, note that a given �1 can be obtained from
many different noise configurations that differ from the time
of the last event occurring before tp. Separating noise con-
figurations �starting at t=0� that have their first spike at time
tp+�1 from the others leads to an integral equation that de-
termines tp

in terms of  	S is determined from  through
an integral Eq. �A1�


tp
��1� = �tp + �1� + �

0

tp

d� ��1 + ��S�tp − �� . �22�

The integral in the right-hand side �r.h.s.� comes from noise
configurations that have a spike between 0 and tp. Equation
�22� is the starting point for deriving analytic results about
tp

in Appendix B and C using Laplace transform tech-
niques. Before computing exactly the dephasing factor, let us
show some of the counter-intuitive properties of tp

��1�. In
particular from Eq. �22�, we can derive the following expres-
sion for the average of �1 valid for �
2:

��1�tp
=

��2�
2���

=
���
2

+
��2� − ���2

2���
. �23�

This first term corresponds to the case of regularly spaced
pulses averaged over the origin of times. The second term is
the contribution of fluctuations. This result means that ir-
regularities in the event spacings increase the average wait-
ing time of the first event following tp. The r.h.s. of Eq. �23�
does not depend on tp, as expected from the stationarity of
the CTRW for �
2 after a short transient regime at small tp.
On the other hand, for ��2, Eq. �23� is expected to break
down since ��2� diverges. This divergence signals that in
some noise configurations �1 can become of the order of tp
and, as a consequence, the average properties of the CTRW
after tp, depend on this age of the noise. Indeed, we can show
from Eq. �22� that ��1�tp

scales with the age as tp
2−�. Note

that in the diffusion regime, many phase pulses are necessary
to dephase the qubit. Therefore, we expect that, in this re-
gime, the aging effect on tp

��1� only brings weak correc-
tions to the dephasing scenario as will be confirmed below
by exact computations. However, we shall see in the follow-
ing that the tp dependence of tp

for ��1 has much more
spectacular consequences on the dephasing factor than in the
1���2.

We will now show that, knowing the Laplace transform of
tp

, an explicit expression for the Laplace transform of the
average dephasing factor can be obtained.

FIG. 4. Intermittent noise between tp and tp+ t.
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B. Exact dephasing via renewal theory

1. Dephasing factor

Among all noise configurations that are to be taken into
account, some of them �possibly very few� do not have any
event between tp and tp+ t. Their total weight is given by
�0�tp , t� which is

�0�tp,t� = �
t

+�

tp
���d� . �24�

All other histories have at least one event between tp and
tp+ t. Let us assume that it happens at tp+� where � lies
between 0 and t. Then after this event, the noise starts anew.
The jump itself contributes by eix to the dephasing factor and
the rest of the noise configuration contributes by D0�t−��
	i.e., tp=0 in Eq. �5�
. The probability that the first event after
tp happens at time tp+� is nothing but tp

���. Hence the
contributions to Dtp

�t� from all possible noise configurations
take the form of the following renewal equation:

Dtp
�t� = �0�tp,t� + eix�

0

t

tp
���D0�t − ��d� . �25�

Note that the Laplace transform of this expression is very
simple

L	Dtp

 = L	�0
 + �1 − f��L	tp


 · L	D0
� , �26�

where f =1−eix. Specializing tp=0, one gets an expression
for D0�t� that contains �0�0, t�. Since �0�0, t�=�t

����d� an
explicit expression for the Laplace transform of D0 can be
found

L	D0
 =
1

s

1 − L	

1 − �1 − f�L	


. �27�

Plugging expression �27� into Eq. �26� gives

L	Dtp

 =

1

s
�1 −

fL	tp



1 − �1 − f�L	

� . �28�

This exact expression will be extensively used to derive both
analytical expressions and numerical plots by Laplace inver-
sion. Before proceeding along, let us express L	Dtp


 in terms
of the density of events. It is then convenient to define
Stp

�t�=S�tp+ t� �see Appendix A�. From the expressions in
this appendix of L	Stp


 and L	S
 in terms of L	
 and L	tp

,

we obtain

L	Dtp

 =

1

s
�1 −

fL	Stp



1 + fL	S

� . �29�

Equations �28� and �29� enable analytical estimates of the
dephasing factor in various limiting regimes. Equation �29�
is useful in the limit of small coupling �i.e., f →0� whereas
Eq. �28� will be useful in the opposite limit of a wide distri-
bution of spikes’ heights �i.e., f →1�.

2. Weak and strong coupling regimes

In the limit of very strong coupling �f =1�, the phase
spreading of a single spike is sufficient to dephase the qubit.

In this case, Eq. �25� immediately leads to Dtp
�t�=�0�tp , t�.

This means that the whole average is dominated by the rare
noise configurations that do not evolve during the experi-
ment. As we shall see later, this leads to a strong tp depen-
dence of Dtp

�t� for ��2.
At much lower couplings ��f ��1�, it is not a priori clear

whether the renewal equation for Dtp
�t� induces a strong de-

pendence of Dtp
�t� on tp. Pushing the above analysis forward

amounts to comparing the time dependence of the two terms
in the r.h.s. of the renewal Eq. �25�. As we will see now, it
will provide a better understanding of the physics underlying
the dephasing scenario.

Let us first assume that �0�tp , t� decays much faster than
D0�t�. Since tp

���=−���0�tp ,��, it also decays much faster
than D0. Consequently, we can approximate tp

���D0�t−��
by tp

���D0�t� in Eq. �25�. Then, after a short initial decay
due to both D0�t� and �0�tp , t� , Dtp

�t� decays as D0�t�. Con-
sequently, the dephasing time does not depend on tp. For
instance, we expect this situation to occur at weak coupling
when the average waiting time ��� is finite since the prob-
ability that no event occurs between tp and tp+ t vanishes
quite fast when t increases. Note that in the limit of vanish-
ing coupling, the spreading of the phase can become much
slower than the decay of �0�tp , t� and thus our starting point
hypothesis is valid.

The opposite case where the decay of D0�t� is much faster
than the decay of �0�tp , t� can be discussed more conve-
niently by integrating the renewal Eq. �25� by parts. Consid-
ering again g�1 we get

Dtp
�t� � D0�t� − �

0

t

�0�tp,t − ��D0����d� . �30�

Approximating �0�tp , t−����0�tp , t� in this equation yields
Dtp

�t�=D0�t�+�0�tp , t�	1−D0�t�
. As a consequence, once
D0�t� has decayed, the dephasing factor is almost equal to
�0�tp , t�. This is the same behavior than in the very strong
coupling regime f =1, although here, we assumed �f ��1.
This regime is expected to occur when the decaying time
scales of D0�t� and of �0�tp , t� are comparable. This is obvi-
ously the case at very strong coupling but, surprisingly, as we
shall see now it can also be obtained for �f ��1.

First of all, the above discussion shows that such a regime
can only happen if the average waiting time is infinite, i.e.,
for ��1. In this case, �0�tp , t� can be evaluated analytically
	see Eq. �D1�
: It is shown to be independent of �0 and to
exhibit aging behavior �i.e., to depend only on t / tp�. There-
fore, the decaying time scale of �0�tp , t� scales as tp. Com-
paring this time scale with the dephasing time scale for �f �
�1, leads to a tp dependent crossover coupling constant
fc�tp�. In the case of aging �0, the crossover coupling decays
to lower and lower values by increasing tp.

For �f �� fc�tp�, the dephasing factor behaves as �0�tp , t�
and the dephasing time saturates as a function of f . Such a
saturation of the dephasing time as a function of the ampli-
tude of the noise has already been discussed for a Poissonian
fluctuator.9,27 In this case �0�tp , t�=�0�0, t�=e−t/��� decays
very fast, on a time scale ���. The crossover between weak
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and strong coupling regime happens precisely at the point
where the dephasing time assuming weak coupling ��� /g2 is
of the same order as this decay time, i.e., for g�1. Note that
in this case, as expected from our discussion, the crossover
scale is independent of the age of the noise tp. We expect this
reasoning to break down in our model because of the broad
distribution of waiting times ���2�. Understanding the vari-
ous dephasing scenario and computing the tp dependence of
the crossover coupling in our case requires the computation
of �0�tp , t� and of D0�t�. These quantitative results will be
presented in forthcoming sections.

To summarize the above discussion, we have argued that
the dephasing time is bounded by the typical decay time of
both �0�tp , t� and D0�t�. This suggests distinguishing be-
tween two regimes: On one hand, a weak coupling regime for
which D0�t� decays much slower than �0�tp , t� and for which
the dephasing time—in that case just the decay time of
D0�t�—is not sensitive to tp. On the other hand, a strong
coupling regime for which D0�t� decays faster than �0�tp , t�.
In that case, the dephasing time is given by the decay time of
�0�tp , t� and thus possibly tp dependent. As the above dis-
cussion shows, the crossover between these two regimes may
happen for a possibly tp dependent crossover coupling
fc�tp��1. Note that in the strong coupling regime, the
dephasing time becomes independent of the amplitude of the
noise whereas in the weak coupling regime, it is expected to
depend on the amplitude and to diverge in the vanishing
coupling limit.

IV. DEPHASING IN THE SYMMETRIC MODELS

In this section we present our results for the situation of a
symmetric distribution of the spikes, p�−x�= p�x�. Under this
assumption the average random accumulated phase vanishes,
i.e., f and consequently Dtp

�t� are real. For g�1, f may be
expanded in moments of p�x� , f �g2�1 where g measures
the typical scale of the fluctuations of the spikes.

A. Dephasing at tp=0

Before discussing the decoherence factor for arbitrary
preparation time tp, it is useful to investigate the case tp=0.
Rewriting the Laplace transform of D0�t� �27� as

L	D0
�s� =
1

s
�1 +

fL	

1 − L	
�

−1

�31�

suggests to introduce a scale �g related to the strength of the
coupling

� fL	

1 − L	


�
s=�g

= 1. �32�

Note that �g vanishes with the coupling g. Investigating the
behavior of D0 for t��0 requires evaluating the Laplace
transform for s�0�1. In this regime, the Laplace transform
L	
 / �1−L	
� can be approximated by 1/ �1−L	
�. Within
this approximation, we shall now derive explicit expressions
for L	D0
 which can be Laplace inverted explicitly. This

leads to expressions for D0�t� valid at t��0 for the different
classes of �.

In the case of finite average waiting time ��
1�, we can
expand L	
�1−s��� to find the leading contribution to
D0�t� for �����gt�1. This gives

D0�t� � L−1� ���
s��� + f

� = e−t/��, �33�

with the dephasing time ��=�g
−1= ��� / f 	see Eq. �32�
. Note

that this expression is exact only for ���=1/ ���e−�/���. At
finite noninteger �, taking into account the fluctuations of
the waiting times requires keeping all terms in 1−L	
 up to
the first noninteger power �s�b��. For 1���2, we get alge-
braic subleading corrections to Eq. �33�: log	D0�t�
�−�gt
− fc����t /�0�2−�, where c���= ��−1� / �2−��. These correc-
tions being weak for g�1, the dephasing time �� remains
equal to �g

−1= ��� /g2 in this regime.
For ��1, the first term in the expansion of 1−L	
 is

proportional to ��0s��. Therefore, plugging in �1
−L	
� /L	
���1−���s�0�� and performing the inverse
Laplace transform of �31� gives

D0�t� � L−1� s−1

1 + f�s�0�−�� = E�	− ��gt��
 , �34�

where E��z�=n=0
� zn /��1+�n� denotes the Mittag-Leffler

function.32 For values of � close to one and z�1 this func-
tion can be approximated by a simple exponential, whereas
for ��0 it is similar to an algebraic function E��z���1
+z�−1. For large values of the argument ��z��1� and
�arg�−z��� �1−� /2��, we obtain32 E��z��	−z��1−��
−1.
This change of behavior from an exponential to an algebraic
behavior was interpreted in Ref. 33 as a Griffith effect.

Computing long time behavior ��gt�1� of the dephasing
factor can be done by expanding Eq. �31� as follows:

L	D0
�s� �
1

s

1 − L	

fL	


. �35�

For �gt�1�s��g� we can safely replace L	
�1 in the de-
nominator. The inverse Laplace transform can then be done
easily and reads for �gt�1

D0�t� �
1

f
�

t

�

���d� =
1

f
� �0

�0 + t
��

. �36�

For ��1, Eq. �36� is nothing but the asymptotic behavior of
Eq. �34� for �gt�1. Note that for g�1, �g

−1 is of the order
of �0 and the decay is algebraic at all times t
�0, given by
Eq. �36�. For 1���2 and g�1, only at large times 	�gt
� ln�1/ f�
, when the qubit has almost completely dephased,
the decay crosses over to the power law �36�.

B. Influence of a finite preparation time tp

We will now discuss in detail the tp dependence of the
dephasing scenario and of the crossover coupling strength gc
for the different classes of �. Simple analytical expressions
for Dtp

�t� can be derived in the weak �g�gc� and strong �g
�gc� coupling regimes.
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1. Infinite fluctuations of the waiting times: 1���2

For 1���2, the decay of D0�t� is accurately described
by Eqs. �33� and �36�. On the other hand, �0�tp , t� exhibits
an explicit dependence on the age of the noise �see Appendix
D�

�0�tp,t� � � �0

�0 + t
��−1

− � �0

�0 + t + tp
��−1

�37�

for tp��0. We will arbitrarily define the typical time scale of
the decay of any function as the time at which its modulus
reaches a fixed value 0���1 ��=1/e in all the figures of
this paper�. The crossover between a weak and strong cou-
pling regime is defined as the value of g where the typical
decay times of D0�t� and �0�tp , t� coincide �see Sec. III B 2�.
In the present case, the crossover coupling gets a weak tp
dependence

	gc�tp�
2 �
1

� − 1
�� + � �0

tp
��−1�1/��−1�

. �38�

Note that gc is a decreasing function of tp since increasing tp
slows down the decay of �0�tp , t� �remember that the aver-
age time of the first occurring spike after tp increases as
tp
2−��. But since the average waiting time is finite, gc has a

nonzero lower bound. Note also that the tp dependence of gc
is only visible for values of � close to one and disappears as
� increases to higher values. This can be seen on the numeri-
cal results depicted in Fig. 2 of Ref. 34: gc�tp� is the cross-
over coupling where the dephasing time start to saturate as a
function of g.

In the case of very strong coupling 	g�gc�tp�
, the decay
of Dtp

�t� coincides with �0�tp , t� and is thus algebraic at all
times �see Fig. 2 of Ref. 34�. On the other hand, at weak
coupling �g�gc�, the dephasing factor Dtp

�t� follows D0�t�
up to times of the order of the dephasing time, i.e., it decays
exponentially: Dtp

�t�=exp�−t /���, where ��=�g
−1=�0g−2. In

this weak coupling regime, the dephasing is thus described
accurately using a second cumulant expansion. However, for
times large compared to the dephasing time, t���ln��� /�0�,
higher cumulants contribute and the decay goes over to a
much slower power law. If tp��� the asymptotic decay of
Dtp

�t� continues to follow D0�t� behavior given in Eq. �36�
whereas, in the opposite case tp
�� it is given by �0�tp , t�
�37�.

2. Infinite average waiting time: 0���1

For 0���1 the influence of a finite preparation time tp
becomes even more drastic, due to the absence of a charac-
teristic time scale in the waiting time distribution. In this
case �0�tp , t� only depends on the ratio t / tp �aging behavior�

�0�tp,t� =
sin����

��
� tp

t
��

2F1�1,�;1 + �;−
tp

t
� , �39�

where 2F1 denotes a hypergeometric function.34 Conse-
quently, the typical decay time of �0�tp , t� is proportional to
tp. On the other hand, D0�t� is given by Eq. �34� and its
decay time thus scales as ��=�g

−1��0 / f1/���0 /g2/� in the

limit g�1. As a consequence, the crossover coupling
strength gc exhibits a strong tp dependence

gc�tp� = ����� �0

tp
��/2

� 1, �40�

where ���� is a function of � that can be obtained by inver-
sion of Eqs. �34� and �39�. As in the case 1���2, gc is a
decreasing function of tp: The range of the strong coupling
regime increases with the age of the noise. However, contrar-
ily to the case 1���2, gc has no lower bound, i.e., it de-
cays to zero as we increase tp. Consequently, any qubit sur-
rounded by a noise with 0���1 will eventually end up in
the strong coupling regime. This can be seen on results de-
picted in Fig. 2 of Ref. 33.

At strong coupling 	g
gc�tp�
 , Dtp
�t� is given by �0�tp , t�

and therefore is only a function of t / tp. In this regime, the
dephasing time is proportional to tp, as shown in Fig. 2 of
Ref. 33. The initial decay of coherence is quite fast since, for
t� tp , �0�tp , t��1−A����t / tp�1−� with A���=sin���� / 	�1
−���
. Consequently, for � close to one Dtp

�t� decays sub-
stantially for times short compared to the preparation time tp.
For t� tp, the decay slows down considerably and goes over
to a power law �0�tp , t�� �tp / t��.

At weak coupling 	g�gc�tp�
, the decay of Dtp
�t� is accu-

rately described by Eq. �34�. For � close to 1 and �gt�1, the
Mittag-Leffler function can be approximated by a exponen-
tial decay Dtp

�t��exp	−��gt��
, whereas for 0���1 and
�gt�1, the decay is rather algebraic, Dtp

�t��	1+ ��gt��
−1.
In any case, the typical decay time scales as ��=�g

−1�g−2/�.
As for 1���2, this dephasing time can be recovered using
a second cumulant expansion of the phase. Obviously, for
larger times, t
��, higher cumulants contribute and the de-
cay goes over to a power law Dtp

�t�� ��0 / t�� as shown in
Fig. 6.

3. On the marginal case: �=1

Finally, in the marginal case �=1 corresponding to 1/ f
noise, the above analysis is confirmed qualitatively. We
mainly find logarithmic corrections to the above results,
leading to behaviors intermediate between the classes ��1
and 1���2. The crossover coupling gc in this case turns
out to be

gc�tp� = � �0

tp
ln�tp/�0��1/2

, �41�

showing a strong dependence on the preparation time tp. As
in the case ��1, it decays to zero for tp→�.

Computing D0�t� requires us to invert Eq. �31�. This can-
not be done exactly because of the complicated form of
L	
�1−s�0�ln�s�0�� for s�0�1. However, D0�t� may be es-
timated considering ln�s�0� as a constant and replacing s by
1/ t in its argument. This leads to

D0�t� � exp�− f
t/�0

ln�t/�0�� for t �
�0

f
�ln f � . �42�

Hence, for weak coupling, Dtp
�t� decays due to the contribu-

tion of D0�t� on a characteristic time scale �����0 / f��ln f �.
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Again, for times large compared to the dephasing time, the
decay slows down considerably and goes over to a power
law �36�, Dtp

�t�� t−1.
At strong coupling 	g
gc�tp�
 , Dtp

�t� follows �0�tp , t�,
which reads in the present case

�0�tp,t� �
1

ln�1 + tp/�0�
ln�1 +

tp

�0 + t
� . �43�

Consequently, the dephasing time exhibits a strong depen-
dence on the preparation time tp. However, since �0�tp , t� is
not a function of t / tp the dephasing time does not scale lin-
early with tp �as for ��1� but has a weaker tp dependence
which depends on the parameter � used to define
��	Dtp

����=�
.

V. DEPHASING IN THE ASYMMETRIC MODELS

In this section, we consider asymmetric distributions p�x�
of the pulse amplitudes with a nonvanishing average h= x̄.
This obviously corresponds to the generic case for our inter-
mittent noise, but it also appears naturally in the context of
decoherence at optimal points discussed in Sec. II C.

Similar expansions of the exact expression �28� can be
performed to derive the detailed decay of Dtp

�t� in the case of
a finite mean value of the noise, x̄�0. Nevertheless, analyti-
cal expressions are much harder to obtain since in this case
f =1−eix is complex. Therefore, in this section, we will
mainly derive scaling laws of ��, the critical coupling gc and
present numerical computations of Dtp

�t� in various regimes.

Note that at strong coupling, the dephasing is due to single
events of the noise, i.e., Dtp

�t���0�tp , t�. As a consequence,
dephasing only depends on ���, not on the details of p�x�.
In this regime, the results reduce to those previously derived
for the symmetric case �h= x̄=0� in the strong coupling re-
gime. Differences with respect to the symmetric case only
arise in the weak coupling regime on which we shall focus in
the following.

Before proceeding along, let us recall the notations �7� for
the moments of p�x� :h= x̄ and g2=x2. At weak coupling, f
may be expanded in moments of p�x� : f �−ih+g2 /2+¯. As
expected for h�g2, the finite mean value does not modify
the results of the previous section, i.e., the dominant dephas-
ing is the same as in the h=0 case �symmetric noise�. How-
ever, as h gets of the same order as g2 the decay of Dtp

�t� and
the scaling of �� are modified. Understanding precisely the
possibly nonlinear effect of a small bias on the dephasing
factor is related to the fluctuation/dissipation issue in CTRW
and is out of the scope of the present paper. Therefore we
shall now focus on the case of huge asymmetry where h
�g2. In this limiting regime, the pulse dispersion can be
forgotten and h is the only coupling parameter. Note that in
this specific variant of the asymmetric model, �tp

�t� is pro-
portional to the number of events N	tp , tp+ t
 that occur be-
tween tp and tp+ t and therefore, the dephasing factor as a
function of h is the characteristic function of the probability
distribution for N	tp , tp+ t
. Contrary to the case of Poisso-
nian telegraph noise8,9 where a finite mean value of the noise

just adds a global phase to Dtp
�t�, we will see that strong

fluctuations in the occurrence times of the spikes induce
dephasing even for a fixed value of the phase pulses.

A. The 0���1 class

In the 0���1 case, we can use the same method as for
the derivation of Eq. �34� to find the scaling law of �� as a
function of the coupling strength. The dephasing factor in the
weak coupling regime decays as �Dtp

�t��= �E��iz�� where z
�−h�t /�0�� /��1−�� and E� denotes the Mittag-Leffler
function previously used. Using the series expansion that de-
fines E�, it can be shown easily that �E��iz�� only depends on
z2. As a consequence, the dephasing time in the weak cou-
pling regime scales as ����0 /h1/�, as shown in Fig. 5.

The crossover between weak and strong coupling regime
is obtained by comparing this time scale with the typical
decay time of �0�tp , t�, which is proportional to tp for 0
���1. Therefore the critical coupling strength scales as
hc� tp

−�.
Figure 6 shows Dtp

�t� for �=0.8 and different values of
the coupling strength from the weak coupling regime to

FIG. 5. Dephasing time �� in the asymmetric model as a func-
tion of the coupling g for a huge asymmetry h�g2, and different
values of ��1. At weak coupling, h�hc�tp�, the dephasing time
scales as ���1/h1/�, whereas it becomes proportional to tp for h

hc�tp�. Note the tp dependence of the critical coupling hc, visual-
ized for �=0.4.

FIG. 6. Decay of �Dtp
�t�� in the asymmetric model for �

=0.8, tp=103�0 and different values of the coupling strength h.
Here hc�103�0��10−2.4.
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slightly above hc. The initial decay, up to the dephasing time,
follows the previous exponential decay. At larger times the
decay crosses over to a power law, Dtp

�t��1/ t�, as in the
symmetric case. Between these two asymptotic behaviors,
beatings may occur, due to interferences between different
noise histories, as already seen in other models.27 However,
in this reference, oscillations appear in the strong coupling
regime. They arise from interferences between noise histo-
ries associated with different initial conditions. Such a strong
initial condition dependence is expected at strong coupling
for a Poissonian fluctuator. In our case, oscillations are also
present at tp=0 in the diffusion regime and therefore cannot
be explained by an initial condition dependence. Neverthe-
less they are still associated with an interference effect be-
tween noise histories.

To illustrate this point, let us mention that for D0�t�, a
numerical investigation shows that in the situation consid-
ered here �h�g2�, these oscillations are only present for �

1/2. More precisely, the probability distribution for the
accumulated phase �0�t� can be computed analytically in the
diffusion regime. In this limit �0�t�=hN	0, t
 can be viewed
as a positive real number. For 0���1, its probability dis-
tribution is highly non-Gaussian and given by

P0,t��� =
t

� ���h��1+1/�L�� t/���h�
�1/� � , �44�

where ���h�=�0	��1−�� /h
−1/� and L� denotes the fully
asymmetric Lévy distribution of index �. For ��1/2, it
decays monotonically whereas for �
1/2, it grows toward
a maximum before decreasing rapidely for large values. This
maximum can be viewed as a precursor of the maximum
expected for 1���2 close to the average value ht / ��� of

the phase �for 1���2, P0,t is a truncated Lévy distribution
whereas for ��2 it is Gaussian�. It is precisely this local
maximum that leads to oscillations in the modulus of the
dephasing factor.

Note that these oscillations might be related to the Griffith
effect mentioned in Ref. 33.

B. Intermediate class 1���2

In the intermediate case of diverging variance, 1���2,
it is even harder to find scaling laws analytically. Numeri-
cally, one finds that the decay time of Dtp

�t� in the weak
coupling regime scales as ����0 /h. This leads to a critical
coupling hc�tp� equal to the r.h.s of Eq. �38�. At weak cou-
pling, the decay roughly follows an exponential exp�−t /���
up to times of the order of ��. At larger times it crosses over
to a power law, Dtp

�t��1/ t�. Again, at intermediate times
and in the weak coupling regime Dtp

�t� shows a transient
regime. Note also that the crossover between the weak and
strong coupling regimes happens in a much larger ��-
dependent� range of the coupling strength than in the sym-
metric case.

VI. DISCUSSION AND CONCLUSION

To conclude, we have proposed a model for an intermit-
tent classical noise with a 1/ f power spectrum. Within this
model, the noise consists in a succession of pulses, separated
by random waiting times. We have shown within this context
that the intermittence associated with the 1/ f characteristics
implies a non-stationarity of the noise. Nonstationarity ef-
fects are present in some of the regimes of the dephasing of
a two level system coupled to this noise as summarized on

TABLE I. Critical coupling and dephasing time in the symmetric model for different waiting time
distributions.

Exponent
�

Critical coupling
gc�tp� Dephasing time ��

g�gc g
gc

1���2 gc�tp�2= �1/�−1�	1/e+ ��0/tp��−1
1/��−1� ��=�0g−2 ��=�0	1/e+ ��0 / tp��−1
−1/��−1�

�=1 gc�tp�2= ��0/tp�ln�tp /�0� ��= ��0 / fg��ln fg� ��=�0�tp /�0�1−1/e

0���1 gc�tp�2� ��0/tp�� ��=�0g−2/� ��� tp

TABLE II. Summary of the different expressions of the decoherence factor Dtp
in the symmetric

model.

Exponent
� g
gc g�gc

t��� t���

1���2 ��0/�0+ t��−1− 	�0/��0+ tp+ t�
�−1 exp�−t /��� tp��� : exp�−t /���
tp
�� : ��0/�0+ t��−1

�=1 	1/ ln�1+ tp /�0�
ln	1+ �tp/�0+ t�
 exp�−fg	�t /�0�/ln�t /�0�
� 1/ t

0���1 t��� t��� ��1: exp	−�t /����
 ��0/t��

1−A����t / tp�1−� �tp / t�� ��1: 1 / 	1+ �t /����
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Tables I and II for the symmetric model. In particular, in the
strong coupling regime, the dephasing factor decays algebra-
ically in time, with a characteristic time of decay �dephasing
time� depending on the age tp of the noise. On the other
hand, in the weak coupling regime an initial exponential de-
cay of this dephasing factor is found. However, for low fre-
quency noises and contrary to the usual behavior, this expo-
nential is stretched and the dephasing time shows an
anomalous dependence on the coupling to the noise. After
this initial decay, the dephasing factor decays algebraically.
An important observation is that the critical coupling
strength separating the weak and strong coupling regimes
does depend on the age of the noise when it is nonstationary.
More precisely, it decays to zero with the age, such that any
qubit coupled to a nonstationary noise will eventually fall in
the strong coupling regime.

One should be careful that the dephasing factor that we
studied is defined as a configuration average, or ensemble
average over the noise 	see Eq. �5�
. In the usual experimen-
tal protocols, information on the quantum statistics of the
qubit is collected in a given sample in successive runs. This
corresponds to a time average in a given configuration.
These two averages do not coincide in general for nonsta-
tionary or aging phenomena. Indeed, the nonstationarity of
the 1/ f noise that we considered is closely related to the
weak ergodicity breaking found in similar trap models for
glassy materials.35 Thus one should be careful in interpreting
the nonstationary dephasing factor that we found in some
regimes.

In a nutshell, a stretch exponential decay of the dephasing
factor for weak couplings associated with nonstationnarity in
the long time behavior would constitute some experimental
evidences of such an ageing 1/ f noise. We hope that the
questions raised by our results might lead to some possible
experimental setup to better characterize the low frequency
noise in mesoscopic solids.

APPENDIX A: USEFUL RESULTS ON THE SPRINKLING
TIME DISTRIBUTION

1. Definition

This distribution S�t� is defined as the probability density
that an event occurs exactly at time �date� t. Hence S�t� sat-
isfies the equation

S�t� = �t� + �
0

t

dt��t − t��S�t�� , �A1�

which states that the spike at t is either the first one, or
follows a previous spike at time t− t�. In Laplace transform,
this reads

L	S
�s� =
L	
�s�

1 − L	
�s�
. �A2�

Whenever ��� has a finite mean, S�t� is constant, equal to
1/ ��� with possible large fluctuations ��
1�.

2. Explicit expressions

In the case of a Poissonian waiting time distribution
���=�e−�� , S�t� is a constant equal to 1/ ��� for all times.
When  has algebraic tails at long times, we expect this
result to be modified since the rate of events is expected to
decrease with the sampling of the algebraic tail of .

a. Case 1���2. The small s expansion of L	
�s� is
given by

L	
�s� � 1 − A�0s − ��1 − ���s�0��,

where A is a numerical constant which depends on the small
time behavior of ���. It is given by A=1/ ��−1� for the
specific case of Eq. �8�. Using this form, in the vanishing s
limit, we have

L	
�s� �
1

A�0s
�1 −

��1 − ��
A

��0s��−1 − A�0s + O�s2�� .

�A3�

Taking the inverse Laplace transform gives the following
asymptotics for t��0:

S�t� � ���−1�1 +
A−1

� − 1
� �0

t
��−1� .

For the specific case of Eq. �8�

S�t� � ���−1�1 + � �0

t
��−1� . �A4�

The sprinkling time distribution decreases algebraically to-
ward its asymptotic value S���=1/ ���. This algebraic tail is
the signature of the slow decay of ��� for very large times.

b. Case �=1. In this case, the Laplace transform of  is
given by

L	
�s� = 1 + s�0es�0Ei�s�0� , �A5�

where Ei denotes the exponential integral function which has
the following expansion valid for x
0 	Eq. �8.214� in Ref.
34
:

Ei�− x� = C + log�x� + 
n=1

+�
�− x�k

k ! k
. �A6�

Therefore, keeping only the most singular term in the limit
s�0→0 we get

L	S
�s� =
− 1

s�0log�s�0�
. �A7�

The inverse Laplace transform cannot be found exactly but
its asymptotic behavior at large times can be estimated as

S�t� �
1

�0log�t/�0�
. �A8�

In this case, the sprinkling time distribution decays to zero
when t→ +�. This means that events are more and more
rare.

c. Case 0���1. In this case, we find
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L	S
�s� �
s→0

��0s�−�

��1 − ��
, �A9�

which corresponds to

S�t� �
t→�

sin����
�

1

�0
� �0

t
�1−�

. �A10�

In this case also, the sprinkling time distribution decays to
zero when t→ +�.

3. Translated sprinkling time distribution

Let us denote by Stp
�t� the density of events at time tp+ t.

By definition Stp
�t�=S�tp+ t�. Using the same idea as above,

we can decompose noise histories in two classes: the ones
that do not have any event between tp and tp+ t and the ones
who do have. This leads to an integral equation expressing
Stp

�t� in terms of  and tp
defined as the probability distri-

bution for the time between tp and the first event occurring
after tp. This integral equation, analogous to Eq. �A1� is

Stp
�t� = tp

�t� + �
0

t

�t − ��Stp
���d� . �A11�

Taking its Laplace transform leads to

L	Stp

 =

L	tp



1 − L	p

. �A12�

APPENDIX B: LAPLACE TRANSFORM AND MOMENTS
OF �„�… ,�tp

„�…

1. Laplace transform and moments of �„�…

Let us recall some known results on Laplace transform of
algebraic distributions. The distribution �8� can be expressed
in terms of the reduced variable x=� /�0

�x� = ��1 + x�−1−�. �B1�

It is useful to notice that the Laplace transform of Eq. �8�
reads exactly

L	
�s� = ��s�0��es�0��− �,s�0� . �B2�

Here ��−� ,s�0� is the incomplete Gamma function:34

��z ,��=��
�e−ttz−1dt. The moments of this distribution exist

up to order 	�
 where 	�
 corresponds to the largest integer
smaller than �. They read

�xn� = ��
0

�

dx xn�1 + x�−1−� = ��
0

1

dy yn�1 − y��−1−n

= �B�n + 1,� − n� � �
��n + 1���� − n�

��� + 1�
,

where B�x ,y� is the beta function.
We are interested in the relation between the existence of

these moments, and the small s behavior of the Laplace
transform �B2�. Expanding the incomplete Gamma function
��� ,s� in the Laplace transform �B2� gives

L	
�s� = �s�es���− �� − s−�
0

�
�− 1�ksk

k ! �k − ���
= ���− ��s�es + �

n=0

�

sn
k=0

n
�− 1�n−k

k ! �n − k� ! �� + k − n�
,

valid for noninteger �. The coefficient of sn in this expansion
reads


k=0

n
�− 1�n+k

k ! �n − k� ! �� + k − n�
= 

k=0

n
�− 1�n+k

k ! �n − k�!�0

1

dt tk+�−n−1

=
�− 1�n

n!
�

0

1

dt�1 − t�nt�−n−1

=
�− 1�n

n!
B�n + 1,� − n� .

Restoring �0, we thus get an explicit expression for the
Laplace Transform of 

L	
�s� = ���− ���s�0��es + 
n=0

�
�− 1�n

n!
�s�0�n�xn� .

�B3�

The terms n�� of the last expansion corresponds to the
moments of �x�, and we recover the expected results: The
small s expansion of L	
�s� consists in a integer function
that gives the existing moments of  and a second part that is
specific of the tails of �x� if it decays more slowly than an
exponential �algebraic tails�.

2. Double Laplace transform of �tp
„�1…

In Ref. 25, Godrèche and Luck used a direct CTRW
method to derive the double Laplace transform of tp

��1�.
Their results can be recovered straightforwardly from the
renewal equation �22�. We will use the following notation for
the double Laplace transform:

Ltp,�1
	tp

��1�
�u,s� = �
0

+�

d�1 e−s�1�
0

+�

dtp e−utptp
��1� .

�B4�

Let us first focus on the tp-Laplace transform of the integral
in Eq. �22�. Changing the integration variable from tp to t�
= tp−�1, it reads

�
0

+�

dtp e−utp�
0

tp

d� S�tp − ����1 + ��

= L	S
�u��
0

�

d�e−u���1 + �� . �B5�

This provides the following expression for the double
Laplace transform of tp

��1�:
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L	tp

�u,s� = �1 + L	S
�u��Ltp,�1

	�tp + �1�
�u,s�

=
Ltp,�1

	�tp + �1�
�u,s�

1 − L	
�u�
. �B6�

The final result can be obtained by considering the double
Laplace transform of ��1+ tp�: using ��1

+����e−s�d�

=L	
�s�−�0
����e−s�d�, we obtain �with �=�1+ tp�

Ltp,�1
	�tp + �1�
�u,s�

= �
0

+�

d�1e−�s−u��1�
�1

�

d� e−u����

=
L	
�u�

s − u
− �

0

�

d�1�
�1

�

d�e−�s−u��1e−u����

=
1

s − u
	L	
�u� − L	
�s�
 . �B7�

Plugging Eq. �B7� into Eq. �B6�, we obtain25

L	tp

�u,s� =

1

s − u

L	
�u� − L	
�s�
1 − L	
�u�

. �B8�

This equation can be used to infer explicit expressions for
tp

�t� by performing the appropriate inverse Laplace trans-
forms �see Appendix C�.

3. Moments of �tp
„�…

The expansion of L	
�s� in powers of s can be used to
extract the long tp behavior of the moments of tp

���. For
�
1, we expect tp

to have the same algebraic decay than 
at infinity. Therefore, only the first 	�
 moments of tp

are
expected to exist. We will expand the double Laplace trans-
form �B8� of L	tp


�u ,s� into powers of s for small values of
u. The first coefficients of the s expansion corresponds to
the Laplace transform with respect to tp of the moments of
tp

��� which we denote here by Tn�tp�= ��1
n�tp

. When consid-

ering Eq. �B8�, two different contributions from �L	
�u�
−L	
�s�� / �s−u� appear. The noninteger powers can be ex-
pressed as

u� − s�

u − s
= 

k=0

�

sku�−1−k − 
k=0

�

s�+ku−k−1, �B9�

while integer powers give a finite sum

un − sn

u − s
= 

k=0

n−1

skun−1−k. �B10�

Note that fractional powers are of the form s�+k where k
�0, which confirms that only the first 	�
 moments exist.
Assuming the following notation:

L	
�s� = 
n=0

	�

�− s�n

n!
��n� −

��

����
s�, �B11�

the coefficient of the sN term in the expansion of Eq. �B8� in
powers of s is given by

1

1 − L	
�u�� ��

����
u�−1−N − 

m=N+1

	�

��m�
m!

�− 1�mum−1−N� .

Note that the second term is present only for N� 	�
−1.
Assuming that �
1,1−L	
�u� can safely be replaced by
���u in order to extract the low u behavior of the above
expression. From this, we infer the Laplace transform of
TN�tp�

Ltp
	TN
�u� = �− 1�N N ! ��

�������
u�−2−N

− 
m=−1

	�
−m−2
�− 1�m�m + 1�!

�N + m�!
��N+m�

���
um.

�B12�

This formula shows that for N� 	�
, there is a limiting value
for tp going to infinity, given by the u−1 term in the sum
�B12�. Regular terms that appear in the sum �B12� contain
the short time behavior in tp and, in the large tp limit, the
noninteger power in the r.h.s gives an algebraic decaying
contribution. The limiting value of TN�tp� for N� 	�
−1 is
given by

TN��� =
��N+1�

�N + 1����
. �B13�

This result coincides with Eq. �23� found previously for N
=1 as soon as �
1. For N= 	�
, the regular contribution to
Eq. �B12� is not there anymore. The 	�
th moment has an
algebraic sublinear dependence in tp

T	�
�tp� �
��

���
tp
1−��−	�
�. �B14�

To summarize, the algebraic tail of ��� contaminates tp
not

only through the divergence of its high moments but also
through algebraic corrections of the lower ones and the sub-
linear algebraic behavior of the last finite one.

In particular these results imply:
• For 1���2, the first moment ��1��tp� increases sub-

linearly as obtained from a direct computation.
• For 2���3, the second moment also increases sub-

linearly although it is finite for any tp. Only when �
3 do
we have finite limits for both the first and second moments of
tp

in the limit tp going to infinity.

APPENDIX C: EXPLICIT EXPRESSIONS FOR �tp
„�1…

1. Expression of �tp
„�1… for 1���2

The small s expansion of L	
�s� reads L	
�s�=1−s���
+���−���s�0�� �we have to keep all the terms up to the first
noninteger power�. Once again, we set �0=1 for simplicity.
Plugging it into Eq. �B8� gives
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L	tp

�u,s� = ���� − ���− ��

s� − u�

s − u
� 1

u��� − ���− ��u�

= �1

s
− A

s� − u�

s�s − u���1 + A s�−1� , �C1�

where �0 has been set to one for simplicity and A
=���−�� / ���=−��1−�� / ���=��2−�� 	we used ���=�0 /
��−1�
. Doing the inverse Laplace transform over s yields

L	tp

�u� = �1 +

Atp
1−�

��2 − ��
� + Au�−1�eutp

��1 − �,utp�
��1 − ��

− 1�
+ O�u2,u2��−1�� . �C2�

Note that the first constant reads

1 +
Atp

1−�

��2 − ��
= 1 +

1

�0
� �0

tp
��−1

. �C3�

Restoring �0, the inverse Laplace transform over u gives

tp
��1� =

1

����� �0

�1
��

− � �0

�1 + tp
��� . �C4�

2. Expression of �tp
„�1… for 0���1

Let us use the small s expansion �B3� of L	
�s� :
L	
�s�=1+���−���s�0��. Using the double Laplace trans-
form �B8� and setting �0=1 for simplicity, we get

L	tp

�s,u� =

1

u − s
�1 − �u

s
��� . �C5�

The only assumption in deriving this expression is that both
tp and �1 are large compared to �0 �we retained only the first
terms of the s and u expansions�. This expression can be
exactly Laplace inverted in s

L	tp

�u� = eutp

���,stp�
����

. �C6�

We can now perform the inverse Laplace transform over u to
obtain

tp
��1� =

sin ��

�

1

�1 + tp
� tp

�1
��

. �C7�

Note that in this case, the short time scale �0 does not appear
in tp

��1� contrary to the cases �
1. For �1� tp, this distri-
bution behaves like

tp
��1� �

sin����
��

� tp

�0
��

��1� , �C8�

which shows that for very large waiting times, we have the
same algebraic tail than  up to a tp dependent renormaliza-
tion factor. For �1� tp, we get another algebraic tail

tp
��1� �

sin����
�

1

tp
� tp

�1
��

. �C9�

3. Expression of �tp
„�1… for �=1

In the marginal case �=1, because of its logarithmic
variation, S�tp−�� can be replaced by 1/ 	�0log�tp /�0�
 in the
integral Eq. �22�. This approximation leads to

tp
��1� � ��1 + tp� +

1

log�tp/�0�
1

�1 + tp + �0

tp

�1 + �0
.

�C10�

In the following we always consider situations in which
tp ,�1��0, for which the first term in Eq. �C10� can be ne-
glected. Therefore, we get the following asymptotics:

tp
��1� �

1

log�tp/�0�
1

�1 + tp

tp

�1
. �C11�

Note that in this case, the average ��1�tp
is infinite.

APPENDIX D: ANALYTIC RESULTS ON �0

Explicit expressions for �0�tp , t� immediately follow from
its definition and from explicit expressions for tp

�t� in the
limit t��0. In the case 0���1, the result of integration is
an hypergeometric function33

�0�tp,t� =
sin����

��
� tp

t
��

2F1��,1;1 + �;−
tp

t
� . �D1�

In this case, �0 does not depend anymore on the cutoff �0
and exhibits an aging behavior since it only depends on the
ratio of time scales t / tp. Using the inversion properties of
hypergeometric function33 	Eq. �9.131.1� of Ref. 34
, an al-
ternative expression can be obtained

�0�tp,t� =
sin����

��
� tp

tp + t
��

2F1��,�;1 + �;
tp

tp + t
� .

�D2�

Equation �D1� is well suited to the limit t� tp whereas Eq.
�D2� is better suited to the study of the tp� t limit.

In the case 1���2, the final result still depends on �0.
Using Eq. �C4�, we get

�0�tp,t� � � �0

t
��

− � �0

tp + t
��

. �D3�

In the limit of vanishing �0 , �0�tp , t� vanishes. Hence in this
limit, on times scales long compared to �̄, there are always
somes events in time intervals of duration t contrarily to the
case where ��1.

In the �=1 case, using Eq. �C11�, we get

�0�t,t� �
log�1 +

tp

t
�

log�tp/�0�
, �D4�
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which shares some characteristics with the two previous
cases. On one hand, as in the 1���2 case, it still decays to
zero at fixed tp and t in the limit �0→0. On the other hand,
exactly as in the 0���1 case, the limits t / tp→0 and t / tp
→1 satisfy

lim
t→�

�0�tp,t� = 0, �D5�

lim
tp→�

�0�tp,t� = 1. �D6�
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