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We examine the scattering properties of a slowly and periodically driven mesoscopic sample using the
Floquet function approach. One might expect that at sufficiently low driving frequencies it is only the frozen
scattering matrix which is important. The frozen scattering matrix reflects the properties of the sample at a
given instant of time. Indeed many aspects of adiabatic scattering can be described in terms of the frozen
scattering matrix. However, we demonstrate that the Floquet scattering matrix, to first order in the driving
frequency, is determined by an additional matrix which reflects the fact that the scatterer is time dependent.
This low-frequency irreducible part of the Floquet matrix has symmetry properties with respect to time and/or
a magnetic field direction reversal opposite to that of the frozen scattering matrix. Using the adiabatic decom-
position of the Floquet scattering matrix we split the dc current flowing through the pump into several parts
with well defined properties with respect to a magnetic field inversion.
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I. INTRODUCTION

The interplay of quantum-mechanical interference with
quantized energy exchange results in a quantum pump effect
which is investigated intensively both experimentally1–5 and
theoretically.6–37 This phenomenon being promising for ma-
nipulating and controlling the passage of electrons through
mesoscopic circuits is of fundamental interest. Adiabatic
driving involves only low-energy exchange and avoids exci-
tations into inelastic channels which degrade the quantum
properties of the system. In this work we investigate the
magnetic symmetry properties of the dc current of a quantum
pump which might operate in the presence of applied volt-
ages and temperature gradients.

The experimentally measured adiabatically pumped dc
current1 flowing through a chaotic cavity with periodically
varying shape is symmetric in magnetic field H. That is in
seeming contradiction with the theory8,10,12,14,20,29 predicting
that the pumped current has no definite symmetry under
magnetic field reversal. As a result it was conjectured38–40

that the current measured in Ref. 1 is caused by a classical
rectification effect. Indeed subsequent measurements3,5 con-
firmed that for slow one-parameter driving there is a sym-
metric in magnetic field induced current whose origin is clas-
sical rectification. Nevertheless one cannot exclude the
possibility that the current measured in Ref. 1 also contains
the contribution coming from the quantum pump effect. To
check it, perhaps, it is necessary to investigate the system in
a less symmetric setup, i.e., with reservoirs having different
electrochemical potentials or temperatures. Further experi-
mental and theoretical efforts to detect and distinguish the
quantum pump effect are highly desirable in view of a pos-
sible application in quantum information processing
devices.41,42

The aim of the present paper is to explore in detail the
symmetry properties of the adiabatic current generated by
the periodically driven mesoscopic conductor. To this end we
represent the Floquet scattering matrix at low driving fre-

quency � as a sum of different terms with well defined sym-
metry properties �e.g., with respect to a magnetic field direc-
tion reversal�. One term reflects the symmetry of a stationary
scattering process while the other term vanishing at �→0
has symmetry properties opposite to a stationary scattering
process. Based on such a representation we divide the dc
current into parts with well defined symmetry properties.
That opens up additional possibilities for the experimental
detection of the quantum pump effect.

In particular, in the two terminal case, we find a voltage
dependent contribution to the pumped current which is odd
in magnetic field. At small voltage this current is linear in V.
Thus for small magnetic fields the dc current has a compo-
nent which is proportional to the product of frequency, mag-
netic field, and applied voltage. For comparison we recall
that in the stationary case, for a two-terminal conductor, the
current linear in voltage �or, alternatively, the conductance�
is an even function of a magnetic field.43,44 A current that is
odd in magnetic field appears only in the nonlinear voltage
regime45,46 and is caused by electron-electron interactions. In
contrast, in the nonstationary case considered here even non-
interacting electrons can show a response that is odd in mag-
netic field and linear in applied voltage.

Recently the magnetic field symmetry of the dc current
through an open quantum dot subject to a one-parameter
potential oscillation has been investigated experimentally
and theoretically as a function of frequency.5 In contrast, in
the present paper we consider a two-parameter oscillation
and investigate the magnetic field symmetry of the dc current
in the presence of adiabatic parametric quantum pumping.

The paper is organized as follows. In Sec. II we briefly
consider the Floquet function approach to scattering of elec-
trons at a periodically driven mesoscopic conductor and ana-
lyze the consequences of microscopic reversibility. We intro-
duce an exact representation for the scattering matrix at low
driving frequency �. According to this representation the
Floquet scattering matrix elements �up to linear in � terms�
are proportional to the elements of both the stationary scat-
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tering matrix Ŝ0 and a residual Floquet matrix Â which ex-

hibits symmetry properties opposite to those of Ŝ0. The sym-

metry properties of Ŝ0 are dictated by microreversibility, and

the residual Floquet matrix Â reflects directly the breaking of
these symmetries due to the driving of the sample. Using
such a representation we analyze the magnetic field symme-
try of the dc current flowing through the adiabatically driven
scatterer in Sec. III. We show that in the two terminal case
there is a dc current I�od� that is odd in magnetic field, linear
in � and dependent on the applied voltage. We conclude in
Sec. IV.

II. GENERAL APPROACH

We use the scattering matrix approach7,44,47 which views
the mesoscopic sample as a scatterer which causes transmis-
sion and reflection of incident carriers. The scatterer is as-
sumed to be coupled to Nr reservoirs via single channel bal-
listic leads which we will number by the Greek letters � ,�,
etc.

We assume that in the stationary case electrons coming
from the reservoirs and interacting with the scatterer are sub-
ject only to elastic scattering. Such �single particle� scatter-

ing can be described with the help of the scattering matrix Ŝ0.
The index 0 denotes the stationary scattering matrix. In gen-

eral Ŝ0 is a function of the electron energy E. This matrix
collects all the quantum mechanical amplitudes for electrons
coming from some lead � to be scattered into the same or
any other lead �. These amplitudes are normalized in such a
way that their squares define the corresponding particle
fluxes �currents�. If the electron velocities at a given energy
are the same in all the leads we can use these amplitudes to
relate the incident and out-going wave functions. For in-
stance, let �0,�

�in��E , t�=e−i�E/��t�0,�
�in��E�, be the amplitude of a

wave function describing electrons with energy E incident in
lead �. Then the amplitude of the wave function of particles
outgoing in lead � ,�0,�

�out��E , t�=e−i�E/��t�0,�
�out��E�, is defined as

follows:

�0,�
�out��E� = �

�=1

Nr

S0,���E��0,�
�in��E� . �1�

Current conservation implies that the scattering matrix is
a unitary matrix48

Ŝ0
†Ŝ0 = Ŝ0Ŝ0

† = Î , �2�

where Î is a unit matrix. In fact, the knowledge of the matrix

Ŝ0�E� is equivalent to the knowledge of the solution for the
stationary Schrödinger equation.

For the dynamical problem with time-dependent scatter-
ing, scattering is characterized by the integral scattering op-
erator which depends on two times.20 One time argument
relates to the incoming states and the second time argument
to the outgoing states. In this paper we are dealing with a
particular nonstationary case, namely, with a periodically
driven scattering problem. We assume that the scattering po-

tential �hence the scattering properties of a sample� is varied
in time periodically with period T=2� /�. Then, according
to the Floquet theorem �see, e.g., Refs. 49–53�, the solution
for the time-dependent Schrödinger equation can be repre-
sented in a relatively simple form

��E,t� = e−i�E/��t �
n=−	

	

e−in�t��En� . �3�

Here E is the Floquet energy; ��En� is a general solution of
the stationary Schrödinger equation corresponding to the en-
ergy En=E+n��.

Scattering on such an oscillatory scatterer can be de-
scribed via the Floquet scattering matrix. In this work we are
concerned with the low-frequency properties of this dynamic

problem and the relevant Floquet matrix ŜF describes the
transitions between the propagating states only.53 The ele-
ments SF,���En ,E� of this matrix are the quantum mechanical
amplitudes �normalized for current� for an electron with en-
ergy E to enter the scatterer through lead � and to leave the
scatterer with energy En=E+n�� through lead �.

In particular, if the reservoirs are stationary then the in-
coming wave function is �0,�

�in��E , t� and the wave function
for particles outgoing to lead � is of the form Eq. �3� with

��
�out��En� = �

�=1

Nr

�
m

�km

kn
SF,���En,Em��0,�

�in��Em� . �4�

Here kn=�2meEn /� with me being the electron mass. Physi-
cally Eq. �4� means that an electron interacting with an os-
cillating scatterer can gain or lose one or several energy
quanta n�� , n=0, ±1, ±2,…, and thus an electron can
change its energy by a discrete amount n��.

Current conservation implies again that also the matrix ŜF
is unitary. For the Floquet scattering matrix the analog of Eq.
�2� reads

�
�

�
n

SF,��
* �En,E�SF,�
�En,Em� = �m0��
, �5a�

�
�

�
n

SF,��
* �E,En�SF,
��Em,En� = �m0��
. �5b�

Here the summation over n goes only over those n which
correspond to a positive En=E+n��. In the low-frequency
limit we have ���E, and thus n extends from −	 to +	.

To find the Floquet scattering matrix one needs to solve a
fully time-dependent Schrödinger equation. Compared to the
stationary problem, this is a more difficult task and, gener-
ally, it can be done only numerically. On the other hand, the
representation �3� seems effectively to reduce the periodi-
cally driven case to the stationary one. Therefore it is attrac-

tive to try to relate the Floquet scattering matrix ŜF to the

stationary scattering matrix Ŝ0.

A. Adiabatic approximation

Let the stationary scattering matrix Ŝ0�E , �p�� depend on a
set of parameters pi� �p� , i=1,2 ,… ,Np �e.g., the sample’s
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shape, the strength of coupling to leads, the magnetic field,
etc.�. Varying these parameters one can change the scattering
properties of a sample. We take these parameters to be peri-

odic functions in time pi�t�= pi�t+T� , ∀ i. Then the matrix Ŝ0

becomes time dependent Ŝ0�E , t�= Ŝ0�E , �p�t���. In general

the matrix Ŝ0�t� does not describe the scattering of electrons
by a time-dependent scatterer: only the Floquet scattering

matrix ŜF does. Nevertheless in the low-frequency limit �
→0 there exists a connection between these two matrices.
This connection becomes more evident if one represents the
Floquet scattering matrix elements as a series in powers of �.

1. Zeroth order approximation

To zeroth order in the driving frequency the elements of

the Floquet scattering matrix ŜF�En ,E� can be approximated

by the Fourier coefficients Ŝ0,n of the stationary scattering

matrix Ŝ0 as follows:53

ŜF�En,E� = Ŝ0,n�E� + O��� , �6a�

ŜF�E,En� = Ŝ0,−n�E� + O��� . �6b�

Here O��� denotes the rest which is at least first order in
frequency � and which is neglected in the zeroth order adia-
batic approximation. The Fourier transformation used reads

Ŝ0�E,t� = �
n=−	

	

e−in�tŜ0,n�E� , �7a�

Ŝ0,n�E� = �
0

T
dt

T
ein�tŜ0�E,t� . �7b�

Before proceeding we check that this approximation is con-
sistent with the current conservation condition. Substituting
Eq. �6� into Eq. �5� and performing the inverse Fourier trans-
formation we arrive at Eq. �2�.

Equation �6� corresponds to the frozen scattering matrix
approximation. Within this approximation the stationary
scattering matrix �with parameters dependent on time� com-
pletely characterizes the time-dependent scattering. This ap-

proximation is exact if the scattering matrix Ŝ0 is indepen-
dent of the electron energy E within the relevant energy
interval.53

2. First order approximation

To first order in the pump frequency � we can represent
the Floquet matrix with the help of the frozen scattering

matrix, its energy derivatives and a matrix Â. In general the

matrix Â cannot be expressed in terms of the stationary scat-

tering matrix Ŝ0 and it has to be calculated �similar to Ŝ0
itself� in each particular case. The advantage of the represen-

tation which we introduce is that the matrix Â has a much
smaller number of elements than the Floquet scattering ma-

trix. The matrix Â depends on only one energy, E, and there-

fore it has Nr
2 elements like the stationary scattering matrix

Ŝ0. In contrast, the Floquet scattering matrix ŜF depends on
two energies E and En=E+n��, and therefore has
��2nmax+1�2Nr

2 relevant elements. Here nmax is the maxi-
mum number of energy quanta �� absorbed/emitted by an
electron interacting with the scatterer which we should take
into account to correctly describe the scattering process. For
small amplitude driving we have nmax	1. In contrast, if the
parameters vary with a large amplitude then nmax
1. We
represent the Floquet matrix in the form54

ŜF�En,E� = Ŝ0,n�E� +
n��

2

� Ŝ0,n�E�
�E

+ ��Ân�E� + O��2� ,

�8a�

ŜF�E,En� = Ŝ0,−n�E� +
n��

2

� Ŝ0,−n�E�
�E

+ ��Â−n�E� + O��2� .

�8b�

Note that the right-hand side �RHS� of Eq. �8a� is defined
with respect to the incoming energy of carriers, while in Eq.
�8b� the RHS is expressed in terms of the energy of outgoing
particles. To first order in �, the case of interest here, these
two representations are fully consistent. Going from one rep-
resentation to the other, one needs to take into account that
the contribution from the first term on the RHS depends on
the choice of the reference energy. The second and the third
terms being themselves proportional to � do not depend on
this choice.

In Eq. �8� we have introduced a new matrix Â�E , t� with

Fourier coefficients Ân�E�. The current conservation condi-
tion �5� leads to the following equation for the matrix

Â�E , t�:54

��
Ŝ0
†�E,t�Â�E,t� + Â†�E,t�Ŝ0�E,t�� =

1

2
P�Ŝ0

†; Ŝ0� , �9a�

P�Ŝ0
†; Ŝ0� = i�� � Ŝ0

†

�t

� Ŝ0

�E
−

� Ŝ0
†

�E

� Ŝ0

�t

 . �9b�

Note the matrix P�Ŝ0
† ; Ŝ0� is traceless. Another but equivalent

representation can be obtained from Eq. �9a� multiplying

both sides from the left by Ŝ0 and from the right by Ŝ0
†, and

by taking into account that because of the unitarity condition,
Eq. �2�, we have S0d
S0

†�=−d
S0�S0
†.

We remark that Eq. �9� tells us that the expansion in pow-
ers of � is, in fact, an expansion in powers of �� /�E, where

�E is the energy scale over which the scattering matrix Ŝ0�E�
changes significantly. Therefore, the frequency � can be con-
sidered as slow and the expansion �8� can be relevant if

�� � �E . �10�

Consequently, to characterize scattering with an accuracy of

order � one needs to determine the matrix Â. Equation �9�
defines only the anticommutator of two matrices, Ŝ0 and Â,
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and it is insufficient to determine the matrix Â.
By analogy with Eq. �6� we can express the Floquet scat-

tering matrix elements up to first order in driving frequency
in terms of the Fourier coefficients of some effective matrix.

We introduce two matrices Ŝin and Ŝout defined with respect
to incoming and outgoing energies, respectively,

Ŝin�E,t� = Ŝ0�E,t� +
i�

2

�2Ŝ0

�t � E
+ ��Â�E,t� , �11a�

Ŝout�E,t� = Ŝ0�E,t� −
i�

2

�2Ŝ0

�t � E
+ ��Â�E,t� . �11b�

Performing the Fourier transformation of Eqs. �11� and com-
paring the result with Eqs. �8� we find

ŜF�En,E� = Ŝin,n�E� + O��2� , �12a�

ŜF�E,En� = Ŝout,−n�E� + O��2� . �12b�

We emphasize that the matrices Ŝin�t� and Ŝout�t� are not scat-
tering matrices because they are not unitary: Their Fourier
coefficients just define the corresponding matrix elements of
the Floquet scattering matrix according to Eq. �12�. Never-
theless these matrices conserve the current “on average,” i.e.,
after integrating over the time period T:

�
0

T
dt

T
Ŝin

† �E,t�Ŝin�E,t� = Î + O��2� , �13a�

�
0

T
dt

T
Ŝout

† �E,t�Ŝout�E,t� = Î + O��2� . �13b�

Now we use Eq. �9� to analyze the general properties of the

matrix Â which are due to the microreversibility of the
Schrödinger equation with a periodically oscillating
potential.

B. Microreversibility and magnetic field symmetry of the
Floquet scattering matrix

We start with the stationary case when the single particle
Hamiltonian �and correspondingly the scattering matrix� is
independent of time and recall some properties of the station-
ary scattering matrix.44,48

The microreversibility of the equation of motion �i.e., the
Schrödinger equation� puts some constraints onto the scatter-
ing matrix. To make the notation more convenient let us
arrange the incoming/outgoing wave functions at all the
leads into the vector column

�̂ =�
�1

�2

�
�Nr

� . �14�

Then Eq. �1� can be written in the compact form

�̂�out� = Ŝ0�̂�in�. �15�

The microreversibility condition �i.e., the invariance with re-
spect to the time inversion� for the spinless case under con-
sideration leaves the solution of the scattering problem in-
variant under the simultaneous inversion of the direction of
movement, the inversion of a possibly present magnetic field
H, and the replacement �→�*. Therefore, the evolution of
the two wave functions, namely, ��E ,H , t� and �*�E ,−H ,
−t�, is exactly the same and is described by the same scat-

tering matrix Ŝ0. Taking into account that the inversion of the
direction of movement turns the outgoing waves to incoming
ones and vice versa we can write the following equations for
the starting solution and its transform:

�̂�out��E,H� = Ŝ0�E,H��̂�in��E,H� , �16a�


�̂�in��E,− H��* = Ŝ0�E,H�
�̂�out��E,− H��*. �16b�

From the unitarity condition �2� it follows that Ŝ0
−1= Ŝ0

†.

Therefore we can rewrite Eq. �16a� as follows: �̂�in��E ,H�
= Ŝ0

†�E ,H��̂�out��E ,H�. Comparing the last with Eq. �16b� we
arrive at the required condition44

Ŝ0�− H� = Ŝ0
T�H� , �17�

where the upper index “T” denotes transposition.
Next we consider a periodically driven scattering prob-

lem. As we saw microreversibility requires the scattering ma-
trix to be symmetric with respect to the interchange of in-
coming and outgoing channels. For the Floquet scattering
matrix these channels are characterized by both the lead in-
dex and the number n showing how many energy quanta ��
an electron absorbs/emits during the scattering process. In
addition, to get the required symmetry condition, we have to
take into account that the parameters pi of the Hamiltonian
depend on time. We suppose they change periodically in time
with the same frequency �, and with possible relative phase
shifts �i:

pi�t� = pi,0 + pi,1cos��t + �i� . �18�

In such a case time reversal implies the inversion of the sign
of all the phase shifts �i. Therefore, the Floquet scattering
matrix elements are subject to the following fundamental
symmetry:

SF,���E,En;H,�� = SF,���En,E;− H,− �� �19a�

or, in a matrix form,

ŜF�E;− H,− �� = ŜF
T�E;H,�� . �19b�

Here E is the Floquet energy 
see Eq. �2��; � denotes the set
of all the �i.

Next we derive the symmetry conditions for the matrix Â
entering Eq. �8�. Our definition of the phases �i 
see Eq.

�18�� implies that the frozen scattering matrix Ŝ0�E , t� (i.e.,
the stationary scattering matrix with parameters dependent

on time Ŝ0�E , t�= Ŝ0
E , pi�t��) possesses the following
symmetry:
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Ŝ0�E,− t;H,− �� = Ŝ0�E,t;H,�� . �20�

Equation �9� gives us

Â�E,− t;H,− �� = − Â�E,t;H,�� . �21�

Correspondingly, for the Fourier coefficients, we have the
following:

Ŝ0,n�E;H,− �� = Ŝ0,−n�E;H,�� , �22a�

Ân�E;H,− �� = − Â−n�E;H,�� . �22b�

Substituting the equations given above into the adiabatic ex-
pansion �8� and taking into account the microreversibility
condition �19�, we find the required symmetry condition for

the matrix Â�t�:

Â�− H� = − ÂT�H� . �23�

In particular, in the absence of magnetic fields, H=0, the

diagonal elements of Â vanish. That was previously shown in
Ref. 54. Alternatively Eq. �23� can be obtained directly from
Eq. �9� exploiting the symmetry condition Eq. �17� and the

unitarity of the frozen scattering matrix Ŝ0�E , t�.
The symmetry properties of the residual Floquet matrix Â

are completely different from that of the stationary scattering

matrix Ŝ0. The residual Floquet matrix Â reflects directly the
most important differences between an adiabatic scattering
process at a periodically evolving scatterer and a strictly sta-
tionary scattering process.

Notice, in contrast to some previous considerations �see,
e.g., Refs. 14 and 29� we do not impose any restrictions on
the spatial symmetry of the quantum pump. Therefore our
central result, �23� is quite general and holds for any slowly
oscillating scatterer. In the Appendix we illustrate how one

can calculate the residual scattering matrix Â for several
simple scatterers.

III. MAGNETIC FIELD SYMMETRY OF THE DC
CURRENT FLOWING THROUGH THE SLOWLY DRIVEN

SCATTERER

Now we use the results of the previous section to analyze
the dc current through the mesoscopic sample with periodi-
cally varying parameters. We will consider two mechanisms
which can give rise to such a current. The first mechanism is
a quantum pump effect consisting in rectifying of time-
dependent currents generated by the non stationary
scatterer.54 Second we permit a constant in time difference of
electrochemical potentials/temperatures between the differ-
ent reservoirs. The last is important, because the widely in-
vestigated situation with reservoirs being at the same elec-
trochemical potential actually hides some physics underlying
the quantum pump effect.

The dc current I� flowing from the scatterer to the reser-
voir in the lead � can be calculated as follows:53

I� =
e

h
�

0

	

dE��
�=1

Nr

�
n

�SF,���En,E��2f0,��E� − f0,��E�� .

�24�

Here f0,� is the electron distribution function for the reservoir
�. We assume that the reservoirs are in a stationary equilib-
rium state with possibly different electrochemical potentials
�� and temperatures T�. Then f0,� is the Fermi distribution
function

f0,��E� =
1

1 + e�E−���/kBT�
, �25�

with kB being the Boltzmann constant. Substituting the adia-
batic expansion �8� into Eq. �24� and performing the inverse
Fourier transformation we find the current up to linear in �
terms as follows:54

I� = �
0

	

dE�
0

T
dt

T �
�
� f0,��E�

dI���E,t�
dE

+
e

h
�S0,���E,t��2
f0,��E� − f0,��E��� , �26�

where dI�� /dE is a spectral current driven by the non sta-
tionary scatterer from lead � into lead �:

dI��

dE
=

e

h
�2��Re
S0,��

* A��� +
1

2
P�S0,��;S0,��

* �
 . �27�

Here Re
X� is the real part of X; the function P�X ;Y� is
defined in Eq. �9b�. The spectral currents dI�� /dE are subject
to the following conservation law:54

�
�=1

Nr dI���E,t�
dE

= 0. �28�

Using Eq. �28� and the unitarity of the frozen scattering ma-
trix ���S0,���2=���S0,���2=1, one can easily check that the
current I� is conserved: ��I�=0. Further, using the symme-
try conditions �17� and �23�, and rearranging the terms in Eq.
�26� we divide the current into the even I�

�ev��H�= I�
�ev��−H�

and odd I�
�od��H�=−I�

�od��−H�, in magnetic field parts

I�
�ev��H� =

e

h
�

0

	

dE�
0

T
dt

T �
�

�
f0,� − f0,��

� � �S0,���2 + �S0,���2

2

+ ��Re
S0,��
* A�� − S0,��

* A���

+ 
f0,� + f0,��

P�S0,��;S0,��
* � + P�S0,��;S0,��

* �
4

� ,

�29a�
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I�
�od��H� =

e

h
�

0

	

dE�
0

T
dt

T �
�

�
f0,� − f0,��

� � �S0,���2 − �S0,���2

2

+
P�S0,��;S0,��

* � − P�S0,��;S0,��
* �

4



+ 
f0,� + f0,����Re
S0,��
* A�� + S0,��

* A���� .

�29b�

To show that both these currents are separately conserved,
i.e., that ��I�

�ev�=0 and ��I�
�od�=0, one can use the relations54

4���
�=1

Nr

Re
S0,��
* A��� = P�Ŝ0

†; Ŝ0���, �30a�

4���
�=1

Nr

Re
S0,��
* A��� = P�Ŝ0; Ŝ0

†���, �30b�

which follow from Eq. �9a�.
In a general multiterminal situation, i.e., if not all the

reservoirs are at the same potential �temperature�, the main
contributions to both the even I�

�ev� and the odd I�
�od� currents

are proportional to the conductances �e2 /h��S0,���2 averaged
over time. The nonstationarity results only in small correc-
tions. However in the two terminal case the odd in magnetic
field dc current I�od� has no contribution coming from the
conductances, see the Appendix. The current I�od� is linear in
� and it is entirely due to the non-adiabaticity of the pump
scattering processes. Therefore a two-terminal setup is the
most appropriate for the detection of an adiabatic quantum
pump effect.

Notice, the odd in magnetic field current I�
�od��H� consists

of two parts. One of them is present even if all the reservoirs
have the same chemical potentials and temperatures. While
the second contribution arises if the electron reservoirs are at
different conditions. For instance, if there is a small dc volt-
age V then the second contribution to I�

�od��H� is linear in
both the voltage V and the pump frequency �.

IV. CONCLUSION

In this work we analyze the scattering properties of a
periodically driven mesoscopic scatterer. Traversing such a
scatterer an electron can gain or lose one or several energy
quanta �� and thus can change its energy. Therefore, gener-
ally the scattering matrix of a periodically driven mesoscopic
scatterer depends on two energies, incoming and outgoing.
We show that at low driving frequency �→0 one can intro-
duce effective matrices depending on only one energy, either
incoming or outgoing 
see Eq. �11��, which approximates
accurately the Floquet scattering matrix up to terms of order

� 
see Eq. �12��. We introduce two effective matrices Ŝin and

Ŝout, which are not unitary. Nevertheless each of them con-

serves the current after averaging over a driving cycle.

The matrices Ŝin and Ŝout are the sum of a frozen scatter-
ing matrix and a matrix which determines the linear in �
part. The last is responsible for the quantum pump effect8

and it consists of two contributions. The first one is the sec-

ond derivative of the frozen scattering matrix Ŝ0�t�. The sec-

ond contribution is defined by an in principle new matrix Â.

In particular, the matrix Â has a symmetry with respect to
magnetic field reversal, Eq. �23�, that is opposite to that of
the stationary �frozen� scattering matrix, Eq. �17�. In contrast

to the stationary scattering matrix Ŝ0 the residual Floquet

matrix Â reflects directly the chirality of the pumping
process.

Using the adiabatic representation Eq. �12� for the Floquet
scattering matrix we examine the dc current flowing through
the two terminal �many channels� mesoscopic sample. We
divide the current into parts with definite symmetry proper-
ties with respect to a magnetic field and/or a voltage
inversion.

As it is known in the stationary case the dc current
through the coherent two terminal sample is an even function
of a magnetic field. On the other hand, the periodically
driven scatterer shows an odd in magnetic field, linear in �
current, �A24b�, which is due to the quantum pump effect.
The odd in applied voltage part of this current is proportional

to the residual Floquet matrix Â. The matrix Â reflects the
interplay of absorbing/emitting of energy quanta �� with
quantum mechanical interference inside the scatterer. For in-
stance, for a pointlike scatterer �without the space for inter-

ference inside� the matrix Â is identically zero. Our work
suggests that additional experiments which investigate a
driven mesoscopic conductor in a less symmetric setup, i.e.,
with reservoirs having different electrochemical potentials or
temperatures, might be useful to reveal the presence of a
quantum pump effect.
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APPENDIX

The residual scattering matrix Â

In this Appendix we illustrate how one can calculate the
linear in � corrections to the frozen scattering matrix in the

same fashion as the stationary scattering matrix Ŝ0. Accord-
ing to Eq. �12�, at �→0 the Floquet scattering matrix ele-

ments are the Fourier coefficients of some matrices Ŝin / Ŝout,

Eq. �11� which depend on the stationary scattering matrix Ŝ0

and on the matrix Â. The matrix Ŝin / Ŝout does not possess a
definite symmetry, i.e., with respect to a time and/or a mag-
netic field direction reversal. While the stationary scattering

matrix Ŝ0 and the matrix Â do. The last circumstance is the

motivation why we expressed the current I� in terms of Ŝ0
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and Â instead of Ŝin / Ŝout. On the other hand, for the calcula-
tion of the Floquet scattering matrix elements it is more con-

venient to work in terms of the matrix Ŝin or Ŝout.

Single �-function barrier

Here we consider the Floquet scattering matrix in the
limit �→0 of an oscillating pointlike scatterer coupled to
two reservoirs via one-channel leads. As we will show for
such a scatterer

Â = 0, �A1�

and low-frequency scattering up to linear in � terms is en-

tirely described by the frozen scattering matrix Ŝ0�t�, see

Eqs. �11� and �12� at Â=0.

To find ŜF we have to solve the Schrödinger equation with
the potential V�x , t� being the delta function ��x� multiplied
by the amplitude oscillating in time

i�
��

�t
= �−

�2

2me

�2

�x2 + V�x,t�
� ,

V�x,t� = ��x�
V0 + 2V1cos��t + ��� . �A2�

According to the Floquet theorem the solution of the above
equation has the form of Eq. �3�. Away from the point x=0
the functions ��En� are the plain waves

��En� = aneiknx + bne−iknx. �A3�

The coefficients an , bn are determined from the boundary
condition at x=0:

��x = + 0� = ��x = − 0� ,

� ��

�x
�

x=+0
− � ��

�x
�

x=−0
=

2me

�2 V�t���x = 0� . �A4�

First, to find SF,LL and SF,RL we consider the plain wave of a
unit amplitude with energy E coming from the left �we di-
rected the x axis from the left to the right�:

��in��E,t� = e−i�E/��teikx. �A5�

Here E=�2k2 / �2me�. Then the coefficients an
�out� and bn

�out� for
an outgoing wave

��out� = e−i�E/��t�
n

e−in�t
��x�an
�out�eiknx + ��− x�bn

�out�e−iknx�

�A6�


here ��x� is the Heaviside step function: ��x�=1 at x�0 and
��x�=0 at x�0� define the Floquet scattering matrix ele-
ments as follows:

SF,RL�En,E� =�kn

k
an

�out�,

SF,LL�En,E� =�kn

k
bn

�out�. �A7�

Substituting the whole wave function �=��in�+��out� into
the boundary condition �A4� we get the following relations
between the different an

�out� and bn
�out�:

�kn + i�0�an
�out� = kn�n0 − i��1an−1

�out� + �−1an+1
�out�� ,

bn
�out� = an

�out� − �n0. �A8�

Here we have introduced the following parameters:

�0 =
me

�2 V0, �±1 =
me

�2 V1e�i�. �A9�

We solve Eq. �A8� in the adiabatic limit �→0 of interest
here. In this limit we can safely expand the wave vector kn as
follows:

kn = k +
n�

v
+ O��2� , �A10�

where v=�k /me is an electron velocity. In addition we use

the adiabatic expansion Eq. �12a� and express ŜF�En ,E� in

terms of the Fourier coefficients of the matrix Ŝin�E�. Substi-
tuting Eqs. �A7�, �A10�, and �12a� into Eq. �A8�, and ignor-
ing all the terms of order �2 and higher we can write

�k + i�0�Sin,RL,n + �1

2
− i

�0

2k

n�

v
S0,RL,n

= k�n0 − i��1Sin,RL,n−1 + �−1Sin,RL,n+1�

+ i
�

2vk

�1�n − 1�S0,RL,n−1 + �−1�n + 1�S0,RL,n+1� ,

Sin,LL,n�E� = Sin,RL,n�E� − �n0�kn

k
.

Performing the inverse Fourier transformation we find the
equation for the time-dependent matrix elements of the ma-

trix Ŝin�E , t�:

Sin,RL�E,t� =
k

k + i��t�
−

i

2vk

k − i��t�
k + i��t�

�S0,RL�E,t�
�t

,

Sin,LL�E,t� = Sin,RL�E,t� − 1. �A11�

Here ��t�=meV�t� /�2. We solve these equations perturba-
tively in the small parameter proportional to � /�t��→0. To
find the matrix elements Sin,RR and Sin,LR one can either ex-
ploit the symmetry condition or solve the same problem but
with the unit wave incoming from the right: ��in��E , t�
=e−i�E/��te−ikx. Up to terms linear in �, the solution of both
problems reads

Ŝin�E,t� = Ŝ0�E,t� +
i�

2

�2Ŝ0�E,t�
�t � E

. �A12�

Here we used �k /�E=1/ ��v�. The stationary matrix is well
known:
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Ŝ0 =
k

k + i�
�1 1

1 1

 − Î . �A13�

Comparing Eqs. �11a� and �A12� we arrive at the an-
nounced result, Eq. �A1�. Thus, to describe the low fre-
quency scattering on point-like scatterer it is enough to know
only the frozen scattering matrix.

Alternatively, one can use Eq. �9� to show that the matrix

Â vanishes for the oscillating �-function potential. It is be-

cause the commutator P�Ŝ0
† ; Ŝ0� is identically zero for the

scattering matrix �A13�. We can conclude that a point scat-
terer cannot generate a quantum pump effect since it cannot
rectify ac currents 
the spectral density dI�� /dE, Eq. �27�,
vanishes�. An oscillating scatterer does of course generate ac
currents, but these currents are total time derivatives of the
charge near the barrier54 and thus cannot contribute to a dc
current.

Note, that the deviation of the effective scattering matrix

Ŝin�E , t�, Eq. �A12� from the frozen scattering matrix Ŝ0�E , t�,
Eq. �A13�, is as small as, at least, �� /E. For the opaque
barrier the deviation is even smaller due to the factor k /�
�1. For the small oscillating amplitude case the deviation is
additionally damped by the factor �1 /�0�1.

Scatterer composed of two point-like barriers

In this subsection we consider an example of a spatially
“extended” scatterer which consists of two pointlike scatter-
ers placed at x=0 and x=L, respectively. This system is
coupled to two reservoirs via single channel leads.

The scattering properties of point scatterers are assumed
to be oscillating in time with the same frequency �. Scatter-
ing at the left and on the right barriers is described via the

Floquet scattering matrices ŜF
L and ŜF

R, respectively. Scatter-
ing on the whole system is described via the Floquet scatter-

ing matrix ŜF.
By analogy with the previous example we consider scat-

tering of a unit wave coming from the left, Eq. �A5�. The
whole wave function is of a Floquet function type �3� with

��En� =��n0eikx +� k

kn
SF,LL�En,E�e−iknx, x � 0,

aneiknx + bne−iknx, 0 � x � L ,

� k

kn
SF,RL�En,E�eikn�x−L�, x � L .

�
�A14�

To find the unknown coefficients we use the boundary con-

ditions which we formulate in terms of scattering matrices ŜF
L

and ŜF
R assumed to be known:

SF,LL�En,E� = SF,LL
L �En,E� + �

m

SF,LR
L �En,Em��km

kn
bm,

kn

k
an = SF,RL

L �En,E� + �
m

SF,RR
L �En,Em��km

kn
bm,

kn

k
bne−iknL = �

m

SF,LL
R �En,Em��km

kn
ameikmL,

SF,RL�En,E� = �
m

SF,RL
R �En,Em��km

kn
ameikmL. �A15�

To simplify this system of equations we use the adiabatic
approximation �12� for the Floquet scattering matrices. For
this approximation to be valid, the energy quantum ��
should be small compared with the relevant energy scale for
the problem 
see Eq. �9��.

In the case under consideration, there are several energy
scales. The first one is determined by the energy E of an
incoming electron. This scale relates to the deviation of the

effective scattering matrices Ŝin
L and Ŝin

R for pointlike scatter-
ers from the corresponding frozen ones. This deviation is of
the order of �� /E. Another energy scale �E relates to the
spatial size of the system L and arises from the quantum
mechanical interference in the region between the scatterers
at 0�x�L. In our case, Eq. �A15�, the interference effect is
described via the factors eikmL which we will expand as
follows:

e±ikmL = e±ikL�1 ± im
�

�L
+ O��2�
 . �A16�

Here �L=v /L defines the distance �E���L between the
quantum levels if the system is decoupled from the reser-
voirs. The second term in the brackets on the right-hand side
of Eq. �A16� is due to an interplay of a quantum-mechanical
interference with a quantized energy exchange between the
scatterer and an electron traversing it.

The system can be treated as spatially “extended” if L

�E, where �E=h /�2meE is the de Broglie wave length for
an electron with energy E. In such a case the nonadiabatic
corrections to the frozen scattering matrix are at least of or-
der �� /�E. Note if the energy E is close to the energy of a
transmission resonance then the corrections will be of order
�� /�, where � is the width of the transmission resonance. In
contrast, if L��E then the scatterer can be viewed as point-
like and the nonadiabatic corrections will be as small as
�� /E. Therefore, assuming L
�E we can safely ignore the
corrections of order �� /E and concentrate on the larger cor-
rections of order �� /�E with �E=min��E ,��. Since we ig-
nore the terms of order �� /E we can replace the Floquet
scattering matrices for pointlike scatterers by the correspond-

ing frozen scattering matrices ŜF
R/L�En ,Em�= Ŝ0,n−m

R/L

+O��� /E� 
see Eq. �8��. To avoid a possible misunderstand-

ing we do not write the energy E as an argument of Ŝ0
R/L

emphasizing that these matrices can be treated as energy in-
dependent on the scale of order �E. Nevertheless they can
depend on energy over a much larger scale, say, of order E.
On the other hand, since we keep the terms of order �� /�E

we use the adiabatic approximation ŜF�En ,E�= Ŝin,n�E�
+O��2� 
see Eq. �12�� for the Floquet scattering matrix of
the whole structure.

Using these approximations and substituting Eq. �A16�
into the system of equations �A15� and performing the in-
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verse Fourier transformation we arrive at the following time-
dependent equations valid up to first order in � /�t:

Sin,LL�E,t� = Ŝ0,LL
L �t� + S0,LR

L �t�b�t� ,

a�t� = S0,RL
L �t� + S0,RR

L �t�b�t� ,

e−ikL�b�t� +
1

�L

db�t�
dt


 = S0,LL
R �t�eikL�a�t� −

1

�L

da�t�
dt


 ,

Sin,RL�E,t� = S0,RL
R �t�eikL�a�t� −

1

�L

da�t�
dt


 . �A17�

Here we introduced the functions a�t� and b�t� defined as
follows �x=a ,b�:

x�t� = �
n

e−in�t�kn

k
xn. �A18�

We consider the terms da /dt and db /dt as small perturba-
tions and solve the system of equations �A17� up to linear
order in these corrections terms.

Note, that without the terms da /dt and db /dt the system
of equations �A17� is exactly the system of equations which
defines the matrix elements of the frozen �stationary� scatter-

ing matrix �with the evident replacement Ŝin→ Ŝ0�.
Analogously, to calculate Sin,RR and Sin,LR we consider the

same problem but with the unit wave coming from the right:
��in��E , t�=e−i�E/��te−ik�x−L�. It is convenient to represent the
results in the matrix form

Ŝin�E,t� = Ŝ0 −
1

�L
M̂LM̂−1 �

�t

M̂−1M̂R� . �A19�

Here S̄0 is the frozen scattering matrix

Ŝ0�E,t� = M̂0 + M̂LM̂−1M̂R. �A20�

The matrices M̂ are all expressed in terms of the scattering
matrix elements for the left and right scatterers. They depend
on energy through the factor eikL and on time through the

matrices Ŝ0
L and Ŝ0

R:

M̂0 = �S0,LL
L 0

0 S0,RR
R 
, M̂ = � 1 − S0,RR

L

− S0,LL
R ei2kL 1


 ,

M̂L = � 0 S0,LR
L

S0,RL
R eikL 0


, M̂R = �S0,RL
L 0

0 S0,LR
R eikL 
 .

�A21�

Our aim is to calculate the matrix

��Â = Ŝin − Ŝ0 −
i�

2

�2Ŝ0

�t � E


see Eq. �11a�� for the double scatterer structure under con-
sideration. From Eq. �A20� it follows that

i�

2

�2Ŝ0

�t � E
= −

1

2�L

�

�t

M̂L�M̂−1�2M̂R� .

Then using Eq. �A19� we obtain

��Â�E,t� =
1

2�L
� �

�t

M̂LM̂−1�M̂−1M̂R

− M̂LM̂−1 �

�t

M̂−1M̂R�� . �A22�

Expressing the matrix elements of Â in terms of the matrix
elements of S0

L and S0
R we get

��ALL =
S0,LL − S0,LL

L

�L�

�

�t
�ln�S0,LR

L

S0,RL
L 
� ,

��ALR =
S0,LR

2�L�
��2 − ��

�

�t
�ln�S0,LR

L

S0,LR
R 
�

+ �1 − ��
�

�t
�ln� S0,LL

R

S0,RR
L 
�� ,

��ARL = −
S0,RL

2�L�
��2 − ��

�

�t
�ln�S0,RL

L

S0,RL
R 
�

+ �1 − ��
�

�t
�ln� S0,LL

R

S0,RR
L 
�� ,

��ARR =
S0,RR − S0,RR

R

�L�

�

�t
�ln�S0,RL

R

S0,LR
R 
� . �A23�

Here �=1−S0,RR
L S0,LL

R ei2kL. We see that for the case consid-

ered the matrix elements of Â are proportional to time de-
rivatives as it should be. If there is no magnetic field H=0,

then the scattering matrices Ŝ0
L and Ŝ0

R are symmetric in the
lead indices S0,��

L/R =S0,��
L/R . In such a case A��=0 and ALR

=−ARL that is in agreement with Eq. �23�.

Two terminal many channel scatterer

Next we show that for a two-terminal pump the odd in
magnetic field current is independent of the conductance of
the pump. Let us consider the scatterer connected to only two
reservoirs via, possibly many channel, ballistic leads. We
will mark the quantities related to the left and to the right
reservoirs via the lower indices “L” and “R,” respectively.
Let the left lead have NL channels, and the right lead have NR
channels: NL+NR=Nr. We define the currents flowing to the
left IL and to the right IR=−IL, and the distribution functions
for the left f0,L and for the right f0,R reservoirs as follows:

IL = �
�=1

NL

I�, f0,� = f0,L, 1 � � � NL,
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IR = �
�=NL+1

Nr

I�, f0,� = f0,R, NL + 1 � � � Nr.

By analogy we redefine the quantities dependent on two in-
dices. For example, the reflection to the left RLL and the
spectral current dIRL /dE driven from the left to the right are
defined as follows:

RLL = �
�=1

NL

�
�=1

NL

�S0,���2,

dIRL

dE
= �

�=NL+1

Nr

�
�=1

NL dI��

dE
.

Note that the two terminal transmission is symmetric in res-
ervoirs indices TLR=TRL and it is even in magnetic field. That
can be easily seen from their definition, similar to the one
given above for RLL, and from the unitarity of the scattering

matrix Ŝ0, Eq. �2�. In addition from Eq. �28� we get
dIL� /dE+dIR� /dE=0, for �=L ,R. Using the identity54

dILL

dE
+

dILR

dE
�

dIL

dE
= �

�=1

NL

i
e

2�
� � Ŝ0

�t

� Ŝ0
†

�E
−

� Ŝ0

�E

� Ŝ0
†

�t



��

,

performing necessary summations in Eqs. �29�, and integrat-
ing by parts over time and over energy, we get

IL
�ev� =

e

h
�

0

	

dE�
0

T
dt

T �
f0,R − f0,L��TLR

+ �
�=1

NL

�
�=NL+1

Nr P�S0,��;S0,��
* � + P�S0,��;S0,��

* �
4



+ �−

�

�E

f0,R + f0,L�
 i�

4 �
�=1

NL � � Ŝ0

�t
Ŝ0

† + Ŝ0
†� Ŝ0

�t



��
� ,

�A24a�

IL
�od� = e�

0

	

dE�
0

T
dt

T � − i

8�

�
f0,R + f0,L�
�E �

�=1

NL � � Ŝ0

�t
Ŝ0

†

− Ŝ0
†� Ŝ0

�t



��

+
�

2�

f0,R − f0,L��

�=1

NL

�
�=NL+1

Nr

Re
S0,��
* A��

+ S0,��
* A���� . �A24b�

For low driving frequencies �→0 we see that in the two
terminal case the part of the dc current that is odd in mag-
netic field I�od��H�=−I�od��−H�, is linear in � irrespective of
whether the reservoirs are at the same conditions �f0,L

= f0,R� or not �f0,L� f0,R�.
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