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A finite sum of dimer-row elastic interactions on a two-dimensional surface yields a logarithmic stress-
domain interaction energy. Using dimer rows as the building blocks of a reconstructed surface generalizes the
Alerhand et al. and Marchenko models of the stress-domain interaction. Our model is applied to step-height
transition on vicinal Si�001� surfaces. The double-layer step phase is determined to be more stable than the
single-layer step phase for typical temperatures and miscut angles. A sizable mixed phase region on the
temperature-versus-miscut-angle phase diagram is found. The onset of the mixed phase region decreases to a
0° miscut angle if the density of forced kinks is zero. Formation energies of two step types in the Si�001� are
positive and consistent with total energy calculations. Our results suggest that the single-layer step phase is
stable only for flat Si�001� surfaces.
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I. INTRODUCTION

Dimers have been used as elementary building blocks of a
reconstructed Si�001� surface in order to understand its
thermodynamics.1 Regarding the dimers as such is reason-
able since the surface reconstruction is triggered by a dimer-
ization of surface atoms along the �110� directions,2,3 creat-
ing different surface stresses in the directions parallel and
perpendicular to dimer bonds.4 These anisotropic stress do-
mains formed by dimers occupy terraces punctuated by an
array of steps. The number density of the step array is crys-
tallographically �kinematically� imposed when a cutting of
the bulk Si crystal is done with a polar miscut angle �miscut
angle� toward the �110� axis. There are two types of steps on
Si�001�: single-layer �SL� steps �each having a single-
atomic-layer height� and double-layer �DL� steps. Each step
type has two subcategories: SA and SB steps for the SL steps,
and DA and DB steps for the DL steps.5 For the SL phase—
defined as a vicinal Si�001� populated by SL steps—both
subcategories are required and alternate since there are two
sublattices: 1�2 and 2�1 reconstruction domains. Only DB
steps are required for the DL phase.5 The forced kink density
along the propagation direction of each step depends on the
azimuthal miscut angle �tilt angle� toward either the �100� or
�010� axis, away from the �110� axis.6

Low-energy electron diffraction �LEED� experiments
have demonstrated that steps on vicinal Si�001� surfaces with
miscut angles 2°–11° are predominantly double layer when
annealed at 600–1200 °C.6–9 The stability of the DL phase is
explained by the lower formation energy of two DL steps
compared to that of SA+SB steps.5 This was the prevailing
idea in understanding the step-height �reconstruction� transi-
tion in Si�001� until Alerhand and co-workers10 proposed a
model based on a logarithmic stress-domain interaction for
the SL steps.4 The Alerhand et al. model allows for a first-
order transition between the SL and DL phases and predicts
that the SL phase is the high-temperature phase at a specified
miscut angle. A modification to the Alerhand et al. model
incorporating forced kinks does not change this qualitative
behavior.11 This prediction, however, contradicts the conclu-

sion gathered from the LEED experiments: that the DL phase
is more stable at high temperatures.

Another set of experiments using reflection high-energy
electron diffraction �RHEED�, LEED, and scanning tunnel-
ing microscopy12–15 �STM� report that both SL and DL steps
exist at low miscut angles. Especially interesting is the use of
a curved substrate to cover a miscut angle range of 0°–5°.13

The presence of both domains signals an equilibrium be-
tween SL and DL phases, which is gradually reduced as the
miscut angle increases. Essentially only the DL phase re-
mains when the miscut angle exceeds 6°. It is striking that
this behavior is almost independent of temperature.13 This
behavior has been partially explained by a T=0 K step-
height transition model16 producing the devil’s staircase
pattern.17 A tie-line construction to the free energies of SL
and DL phases suggests that a phase equilibrium exists.18 An
extension to the T=0 K model19 correctly identifies the DL
phase as a high-temperature phase and finds a critical tem-
perature of 490 K. The authors suggest that the critical tem-
perature may be higher to explain the experimental results.

It has been determined that a step-step interaction20 plays
a negligible role in the stability of DL and SL phases.4,11,16

The disagreement between the Alerhand et al. model and the
experiments cannot be attributed to the absence of dipolar
step-step interaction in the analysis. The most dominant en-
ergy for reconstructed Si�001� comes from the logarithmic
stress-domain energy proposed by Alerhand et al.4 and
Marchenko.21 This elastic energy has been cast as an inter-
action energy between two neighboring terraces, originating
from the stress discontinuity as the surface stress changes
from one terrace to the next due to the anisotropy. In their
derivations, the terraces are assumed structureless and have
constant stresses. Since the anisotropic surface stresses of the
SL phase rotate 90° from one terrace to the next, it has been
postulated that the stress-domain energy for the SL phase is
nonzero. Although terraces with DL steps have anisotropic
stress-domain terraces, the surface lattice of the DL phase is
called “primitive” since all atoms on all terraces belong to a
single sublattice.7 For this reason, the transition between SL
and DL phases has been studied1 by assuming that the stress-
domain energy for the DL phase is zero.
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This stark contrast between SL and DL step types hides
the fact that both types are constructed from the same
dimers. After all, the anisotropic surface stresses originate
from two orthogonal stresses of a dimer. In this paper, we
show that the logarithmic stress-domain energy can be de-
rived by regarding dimer rows as the elementary building
blocks of Si�001�. The dimer-row formulation built by
striped line dipoles approximates interacting individual
dimers. This approach generalizes the earlier derivations by
Alerhand et al. and Marchenko and endows reconstructed
terraces with more microscopic features. The logarithmic
stress-domain energy is thus basically a finite sum of dipole-
dipole elastic interactions, which model dimer-dimer interac-
tions. The elastic field of a dimer row is identical to that of a
step, and hence the offered derivation paints a clearer picture
of why a step-step interaction is much weaker than the loga-
rithmic stress-domain energy in the case of reconstructed
surfaces. We also show that the critical temperature is sig-
nificantly higher than 490 K.

Section II starts with obtaining the elastic field of a dimer
built by intersecting line dipoles using an elastic Green’s
function approach. The elastic energy of an isolated two-
dimensional terrace composed of arrays of dimers is com-
puted, followed by obtaining the interaction energy between
a terrace and its two nearest-neighbor terraces. The resulting
internal energy per unit step length is used to compute par-
tition functions for the SL and DL phases. Section III com-
putes the Helmholtz and Gibbs free energies to compare their
results. We find the DL phase has a lower free energy within
T=300–1000 K and a miscut angle range 0°–6°. A phase
equilibrium curve obtained from the equal-pressure condi-
tion at around 6° is lowered to around 3.5° when the equal
chemical-potential condition is used. Section IV compares
our results with published results and shows also that the
phase equilibrium region depends on the density of forced
kinks.

II. STRIPED DIPOLE ARRAYS

Consider a surface unit cell of area a�a� containing two
orthogonal force dipoles as shown in Fig. 1�a�. The surface
stress along the x axis is ��, while the surface stress along
the y axis is ��, so that this dipole pair centered at �xi ,yi� can
be written as

fx = ��a����x − xi� , �1�

fy = ��a����y − yi� , �2�

where �� is aligned along the x axis and �� along the y axis.
The force dipoles above are line dipoles along the x and y
axes, intersecting at �xi ,yi�, and are to represent surface
stresses caused by dimerization of two surface atoms as
shown in Fig. 1�b� by changing the sign of ��. These line
dipoles approximate a more complicated expression for sur-
face stresses of an isolated dimer. One consequence of using
the line dipoles is that the elastic energy does not include
diagonal interactions of dimers. The surface elastic Green’s
functions Gij�x ,y ,z=0�, where i, j=x, y, are22

Gxx =
1 + �

�E
�1 − �

r
+

�x2

r3 	 ,

Gxy =
��1 + ��

�E

xy

r3 = Gyx,

Gyy =
1 + �

�E
�1 − �

r
+

�y2

r3 	 ,

so that the elastic displacements ui can be computed using

ui =
/

Gik�x − x�,y − y��Fk�x�,y��dx�dy�, �3�

giving

ux = −
2��a��1 − �2�

�E�x − xi�
, �4�

uy = −
2��a��1 − �2�

�E�y − yi�
. �5�

Consider a two-dimensional array of dipole pairs arranged
in an �N+1�� �M +1� cubic lattice such that each dipole pair
depicted in Fig. 1�a� is located at �xi ,yi�= �na� ,ma��, where
n=0,1 ,… ,N and m=0,1 ,… ,M. We will call this collection
of dipole pairs a terrace of size �N+1��M +1�. The total dis-
placement vector is

u = �ux,uy� =
2�1 − �2�

�E
�


n=0

N

−
��a�

x − na�

, 

m=0

M

−
��a�

y − ma�
	 .

�6�

Accompanying u is of course the force vector f:

f = �fx, fy� = �

n=0

N

��a����x − na��, 

m=0

M

��a����y − ma��	 ,

�7�

so that the work done by the dipole array is equal to

FIG. 1. Two orthogonal line dipoles shown in the left may rep-
resent surface stresses of a dimer.
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W =
/

f · u dx dy = −
2��

2 �1 − �2�a�M

�E



n�n�

1

�n� − n�2

−
2��

2�1 − �2�a�N

�E



m�m�

1

�m� − m�2 . �8�

W represents an interaction energy of dimer rows. The sum-
mation 
n�n� does not include terms from n=n� and thus has
exactly �N2+N� /2 terms corresponding to the number of
combinations when pairing two distinct dimer rows within
the set �0,1 ,… ,N�. This means the summation can be ex-
pressed as



n�n�

1

�n − n��2 = 1
1

N2 + 2
1

�N − 1�2 + ¯ + �N − 1�
1

22 + N
1

12

= 

n=0

N
n

�N + 1 − n�2 =
1

6
��N + 1��2 − 6��

− 	0�N + 1� − �N + 1�	1�N + 1� , �9�

where �0.5772 is Euler’s constant and 	n�z� the poly-
gamma function of order n, which is the nth derivative of the
logarithmic derivative of the gamma function 
�z�:

	n�z� =
dn

dzn


��z�

�z�

.

A similar result can be obtained for 
m�m��m�−m�−2.
Physically, there is a finite energy for n=n� corresponding

to a dimer formation, which is assumed to be a constant � for
each dipole pair. Since the elastic work W increases the in-
ternal energy E, then the total internal energy for the isolated
terrace is

EI = ��N + 1��M + 1� −
2��

I 2a��1 − �2�M
�E

��N + 1�
�2

6
− �

− 	0�N + 1� − �N + 1�	1�N + 1��
−

2��
I2a��1 − �2�N

�E
��M + 1�

�2

6
− � − 	0�M + 1� − �M

+ 1�	1�M + 1�� , �10�

where the superscript I is added as we call the terrace that
gives Eq. �10� type I. Our zero internal energy corresponds to
the absence of dipole pairs on the surface. The fact that the
dipole pairs spontaneously form implies that the formation
energy ��0, while the elastic energy introduced by the elas-
tic field of the dipoles is positive when the work is done to
the solid. The type-II terrace is designated as the terrace
whose dipole pair orientations are rotated 90° with respect to
those of the type-I terrace. For a type-II terrace, �� is aligned
along the x axis, while �� is aligned the y axis. The elastic
energy of a type-II terrace of size �P+1��M +1� is thus

EII = ��P + 1��M + 1� −
2��

II2
a��1 − �2�P

�E
��M + 1�

�2

6
− �

− 	0�M + 1� − �M + 1�	1�M + 1��
−

2��
II2

a��1 − �2�M
�E

��P + 1�
�2

6
− � − 	0�P + 1�

− �P + 1�	1�P + 1�� . �11�

We place the two terrace types so as to have an alternating
I-II pattern that fills up the entire surface. The first domain
wall type separates a type-I from a type-II terrace as shown
in Fig. 2; the other type is when the type-II terrace precedes
the type I. By symmetry, the formation energies for both
domain wall types should be identical. There will be interac-
tions between these terraces. We limit the calculation of in-
teraction energy to nearest-neighbor terraces and assume that
a=a� =a�. The interaction between a type-I terrace of size
�N+1��M +1� with its two adjacent type-II terraces, each of
size �P+1��M +1�, occurs along the x direction. The type-I
terrace occupies 0�x�Na, so that the displacement ux from
the type-II terraces is

ux
II = −

2�1 − �2���
IIa

�E
� 


p=−P−1

−1
1

x − pa
+ 


p=N+1

N+P+1
1

x − pa
	 .

�12�

The total force to compute the interaction energy comes from
the type-I terrace,

fx
I = 


n=0

N

��
I a���x − na� , �13�

so that the interaction energy is

Eint
I =

/
fx

Iux
IIdx dy = −

4��
I ��

II�1 − �2�aM

�E


n=0

N

�	1�N + 1 − n�

− 	1�N + P + 2 − n�� . �14�

A similar procedure can be applied to the interaction between
the type-II terrace and its two nearest-neighboring type-I ter-
races, giving an interaction energy

FIG. 2. A domain wall �dashed lines� along the y axis separates
type-I and -II terraces. The I-II striped pattern is repeated to fill up
the two-dimensional surface. The square symmetry of the dimer
arrays requires that a� =a�=a.
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Eint
II = −

4��
II��

I �1 − �2�aM

�E


p=0

P

�	1�P + 1 − p� − 	1�N + P + 2

− p�� . �15�

The translational unit cell for the infinite striped I-II pat-
tern is two terraces, each of type I and II. The interaction
energy for the unit cell is

Eint =
1

2
�Eint

I + Eint
II � ,

so that the total energy per unit cell is

E = EI + EII + Eint. �16�

Since the interaction only occurs along the x axis, we can
define the energy per unit domain wall length along the y
axis:

E = lim
M→

E/aM . �17�

We consider sufficiently large N and P so that approxima-
tions to the polygamma functions can be used. The Appendix
contains approximations used to simplify E, giving

E =
2��

I 2�1 − �2�
�E

�1 + �� −
2��

I ��
II�1 − �2�
�E

��2

12
+ �	

+
2��

II2�1 − �2�
�E

�1 + �� −
2��

I ��
II�1 − �2�
�E

��2

12
+ �	 + ��N

+ P + 2� −
2��

I 2�1 − �2�
�E

��2

6
�N + 1� − ln�N + 1��

−
2��

I2�1 − �2�
�E

�2

6
N −

2��
II2�1 − �2�

�E
��2

6
�P + 1� − ln�P

+ 1�� −
2��

II 2�1 − �2�
�E

�2

6
P

−
2��

I ��
II�1 − �2�
�E

ln
�N + 1��N + 2��P + 1��P + 2�

�N + P + 2�2 , �18�

by keeping only the linear and logarithmic terms. Figure 3
shows the approximation functions for the polygamma func-
tions; they give a good agreement for N, P�5.

We can always set the total width of the unit cell equal to
L, which may be a constant imposed by kinematics or some
other constraints:

N + P + 2 = L . �19�

We can thus rewrite E by using �=E /2�1+��, where � is the
shear modulus:

E = Ew
I + Ew

II + ��L + C4�2 ln L − ln��N + 1��N + 2��L − N − 1�

��L − N��� + C1�N + 1� + C2 ln�N + 1� + C3 ln�L − N

− 1� , �20�

where

Ew
I =

��
I2

��1 − ��
6�

+
��

I2
�1 − ��
��

�1 + ��

−
��

I ��
II�1 − ��
��

��2

12
+ �	 ,

Ew
II =

��
II2

��1 − ��
6�

+
��

II2
�1 − ��
��

�1 + ��

−
��

I ��
II�1 − ��
��

��2

12
+ �	 ,

�� = � −
��1 − ��

6�
���

II2
+ ��

II2
� ,

C1 =
��1 − ��

6�
���

II2
+ ��

II2
− ��

I2
− ��

I2
� ,

C2 =
��

I2
�1 − ��
��

,

C3 =
��

II2
�1 − ��
��

,

C4 =
��

I ��
II�1 − ��
��

.

Ew
I and Ew

II are the domain wall energies, terms in E that are
independent of N and L. The partition function can be com-
puted using

Z = 

N

e−�E = e−��Ew
I +Ew

II+��L�L−2�C4

N

��N + 1��N + 2�

��L − N − 1��L − N���C4�N + 1�−�C2

��L − N − 1�−�C3e−�C1�N+1�, �21�

where �=1/kBT and kB is Boltzmann’s constant, from which
relevant thermodynamic quantities can be derived. The sum-
mation sign represents fluctuations of terrace widths, which
are physically caused by kinks that are thermally excited and
not due to kinematics.

III. RECONSTRUCTED SILICON(001)

There have been many important works, theoretical and
experimental, devoted to understanding the reconstructed

FIG. 3. Plots of 	0�z� and 	1�z� and their approximations.
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Si�001� surfaces.1,23 One important motivation is the pres-
ence of two alternating types of steps �domain walls�, SA and
SB steps, when the Si�001� is mechanically cut with small
miscut angles. These alternating steps cause antiphase do-
mains when growing epitaxial layers on top of a Si�001�
substrate �Fig. 4�. Tong and Bennett13 observe using micro-
probe RHEED that SA steps are spaced regularly, while an SB
step, bounded by two SA steps on its left and right, meanders.
The regular spacing of SA steps permits us to use the constant
total width assumption, i.e., constant N+ P+2=L.

We use anisotropic surface stresses from total energy cal-
culations for consistency, which are equal in magnitudes ��
=0.035 eV/Å2� but opposite in directions.4,10 The surface
stress along the dimer bond is found to be tensile, while the
stress perpendicular to the bond is compressive. Thus, the
corresponding anisotropic dimer forces are characterized by
the following quantities in our model:

��
I = ��

II = − �, ��
I = ��

II = � , �22�

so that the force dipoles parallel to the dimer bonds �i.e.,
���� are tensile, while the dipoles perpendicular to the dimer
bonds ����� are compressive. Hence, Eq. �21� becomes

Zs = e−��2Ews+��L�L2�C2

N

��N + 1�2�N + 2��L − N − 1�2�L

− N��−�C2 �23�

where Ew
I =Ew

II1.4712�2�1−�� /��Ews; ��=�−��2�1
−�� /3�; C1=0; C2=C3=�2�1−�� /��; and C4=−C2. The
subscript s is added to indicate that the partition function is
for the SL phase that has the alternating SA and SB step pat-
tern. To facilitate computation, we assume NN+1, N+2,
so that

Zs  e−��2Ews+��L�L2�C2

N=1

L−1
1

�N�L − N��3�C2
, �24�

since the minimum terrace width is 1, while the maximum is
L−1. Using the Euler summation formula to approximate the
summation:

Zs  e−��2Ews+��L�L2�C2��L − 1�−3�C2 + L1−6�C2�B1−L−1�1

− 3�C2,1 − 3�C2�− BL−1�1 − 3�C2,1 − 3�C2��� ,

�25�

where Bm�r ,s� is the incomplete beta function �see the Ap-
pendix �. For silicon, �=C44=0.4969 eV/Å3 and �
=C12/ �C11+C12�=0.2783, so that C2=�2�1−�� /��
=0.5666 meV/Å. Thus, 1−3�C2=1−3C2 /kBT1 for T
=300–1000 K. The approximation to Zs is tuned in this tem-

perature regime using up to the linear term in the expansion
of Bm�r ,s� around r=s=1,

Bm�1 − 3�C2,1 − 3�C2� = m − 3�C2�m ln m − �1 − m�ln�1

− m� − 2m� + O�9�2C2
2� .

Letting LL−1, L−2, the partition function simplifies into

Zs  e−��2Ews+��L�L−�C2�1 + L1−3�C2�1 + 6�C2�� �26�

giving a free energy

Fs = − �−1ln Zs = 2Ews + ��L + C2ln L − �−1ln�1 + L1−3�C2�1

+ 6�C2�� . �27�

At a sufficiently high temperature, such that �C2�1, the free
energy can be approximated by

Fs��C2 � 1� = 2Ews + ��L + C2ln L − kBT ln�L + 1�

 2Ews + ��L + �C2 − kBT�ln L , �28�

resembling the Alerhand et al. model of interacting stress-
domain energy,4 except in this case the coefficient for the ln
L term has an entropic contribution. The linear term in L
does not appear in their model since they did not consider the
dangling bond energy to create a terrace of width L. At T
=300–1000 K, C2�kBT; thus, the free energy minimization
by increasing L is caused by entropy rather than by elastic
strain relaxation.

The DL phase corresponds to the presence of a single type
of step on the vicinal Si�001� surface. The alternating striped
terraces disappear in the DB phase. It is known also that only
type-I terraces survive,6 so that the dimer forces are charac-
terized by

��
I = ��

II = − �, ��
I = ��

II = � , �29�

where the equalities are simply to turn the type-II terrace into
a type-I terrace. Hence, the partition function for the DB
phase is

Zd = e−��2Ewd+��L�L−2�C2

N=1

L−1
1

�N�L − N���C2
, �30�

where Ew
I =Ew

II0.5801�2�1−�� /��Ewd; C4=C2=C3

=�2�1−�� /��; and �� is defined as before. Contrary to the
Alerhand et al. model,4,10 where the elastic interaction en-
ergy is zero for the DL phase, our model produces a finite
logarithmic interaction due to C4�0 since the interaction is
no longer defined by a stress discontinuity at a domain wall
but is now given by dipole-dipole interactions. The domain
wall energy Ewd for the DL phase is about 2.5 times smaller
than Ews for the SL phase. When a step occupies the domain
wall’s position, the wall energy should correspond to the step
formation energy minus a formation energy associated with
the step’s ledge. The approximation for Zd is obtained using
the same method for Zs:

Zd  e−��2Ewd+��L�L−3�C2�1 + L1−�C2�1 + 2�C2�� , �31�

producing

FIG. 4. �a� A band of alternating dimer array along the x axis on
a Si�001� surface is modeled by �b� alternating dipole arrays.
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Fd = 2Ewd + ��L + 3C2ln L − �−1ln�1 + L1−�C2�1 + 2�C2�� .

�32�

The high-temperature behavior of Fd is similar to that of Fs,
where the entropic contribution proportional to �−1 over-
comes the logarithmic stress-domain term.

The phase boundary between the SL and the DL phases in
the case of constant volume aL is determined by �F=Fs
−Fd=0, giving

2�Ews − Ewd� − 2C2ln L − �−1ln�1 + L1−3�C2�1 + 6�C2�
1 + L1−�C2�1 + 2�C2� 	 = 0.

�33�

As expected, the phase boundary does not depend on the
dimer formation energy �. The more stable phase at a certain
T and aL �representing volume� has the lower free energy. In
our model, �Ew is completely determined from the two elas-
tic constants and the dipole �dimer� force �. In fact using the
parameters �=0.035 eV/Å2, �=0.4969 eV/Å3, �=0.2783,
we find Fd�Fs within T=300–1000 K and L=1–10 000.
Hence, the DL phase is more stable than the SL phase for
this range. The DL phase remains more stable when � is
decreased from 0.035 eV/Å2 to close to zero. From these
parameters, we also find Ews=0.026 eV/Å and Ewd
=0.0010 eV/Å. Total energy calculations can provide �Ew
independently from the determination of the other two terms
in the phase boundary condition �F=0. For example, the
wall formation energy for the single-layer step phase is equal
to the sum of formation energies of SA and SB steps: Ews
=0.020 eV/Å, while Ewd=0.0065 eV/Å can be computed
from the double-layer step formation energy.5 These two val-
ues are consistent with our wall energies above.

A stable SL phase starts to appear at L220 when � is
increased to 0.18 eV/Å2. Such a large dimer force, however,
implies a large deformation of roughly � /�=0.36Å and may
break the dimer bond. This effect does not occur during the
reconstruction transition of vicinal Si�001�. The dependence
of thermodynamic quantities on the miscut angle � can ob-
tained using

tan � = 2/L , �34�

where the constant 2 accounts for the total height per total
width L for either two single-layer steps for a unit cell of two
terraces �the SL phase�, or one double-layer step for a unit
cell of single terrace �the DL phase�. Thus, L=220 corre-
sponds to a miscut angle of �=0.52° and we can also say that
the DL phase is stable down to �=tan−1�2/10 000�=0.011°.

Despite the absence of a stable SL step phase, it is pos-
sible that the SL phase exists and is in equilibrium with the
DL phase for typical �. The presence of a SL phase can be
imposed by kinematics of crystal cutting. In this respect, the
total width L is regarded as a quenched external field.24 We
have in fact used this condition when previously stating that
L is constant. The constant L manifests, for example, in a
constant distance between two smooth nearby SA steps that
confine one SB step. The SB step can meander between two
SA steps without crossing them. A phase equilibrium is de-

termined by the equal free energy gradient condition, which
in this case is given by the equal-“pressure” condition �P
= Ps− Pd=0, where

Ps = −
�Fs

��aL�
= − �� −

C2

L
+

�1 − 3�C2��1 + 6�C2�
��L + L3�C2 + 6�C2L�

,

�35�

Pd = −
�Pd

��aL�
= − �� −

3C2

L
+

1 + �C2�1 − 2�C2�
��L + L�C2 + 2�C2L�

.

�36�

Both pressures obey a thermodynamic inequality −�Pi /�L
�0 over T=300–1000 K and L=1–100, ensuring that each
phase is thermodynamically viable. These pressures are ba-
sically generalized forces conjugate to the total width L. A
phase equilibrium curve ��P=0� is found around �=6° as
shown in Fig. 5. It is clear from the expressions of Pi that the
phase equilibrium cannot occur solely by elastic forces. A
T=0 K model for the phase equilibrium should not be ex-
trapolated to predict a finite-temperature equilibrium.
Throughout the temperature and miscut angle ranges of prac-
tical interest, we find that the DL phase is more stable than
the SL phase, yet we also find a phase equilibrium curve of
the two phases at �=6°. We thus postulate that the stable SL
phase for vicinal Si�001� occurs at the limit L→, i.e., at the
flat surface limit. This is motivated by the stability of the DL
phase at the �→0 and L→ limits,

lim
L→

lim
�→0

�F = 2�Ews − Ewd − 2C2� � 0

for the Si�001� parameters, so that the phase equilibrium
curve will eventually touch the �=0° axis at some tempera-
ture greater than 1000 K. The only location left for a stable
SL phase is thus along this axis. Figure 5 incorporates this
hypothesis. We note that the low-temperature limit ��→�

FIG. 5. The �-T phase diagram assuming constant volume aL,
i.e., when L is regarded as quenched �imposed by kinematics�. Pa-
rameters used are �=0.0035 eV/Å2, �=0.4969 eV/Å3, �=0.2783,
and a=3.84 Å. The SL phase is postulated to occur at the L→
limit.
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cannot be assessed since the approximations for the partition
functions are not good for this limit.

When the constant volume aL is relaxed and the process
leading to a lower free energy is thus done at a constant
pressure and temperature, the phase equilibrium curve actu-
ally moves to a lower miscut angle. Hence, L fluctuations
further stabilize the DL phase. In this situation, the grand
canonical ensemble should be the appropriate vehicle al-

though such analysis is not performed here. Using this en-
semble, the nature of statistical distribution of L, i.e., the
terrace width distribution, may become clearer. At any rate,
we can at least obtain the chemical potential �i by perform-
ing the Legendre transformation to the free energy Fi to ob-
tain the Gibbs free energy �i=Fi+ PiaL, where �i=��i /�L,
since L also acts as the number of particles variable:

�s =
�C2L6�C2 − �C2L1+3�C2�1 + 6�C2��1 − 9�C2� − �1 − 4�C2�L2�1 + 6�C2�2

�L�L + L3�C2 + 6�C2L�2 , �37�

�d =
3�C2L2�C2 + �C2L1+�C2�5 + �C2��1 + 2�C2� − �1 − 4�C2�L2�1 + 2�C2�2

�L�L + L�C2 + 2�C2L�2 . �38�

Both phases are thermodynamically viable as ��s /�N�0
and ��d /�N�0 within the temperature and miscut ranges.
Figure 6 shows the �-T phase diagram containing the phase
equilibrium formed by ��=�s−�d=0. The phase equilib-
rium curve is now significantly shifted to a lower angle of
about 3.5°. This phase diagram also uses the Gibbs free en-
ergy difference ��=�s−�d to determine the relative stabil-
ity of the two phases.

We find �d��s throughout the ranges; hence, we find
the DL phase to be also more stable than the SL phase when
the unit cell width L can fluctuate. Figure 6 explains the Tong
and Bennett experiments:13 it shows that the gradual strength
of the DL phase with increasing miscut angle is independent
of temperature. The high-temperature limit as L→ is also
the DL phase, limL→lim�→0��=2�Ews−Ewd−2C2��0,
identical with the result using �F, implying that the phase

equilibrium curve will touch the �=0° axis at a temperature
higher than 1000 K. Comparing the step formation energies
Ews and Ewd to predict the relative stability of SL and DL
phases as done by Chadi5 is comparable to the evaluation of
limits above. There is experimental evidence that SL steps
spontaneously form on almost flat Si�001� surfaces.26 STM
studies have also shown that for ��2° the surface displays
SL steps.27

A surface with a changing L should correspond to a two-
terrace unit cell receiving dimers from outside the unit cell.
Annealing that transports dimers between two nearby two-
terrace unit cells of different widths, say Lj and Lk, can
change these widths. These transported dimers may modify
the widths of type-I and type-II terrace components of the
unit cell. A much clearer example of a variable-L surface is a
deposition of dimers on Si�001�. It is still possible to have a
constant-L surface during annealing, when a step confined by
its two terraces meanders without crossing the bounding
steps. In Si�001�, SB steps are known to meander while SA
steps remain largely stationary. The constant distance be-
tween two neighboring SA steps is a good approximation,
although in real systems the terrace widths can be expected
follow a bell distribution. The phase equilibrium defined by
�� therefore paints a more realistic picture for both anneal-
ing and deposition than that by �P.

IV. COMPARISONS

The equal-chemical-potential condition �s=�d predicts a
phase equilibrium curve at around 3.5°. The phase equilib-
rium region extends from 0° to 3.5°, prompting us to propose
that the SL phase is stable only at the �→0° limit up to some
T�1000 K. Our results agree with the cited experiments,
although they disagree with several models using the Aler-
hand et al. model. The fundamental disagreement between
our model and the Alerhand et al. model is that the Alerhand
et al. model assumes a zero logarithmic stress-domain inter-
action for the DL phase,10,11 while we show that such inter-

FIG. 6. The �-T phase diagram constructed using the Gibbs free
energy. Same parameters used for Fig. 5 are used here. This phase
diagram should be more faithful to experiments than shown in Fig.
5 since fluctuations in L are allowed.
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action actually exists since dimers interact across terraces.
The models lead to different phase diagrams. The Alerhand
et al. model produces a phase diagram in which the SL phase
is more stable than the DL phase at high temperatures, while
our phase diagram �Fig. 6� shows that it is the DL phase that
is more stable.

The previous disagreement between the Alerhand et al.
model and most experimental data has led to serious discus-
sions in the literature. One set of discussions is about
whether a phase equilibrium region separating stable SL and
DL phases exists.10,18,24 Essentially, the issue is about
whether � is a proper thermodynamic variable. If it is, then
there is typically a range of miscut angle values in which SL
and DL phases coexist near a first-order transition �phase
boundary� curve. The miscut angle � is kinematically im-
posed and thus can act like a quenched density.24 However,
experiments have shown clearly that the terrace widths fluc-
tuate in some manner. We show that the kinematic constraint
is kept when a canonical ensemble is used. However, a better
agreement with experiments should be obtained when the
unit cell width L fluctuates in the grand canonical ensemble
formulation �not done in this work�.

Another set of discussions focuses on whether SL and DL
phases can coexist at low miscut angles. Yang et al.15 re-
ported that both step types were observed by scanning tun-
neling microscopy of 0.5°-miscut Si�001� annealed at 1473
K. This finding was later disputed by Zandvliet25 who states
that the observation by Yang et al. disagrees with the Aler-
hand et al. model. When thermal fluctuations, reliable step
edge freeze-in temperature, and step formation energies are
taken into account, the Alerhand et al. model predicts the
onset of the phase coexistence at 1.1°. Yang et al.28 replied
by confirming their observations and stating that the forma-
tion energy of the DL phase is lower than that of the SL
phase; hence the SL steps will collapse into the DL steps.
This scenario was proposed by Pehlke and Tersoff,16 who
argued that faceting due to a phase equilibrium of SL and DL
phases does not happen since the energy can always be low-
ered every time alternating SL and DL steps can form. At
low miscut angles, the alternating SA and SB steps imposed
by kinematics will prefer this scenario with the resulting step
pattern resembling the devil’s staircase pattern.17 Our model
shows a phase equilibrium of SL and DL phases at T
=300–1000 K. Using the lever rule in Fig. 6 the fractional
population of the two phases can be computed. Kinematics
and a substantial mass transfer requirement would prevent
faceting from occurring even though both SL and DL steps
are present for low miscut angles.

Our model can numerically produce a phase equilibrium
region that does not extend to 0° by adding �0�0 to ��
=0:

�s − �d = �0. �39�

A tiny change in �0 changes the phase equilibrium range
considerably as shown in Fig. 7, where now the phase equi-
librium range is between 0.9° and 3.5° by setting �0
=0.2604�10−7 eV/Å. Which physical quantity is repre-
sented by �0? Our model assumes all steps are straight as
shown in the top picture of Fig. 8. When kinks, tilting the

step direction at some angle �, are present, shown in the
bottom picture of Fig. 8, a constant term should appear in
�� since �i=��i /�L. The constant term accounts for intro-
ducing this kink as L changes by one unit length a. These
kinks are not included our model and are now introduced to
show that they affect the onset of the phase coexistence re-
gion.

These kinks should correspond to the so-called forced
kinks which are produced when the cutting is tilted at some
azimuth angle. The forced kinks are geometrical, while ther-
mal kinks are physical fluctuations from adatoms and dimers.
The axis of rotation of the tilt angle � is �001�, while the axis
of rotation for the miscut angle � is �110�. The tilt angle � is
related to the average distance l between two nearby kinks of
a step by tan �=a / l. The contribution of forced kinks to ��
is

FIG. 7. The �-T phase diagram with �s−�d=�0�0. The phase
equilibrium region is now between 0.9° and 3.0° by arbitrarily set-
ting �0=0.2604�10−7 eV/Å. Outside this region, �s��d+�0. �0

is shown to be directly proportional to the density of forced kinks.
The plot shown corresponds to a tilt angle of 0.5°. Same parameters
used for Fig. 5 are used here.

FIG. 8. The top picture shows that all steps are straight so that
per unit step length �the gray band� the energetics does not contain
contributions from kinks. The bottom picture shows that a constant
contribution to the chemical potential, independent of terrace width,
will appear when kinks of a unit length due to a tilt angle � are
included.
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�0 = �Ek/�l/a�2 = �Ek tan2� ,

where one factor �l /a� is used to equally divide the forced-
kink formation energy difference �Ek among �l /a� bands
�only one shown in the bottom picture of Fig. 8�. The other
factor of �l /a� is to recognize that the average kink energy
difference �Ek / �l /a� must still be divided by �l /a� since the
probability of having a kink for each band is �l /a�−1. Since
for single-layer steps a kink along an SA step is a unit length
of the SB step, and vice versa, the forced-kink formation
energy difference is equal to

�Ek =
1

2
Ews − Ewd = 0.1555�2�1 − ��/� ,

where the factor 1 /2 is included since the single-layer wall
energy Ews does not distinguish the SA step from the SB step;
each unit cell of width L needs both step types. Hence,

�0 = 0.1555�2�1 − ��tan2 �/� , �40�

giving �0=0.2107�10−7 eV/Å for �=0.5°, which is very
close to the set value of 0.2604�10−7 eV/Å used to create
Fig. 7. Hence, the onset of the phase equilibrium sensitively
depends on the density of forced kinks. Figure 7 thus corre-
sponds to a tilt angle of about 0.5°. When �=0, the region
extends from 0° to 3.5°, and the range is decreased as � is
increased. The phase equilibrium disappears for �0�0.52
�10−7 eV/Å corresponding to ��0.78°. Adding �0 into
�� may change the relative stability of the two phases; thus,
we do not know whether SL or DL phase is more stable at
high tilt angles. The partition functions should incorporate
the kink energy to predict their relative stability outside the
phase equilibrium region in the presence of forced kinks.

V. CONCLUSIONS

We show that dipole-dipole interactions on a terrace,
where each intersecting dipole pair represents a dimer, may
lead to a logarithmic stress-domain energy. This approach
generalizes the elastic interaction energy between two neigh-
boring terraces proposed by Alerhand et al. and Marchenko.
It also clarifies the fact that the step-step �dipole-dipole� in-
teraction energy is much weaker than the stress-domain en-
ergy in reconstructed surfaces by showing that the stress-
domain energy is basically a finite sum of dipole-dipole
interaction energy. Fluctuations in terrace widths due to ther-
mal kinks are incorporated in the canonical-ensemble parti-
tion functions for the SL and DL phases. The free energy for

the DL phase is found lower than that of the SL phase within
T=300–1000 K and �=0° –6°. A phase equilibrium curve at
a large miscut angle of 6° is found. A phase equilibrium for
both phases from the Gibbs free energy occurs at a miscut
angle of 3.5°. Since terrace widths vary in general, the phase
equilibrium curve at 3.5° should be more realistic than that
from the equal-pressure condition. The Gibbs free energy of
the double-layer step phase is lower as well. The forced-kink
density plays a major role in modifying the miscut angle
range of the phase equilibrium region.
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APPENDIX: APPROXIMATION FORMULAS

Since

	0�z� =
d

dz
ln 
�z�  ln z −

1

2z
,

for large z

	0�z�  ln z −
1

2z
,

	1�z� 
1

z
+

1

2z2 .

We also use the Euler summation formula �trapezoid rule�



k=0

K

f�k� 
1

2
�f�K� + f�0�� + �

0

K

f�x�dx

to approximate, for example,



n=0

N

	1�N + 1 − n� 
1

2
�	1�1� + 	1�N + 1�� + �

0

N

	1�N + 1

− x�dx =
�2

12
+ � + ln�N + 1� +

1

2�N + 1�
,

where �0.5772 is the Euler constant. The incomplete beta
function Bm�r ,s� is given by

Bm�r,s� = �
0

m

xr−1�1 − x�s−1dt .
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