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The properties of nanoscopic rings with electronic correlations and impurities are analyzed numerically by
means of two methods. First, we carry out exact diagonalization of one-dimensional rings that consist of up to
several lattice sites. Then, we perform the Bogoliubov–de Gennes equation studies of finite-width rings con-
sisting of a few hundred sites. Results obtained from both approaches are shown to be consistent. We demon-
strate how the system properties are affected by various configurations of impurities for both repulsive and
attractive electron–electron interactions. In the case of attractive interaction we show that the nanoscopic
properties are mainly determined by the competition between tendencies toward pairing and formation of the
density waves. Since the impurities act as pinning centers for the density waves, their configuration determines
the result of this competition.
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I. INTRODUCTION

Recent developments in the fabrication techniques give
rise to intensive investigations of the nanoscopic regime,
where the physical properties of the system strongly depend
on its size. Usually, in theoretical approaches Coulomb cor-
relations cannot be taken into account exactly. In many cases
a coupling between the nanosystem and macroscopic leads
introduces additional serious complications. From this point
of view nanorings are very attractive, since their properties
can be investigated without such a coupling and exact results
can be obtained. One of the most interesting features of small
metallic rings is the presence of persistent currents.1,2 The
currents flow along the rings in equilibrium state, when a
constant external magnetic field is applied. Such currents are
observed in many experiments, however their magnitudes
are much larger than those predicted theoretically.3 This dis-
crepancy still remains an open problem. It might be attrib-
uted to the influence of electronic correlations magnetic
impurities,4 or even superconducting fluctuations. If only one
of these effects is taken into account, the problem seems to
be tractable and many theoretical predictions have already
been obtained. Generally, it is believed that both impurities
as well as electronic correlations reduce the persistent cur-
rent. On the other hand, there are some indications, that the
persistent current can increase when both these effects are
present. In particular, it has been shown that in the random
potential, two interacting electrons can propagate coherently
on a much larger distance than the one-particle localization
length.5 In some cases, the disorder may lead to h /2e energy
levels periodicity, whereas the corresponding eigenfunctions
exhibit a pairing effect.6,7 The localization length itself de-
pends on the electronic correlations, decreasing �increasing�
for repulsive �attractive� interactions.8 For a finite disorder,
the persistent currents in the system with repulsive interac-
tions are larger than those in the system with attractive ones.9

This is because local-density fluctuations are reduced in the
presence of repulsive interactions. It is also known that such
counterintuitive cooperation of correlation and disorder can
also take place in macroscopic systems of higher
dimensionality.10 The above argument clearly demonstrates

that the interplay between disorder and electronic correla-
tions is of crucial importance in these systems and further
investigations are needed.

For many years, the investigated rings have been made
out of normal metals. Only recently, has technological
progress allowed investigation of superconducting
nanowires.11 As the sizes of such systems can be comparable
to the coherence length, a question concerning the possible
onset of superconductivity became very interesting. The ex-
periments show that, in sufficiently thin nanowires, the su-
perconductivity does not occur.12 The suppression of super-
conductivity is usually attributed to the destruction of the
phase coherence by quantum phase slips.13,14 The spatial
confinement originating from the geometry of a nanowire is
responsible for an inhomogeneity of the superconducting or-
der parameter.15 The physical properties of mesoscopic su-
perconducting rings are presently intensively investigated.
For extremely type II superconductors fabrication of nanor-
ings should be possible and will probably be the subject of
future experiments. This problem contains interesting phys-
ics, because both superconducting and one-electron persis-
tent currents may occur in such systems. Moreover, one may
expect that phenomena typical for low-dimensional corre-
lated systems, e.g., charge-density waves �CDW�, may be
present as well. On the other hand, magnetic flux strongly
affects the CDW ground state in ring-shaped systems16 and
may even lead to its destruction.17 The CDW order could be
strongly affected also by the impurities, as they play the role
of pinning centers.18

The aim of this paper is a detailed investigation of the
nanoscopic rings with pairing correlations and impurities. In
particular, we focus on the influence of impurities on com-
petition between superconductivity and the CDW. In the first
part of this paper, we consider rings small enough to be
investigated within the exact diagonalization methods, lead-
ing to rigorous results. Then, we compare these results to the
ones obtained for much larger systems with the help of the
Bogoliubov–de Gennes �BdG� equations.

The outline of this paper is as follows. In Sec. II we recall
main results concerning the influence of the Coulomb inter-
actions on the persistent current in nanorings. In Sec. III and
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IV we investigate nanorings with pairing interactions in the
presence of impurities. In Sec. III we present rigorous results
obtained from an exact diagonalization study, whereas Sec.
IV contains similar results obtained with the help of BdG
equations for rings containing up to a few hundred sites.
Finally, in Sec. V we summarize our results.

II. CORRELATIONS AND IMPURITIES IN NANORINGS

We start our investigations with small �up to 12 sites�
rings described by the Hubbard Hamiltonian,

HHubb = − t �
�i,j�,�

ei�ijai�
† aj� + U�

i

ni↑ni↓, �1�

where ai�
† �ai�� creates �annihilates� an electron on site i with

spin �, U is the on-site electron-electron interaction, and
ni�=ai�

† ai�. t is the nearest-neighbor hoping integral in the
absence of magnetic field �t�0�, and ei�ij is the Peierls phase
factor that describes the orbital response of the system to an
external magnetic field

�ij =
2�

�0
�

Rj

Ri

A · dl , �2�

where �0=hc /e is the flux quantum. This Hamiltonian has
exactly been diagonalized with the help of the Lanczös algo-
rithm. It is one of the most effective computational tools for
searching the ground state and some low-laying excited
states of a finite system. From the ground state, we can com-
pute all static and dynamic properties, and in this sense, we
obtain a complete characterization of a model at low tem-
peratures. At zero temperature the flux-induced current I is
calculated as

I = −
dE0

d�
, �3�

where E0 is the ground-state energy and � is the magnetic
flux piercing the ring. At finite temperature in Eq. �3� one
should use the free energy F instead of the ground-state en-
ergy. Unfortunately, the Lanczös method gives only a few
lowest eigenenergies, and therefore the calculations are re-
stricted to relatively low temperatures. On the other hand, for
smaller systems other methods enabled us to find all the
eigenenergies of the Hamiltonian, and the resulting current
can be obtained for an arbitrary temperature. In Fig. 1 we
demonstrate how the persistent currents are destroyed by the
Coulomb repulsion �upper panel� and by an increase in tem-
perature �lower panel�. It has also been shown that the per-
sistent currents are reduced in the presence of the thermal
equilibrium noise.19 These results are intuitive and well
known, and therefore we will not discuss them here. They
are presented only for comparison with the results discussed
further.

In order to account for the presence of nonmagnetic im-
purities we extend the Hubbard Hamiltonian

H = HHubb + �
i

wi�ni↑ + ni↓� , �4�

where wi is the potential of an impurity at site i.

We start our investigations with a single impurity, i.e.,
wi=�i0W, in a small ring. The first question that arises in this
case concerns the impact of the electron correlations and
impurity on the magnitude of the persistent current. To an-
swer this question, for a wide range of the potentials U and
W, we have found a magnetic flux that produces the maximal
value of the persistent current �Imax�. Figure 2 shows how
Imax depends on U and W for the half-filled case, i.e., when
the number of electrons is equal to the number of sites. One
can see that there is a W→−W symmetry. It is an obvious
result of the particle-hole symmetry of the Hubbard model.
In the case of the attractive electron-electron interaction, the
maximal value of Imax takes place for W=0, i.e., in the ab-
sence of impurities. Contrary to this result, for repulsive on-
site interaction �U�0�, Imax takes on the maximal value in
the presence of impurity, when �W� is slightly larger than U.
It means that for a fixed value of the impurity potential, the
maximum of Imax corresponds to the finite repulsive interac-
tion and this result holds independently of the sign of the
impurity potential. Similarly, in Ref. 9 it has been shown that
in a disordered ring, for the repulsive interaction the persis-
tent current is larger than for the attractive one. It originates

FIG. 1. Flux dependence of the persistent current for a ring
containing 10 lattice sites with repulsive interaction and in the ab-
sence of impurities. Results presented in the upper panel have been
obtained for T=0 and various values of U, as indicated in the leg-
end. The lower panel shows results obtained for U= t at various
temperatures. We have denoted I0= t /�0.
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from the fact that repulsive interaction reduces impurity-
induced density fluctuations, whereas attractive interaction
may lead to CDW with impurities acting as pinning centers.

One meets a much more interesting situation in a case of
many impurities. In particular, a question arises whether an
impurity added to the previously considered ring leads to a
further enhancement or reduction of the persistent current.
The answer to this question strongly depends on the relative
positions of the impurities. Figure 3 shows Imax as a function
of the distance d between two impurities, i.e., for wi
=W��i0+�id�. One can see, that for two impurities located at
the nearest and the next nearest neighbors the persistent cur-
rent is smaller than in the case of a single impurity but larger
than for W=0. Then, one can see an oscillatory character of
this dependence with increasing amplitude. Namely, Imax is
enhanced �reduced� when the distance is an odd �even� mul-
tiple of the lattice constant. For a sufficiently large distance
between impurities, the persistent current may even exceed
Imax obtained for the case of a single impurity. The obtained
oscillatory behavior may be attributed to the density oscilla-

tions induced by impurities �Friedel oscillations�. It is ex-
pected that these oscillations asymptotically decay with the
distance x as cos�2kFx+��x−�, where kF is the Fermi momen-
tum and � parametrizes the interaction �see Ref. 8 for the
details�. Therefore, oscillations originating from different im-
purities may interfere. For the half-filled case, 2kF=� and
the oscillations produced by impurities separated by odd
�even� number of the lattice constants interfere destructively
�constructively�.

Thus far, we have focused on the case of a repulsive
electron-electron interaction and have shown that the con-
figuration of impurities is of vital importance for the magni-
tude of the persistent current. In the case of the attractive
interaction one may expect that this effect should be even
more pronounced, since in such a model a CDW instability
occurs also in the absence of impurities. Then, impurities
may enhance this ordering, acting as pinning centers. This
problem will be investigated in Sec. III.

III. NANORINGS WITH PAIRING INTERACTION

We start with the attractive Hubbard model without impu-
rities. The upper panel in Fig. 4 shows the persistent current
as a function of the magnetic flux for different values of the
on-site pairing potential U. As the interaction increases, the
system evolves toward a state where the persistent current

FIG. 2. �Color online� Dependence of the Imax/ I0 on the
electron-electron interaction �U� and the impurity potential �W� for
a 6-site ring with a single impurity.

FIG. 3. Imax calculated for a ring with two impurities as a func-
tion of the distance between them. We have taken U=3t, W=−4t,
and T=0. The lower �upper� panel corresponds to the 12-site �10-
site� ring. In both the panels horizontal lines indicate Imax in the
absence of impurity �the lower one� and in the presence of a single
impurity �the upper one�.

FIG. 4. The upper panel shows the flux dependence of the per-
sistent current for a 10-site ring in the absence of impurities. The
curves correspond to various values of the pairing potential. The
lower panel shows the pair susceptibility for the same parameters as
in the upper panel. The arrows indicate on the coincidence between
the abrupt change of pair susceptibility and the reversed circulation
of the persistent currents. A and B mark regimes of large and small
values of 	max, respectively.
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exhibits �0 /2 periodicity. Simultaneously, one may observe
a reduction of the magnitude of the persistent currents when
the pairing increases. The change of periodicity may be a
signature of a current made out of carriers having charge
2e,20,21 although one does not expect occurrence of a super-
conducting phase in such a small system. Similar results
have recently been obtained for the boson-fermion model.22

However, the change of periodicity of the persistent current
is not necessarily related to the pairing interaction. In par-
ticular, for a genuinely strong on-site repulsion, the system
consisting of Ne electrons shows �0 /Ne and �0 /2
periodicities.23,24 Therefore, it would be important to distin-
guish between the possible mechanisms that may be respon-
sible for the change of periodicity. In order to perform this
task, we calculate the pairing correlation function for local
Cooper pairs. Usually, one calculates the susceptibility of the
form25


sup =
1

N
�
ij

���̂i�̂ j
†� − �ai↑aj↑

† ��ai↓aj↓
† �� , �5�

where the Cooper pair creation operator is given by �̂i
†

=ai↓
† ai↑

† . The increase of this quantity indicates that pairing
correlations are enhanced. However, in the presence of mag-
netic field, we cannot directly use this form of the suscepti-
bility. Instead, we need a gauge-invariant quantity. This will
ensure that the susceptibility will show the same periodicity
as the system under investigation. Therefore, we construct a
Hermitian matrix


ij = ��i� j
†� − �ai↑aj↑

† ��ai↓aj↓
† � , �6�

and investigate its eigenvalues. They are gauge invariant and
possess the same periodicity as the energy spectrum. In an
infinite system, the superconducting instability corresponds
to the divergence of 
sup. In such a case the maximal eigen-
value of 
ij, 	max, diverges as well. Therefore, in the pres-
ence of magnetic field we use 	max as a quantity that probes
the tendency toward the formation of the paired state. The
lower panel of Fig. 4 shows 	max as a function of magnetic
field. One can see that 	max strongly depends on the magnetic
flux. This quantity is maximal for exactly the same values of
the flux �regime marked A in Fig. 4�, for which the persistent
currents are modified by the pairing correlations. Therefore,
we identify these regimes as precursors to the superconduct-
ing state. For a weak attraction, the enhancement of 	max in
these regimes is pronounced. As the interaction strength in-
creases, these regimes become wider, however, simulta-
neously the field dependence of 	max gradually vanishes. It
means that for a weak interaction, superconducting correla-
tions are enhanced by specific values of the magnetic flux,
whereas for strong coupling the pairing tendency is indepen-
dent of the flux. This is a remnant of the Little and Parks
results obtained for macroscopic thin superconducting
films.26,27 This problem will be discussed in more detail in
Sec. IV within the Bogoliubov–de Gennes approach. Addi-
tionally, as one may expect, the maximal value of 	max in-
creases when the paring interaction becomes stronger, sup-
porting our interpretation of this quantity.

Now, we extend the analysis taking into account the im-
purities. It has already been shown �see Fig. 2� that here, in
contradiction to the case of the repulsive interaction, a single
impurity always reduces the persistent current. Playing a role
of a CDW pinning center, it stabilizes density waves, which
compete with pairing. It shows up as a vanishing of the re-
gime of reverse circulation of the persistent current. How-
ever, in the presence of many impurities they can reduce as
well as enhance the persistent current, depending on their
configuration. Figure 5 presents the flux dependence of the
persistent currents for some configurations of two impurities.

One can see that a single impurity always reduces the
persistent current and destroys the tendency toward forma-
tion of the paired state. On the other hand, when an addi-
tional impurity is introduced into the system, the persistent
current can be significantly larger then in the case of a single
impurity. This, however, depends on the relative position of
the impurities. Similarly to the case of repulsive interaction,
when the distance between the impurities is an odd �even�
multiple of the lattice constants, the persistent current and
the pairing tendency are enhanced �reduced�. This is a result
of the competition between the CDW order and the forma-
tion of Cooper pairs. For the half-filled case, the electron
density in the CDW state oscillates with the wave vector
equal to �. Therefore, depending on configuration of the
impurities, the density waves pinned by them can interfere
constructively or destructively, increasing or reducing the
CDW order. In the first case, the persistent current is less
than in the presence of a single impurity and the tendency
toward formation of the paired state is almost destroyed. In
the latter case, the persistent current can be as large as in the
clean system. One can see from Fig. 5 that for some configu-
rations of impurities the persistent current can be almost in-
distinguishable from that obtained for the clean system.

IV. NANORINGS OF FINITE WIDTH

A. The formalism

In the preceding sections we have analyzed one-
dimensional systems only consisting of several sites. This

FIG. 5. Flux dependence of the persistent current for the 10-site
ring with attractive interaction U=−2t and impurity potential W
=0.5t. The curves have been obtained for a system without impuri-
ties, with a single impurity, and two impurities in configurations
presented in the insets.
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limitation originated from the Lanczös method, which we
have used to diagonalize the Hamiltonian. In this section we
extend this analysis and account for finite-width rings con-
sisting of a few hundred lattice sites. In such a case we
cannot use the exact diagonalization method and, therefore,
the interaction term is analyzed at the mean-field level. In
particular, we decouple this term in the following way:

U�
i

ni↑ni↓ � U�
i

��ni↑�ni↓ + ni↑�ni↓�� + U�
i

�iai↑
† ai↓

† + H.c.,

�7�

where the superconducting order parameter reads �i
= �ai↓ai↑�. The first term on the right-hand side of Eq. �7� is
responsible for the formation of density waves. For the nega-
tive U, the second term leads to isotropic s-wave supercon-
ductivity. In the following, we assume that there is no mag-
netic ordering, i.e., �ni↑�= �ni↓�= n̄i. As the system under
investigation is inhomogeneous, both the superconducting
and CDW order parameters are site dependent and have to be
determined in a self-consistent manner from the
Bogoliubov–de Gennes �BdG� equations.27 This approach
has most commonly been used for the investigation of the
vortex structure in macroscopic superconducting
systems.28–30 We introduce a set of fermionic operators �n�

�†�

ai↑ = �
l

uil�l↑ − vil
*�l↓

† ,

ai↓ = �
l

uil�l↓ + vil
*�l↑

† ,

where

�
j
	 Hij U�i�ij

U�i
*�ij − Hij

* 
	ujl

v jl

 = El	uil

vil

 . �8�

Here, the single-particle Hamiltonian is given by

Hij = − t�i+�,je
i�ij + �Un̄i + wi − ��ij , �9�

where  is the chemical potential. The superconducting or-
der parameter is determined self-consistently by

�i = − �
l

uilvil
* tanh	 El

2kT

 . �10�

Also, the local electron concentration is calculated self-
consistently in the following way:

n̄i = �
l

�uil�2f�El� + �vil�2f�− El� , �11�

where f is the Fermi distribution function. This quantity al-
lows one to define the CDW order parameter

�i = �− 1�i�n̄i − n̄� , �12�

where n̄=1/N� jn̄j is the average concentration of electrons
in the ring. Up to this point, we have investigated total cur-
rent flowing along the one-dimensional ring. Now, we inves-
tigate the current distribution in a ring of a finite width. We
follow the procedure described in Ref. 31. Namely, the cur-

rent from site i to the neighboring site j reads Iij

= ��H /�Āij�, where Āij is the integral of the vector potential
between sites i and j. Then, it is easy to show that

Iij = −
2et

�c
Im�ei�ij�

l

tanh	 El

2kT

�vilv jl

* − uil
*ujl�� .

�13�

B. Numerical results for a clean system

We have solved the BdG equations for rings of sizes
4�M, where M =30,40,50. The notation N�M means that
the ring consists of N sites along the width and M sites along
the circumference, i.e., the ring is made out of a rolled
N�M stripe �see the inset in Fig. 6�. In order to determine
how the properties of the ring depend on its size, we have
started our investigations with a system without impurities.
Because of the small size of the system the influence of its
edge is nonnegligible and results in an inhomogeneity of
�i.

15 However, the differences of flux dependence of �i be-
tween various lattice sites are of quantitative character only.
Therefore, we present results for one particular site, which is
close to the midway point between the ring’s edges. In Fig. 6
we show the magnitude of the superconducting order param-
eter as a function of the applied magnetic flux at low tem-
perature and for various M. One can see that the flux depen-
dence of the order parameter increases with decreasing
circumference of the ring. At low temperature, the magnitude
of �i takes on two different values. In analogy to Fig. 4 we
denote the regimes of high and low values of ��i� as A and B,
respectively. Comparing Figs. 6 and 7, one can note opposite
directions of the supercurrent’s circulation, respectively, to
the normal-state persistent current in regimes A and B. More-
over, the regime A �B� becomes wider �narrower� when the
circumference increases. In the case of infinite circumference
of the ring, the normal-state persistent currents vanish, re-
gimes A and B become indistinguishable, and the system

FIG. 6. Flux dependence of the superconducting order param-
eter for nanorings of various sizes without impurities. U=−1.25t
and kT=0.01t have been used. We have marked regions A and B
�see text�. As an example, in the inset we show the geometry of the
4�30 ring.
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exactly exhibits �0 /2 periodicity. The flux dependence of the
superconducting order parameter is similar to that of the pair
susceptibility calculated for smaller rings with the help of the
Lanczös method. However, in the latter case, regime A is
much narrower due to a much smaller ring’s size. It is well
known that the mean-field approximation is inappropriate for
low-dimensional systems. However, it seems that this simple
approach correctly describes the persistent currents in small
rings with weak local attraction.

In Fig. 7 we compare persistent currents in the normal and
superconducting states. It is interesting that in regime B, the
persistent current is the same in the presence and in the ab-
sence of the pairing interaction. Again, similar behavior has
been obtained in the exact diagonalization study presented in
the preceding section. In the upper panel of Fig. 4 one can
see that for weak attraction the persistent current in the re-
gime B hardly depends on U.

Finally, we investigate how the flux dependence of the
order parameter depends on temperature in the case of nano-
scopic rings. It has been well known since the famous ex-
periment of Little and Park that properties of a superconduct-
ing thin film deposited on an insulating cylinder depend on
an axial magnetic field.26 In particular, the transition tem-
perature is a periodic function of the magnetic flux with a
period �0 /2.27 This experiment has been carried out for a
macroscopic system. Figure 8 shows similar dependence for
a small ring, where the finite-size effects are important. As
one may expect also in this case the transition temperature is
flux dependent. However, there is a visible deviation from
the �0 /2 periodicity. Generally, in regime B the supercon-
ducting order parameter is less than in regime A. When the
temperature increases, superconductivity first disappears in
regime B and then in regime A. The same effect can be
observed when the temperature is fixed but the pairing po-
tential is reduced.32 However, in contradiction to the macro-
scopic film, in the present case, the vanishing of supercon-
ductivity does not correspond to the vanishing of current.
Comparing Figs. 7 and 8 one can note that the current also
remains finite for �i=0.

C. Impurities

In the case of small one-dimensional rings the presence of
impurities significantly changes the persistent current. In the
following, we show that the effect is very important in much
larger rings as well. This holds also if the concentration of
impurities is relatively low. In particular, similar to the one-
dimensional case, the presence of a single impurity strongly
reduces superconductivity. It originates from the pinning of
the density wave, which competes with the superconductiv-
ity. In the case of many impurities, both the CDW and su-
perconducting orders may coexist in the ring. However, the
competition between CDW and superconductivity leads to a
spatial separation of regions, where these orders dominate.
The distribution of these regions is determined by the con-
figuration of impurities. In the vicinity of impurities, the
CDW order dominates. This enhancement of the CDW order
is strongest, if the impurities are located in such a way, that
the pinned density waves are in phase. Otherwise, the effect
of impurities is much less important. This is a result of van-
ishing of the CDW order parameter somewhere in between
the impurities. In the region of vanishing CDW order, the
superconductivity is strongly enhanced. This effect is similar
to that obtained for the vortex structure in Ref. 30, where the
d-wave superconductivity competes with d-density waves.

Figure 9 shows the spatial distribution of the CDW and
superconducting order parameters. The positions of the im-
purities are indicated by vertical arrows. In order to prove
that the competition between these orders is responsible for
their spatial distribution, we present also the sum of squares
of the order parameters, �i=�i

2+�i
2. This quantity is al-

most constant over the whole ring �except for a very close
vicinity of the impurities�, which confirms our interpretation.

V. CONCLUSIONS

We have presented numerical analysis of a nanoscopic
ring pierced by an external magnetic flux. A large number of
factors affecting the properties of the ring has been taken into
account. In particular, we have rigorously treated the
electron-electron interaction, demonstrating its role in the re-
duction of the persistent current. This effect, however, can be

FIG. 7. Comparison of the persistent current in the presence and
in the absence of the pairing potential for 4�30 ring without
impurities.

FIG. 8. The same as in Fig. 6 �for a 4�30 ring�, but at various
temperatures.
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much less effective when impurities are introduced into the
ring. It has been shown that the restoration of the persistent
current occurs as a result of a reduction of density oscilla-
tions by the impurities. This is possible only for specific
configurations of the impurities, namely, when the pinned
density oscillations cancel each other out. Other configura-
tions lead to an enhancement of the density oscillations and,
simultaneously, to a reduction of the current.

The presence of the impurities strongly affects the super-
conducting properties of a nanoring as well. One may not
expect a superconductivity in a system consisting of only
several lattice sites, but the tendency toward the formation of
a paired state can be analyzed. In particular, we have inves-
tigated a ring with an attractive on-site interaction. In order
to estimate the strength of the pairing instability, we have
calculated the maximal eigenvalue of the pair-susceptibility
matrix. This is a gauge-invariant quantity that possesses the
same space symmetry as the system and increases with the

amplitude of the pairing potential. We have shown that
abrupt changes in the persistent current coincide with
changes of the pair susceptibility. For very large pairing po-
tential all electrons are paired and the flux dependence of the
persistent current is the same as for free carriers of charge
2e.

In the case of the attractive potential, the presence of im-
purities and their configuration are even more important than
for a repulsive potential. It originates from the fact that for
attractive interaction there is a competition between the
CDW and superconductivity even in the absence of impuri-
ties, whereas for U�0 the density oscillations occur only in
the vicinity of impurities. We have shown that impurities
affect the superconducting properties indirectly, through an
enhancement or a reduction of the CDW order. There is a
single mechanism that determines how impurities affect both
the persistent current for U�0 and the pair susceptibility for
U�0. Therefore, if a given impurity configuration leads to
an enhancement of the persistent current for U�0, the same
configuration leads also to an enhancement of the pairing
tendency for U�0.

The exact diagonalization analysis has been supplemented
by the Bogoliubov–de Gennes study of much larger rings of
a finite width. Qualitatively both the approaches give similar
results concerning the competition between superconductiv-
ity and CDW. In particular, the flux dependence of the pair
susceptibility in the first case exactly corresponds to that of
the pairing amplitude in the latter case. The role of impurities
and their configuration in both cases are the same as well.
Moreover, the BdG approach allowed us to investigate larger
systems that exhibit bulk superconductivity and then, reduc-
ing their sizes, to trace how the properties change when en-
tering the nanoregime. The mean-field approximation is gen-
erally inappropriate for low-dimensional systems. However,
a comparison of the results obtained with the help of Lanc-
zös and BdG methods indicates that the mean-field approach
gives qualitatively correct results for the persistent currents
in small rings with a weak pairing interaction.

To summarize, we have demonstrated how imperfectness
modifies nanoscopic properties of small rings with electronic
correlations. This investigation is important in connection
with the recent developments in nanotechnology. In particu-
lar, it is possible to fabricate nanorings with arbitrary con-
figuration of impurities and, in this way, to control the rings’
properties.
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