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The observation of a type of commensurability resonance in two-dimensional, hexagonal antidot lattices is
reported. These resonances have a classical character and occur at magnetic fields above the resonance that
corresponds to the cyclotron motion around a single antidot. The resonances are visible only for antidots with
effective diameters larger than 50% of the lattice constant. Simulations reveal that they originate from quasi-
stable electron trajectories that bounce between three neighboring antidots. This interpretation is backed by the
observation of large-period Aharonov-Bohm-type oscillations at low temperatures.
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I. INTRODUCTION

The study of electron transport in artificial, two-
dimensional periodic potentials has revealed a variety of in-
teresting phenomena over the past 15 years. One variant of
such systems is antidot lattices, i.e., periodic potentials with
maxima above the Fermi energy of the two-dimensional
electron gas �2DEG�.1–3 Most strikingly, resonances in the
longitudinal magnetoresistance are found, which can be in-
terpreted in terms of classical cyclotron orbits that are com-
mensurate with the antidot lattice.2 A more thorough classical
treatment based on the Kubo formalism4 has revealed that
these resonances actually have their origin in the magnetic
field dependent mixture of chaotic and regular trajectories,
where the latter remain pinned in weak electric fields. More-
over, this theory provides an explanation for the observation
of a negative Hall effect in weak magnetic fields B.5 Another
striking effect is the occurrence of B-periodic oscillations,
which have been explained within a semiclassical theory by
a few yet dominant quantized periodic orbits.6,7 More re-
cently, signatures of the famous fractal energy spectrum of
such potentials, also known as the Hofstadter butterfly, have
been observed.8,9

A large fraction of these studies was performed on
square1–3,6,8–10 or rectangular11 lattices, while only a few ex-
periments on hexagonal lattices have been published.12–15

For the majority of the effects, the lattice type is, in principle,
irrelevant. Nevertheless, hexagonal lattices show some pecu-
liarities that are absent in other types of antidot lattices. In
particular, Altshuler-Aronov-Spivak oscillations have been
observed around B=0 in hexagonal lattices,13,15 while
Aharonov-Bohm oscillations can be detected at larger mag-
netic fields.14,15 Also, it has been suggested recently that scat-
tering centers with a short-range hexagonal order may be
responsible for a phenomenology resembling the one ob-
served in metal-insulator transitions in two dimensions.16

Moreover, a detailed understanding of the transport in two-
dimensional hexagonal lattices is of broad relevance, since
this type of lattice forms via self-organization on a mesos-
copic scale in a variety of systems, such as vortex lattices in
type II superconductors17 or diblock copolymers.18

Here, we report the observation of a novel type of mag-
netotransport resonance in hexagonal antidot lattices with
large effective antidot diameters de�0.5a, where a denotes
the lattice constant. These resonances occur at cyclotron radii
smaller than the antidot radius. Their signatures are visible
only in the longitudinal component of the magnetoresistivity
tensor, while temperature-dependent measurements indicate
a classical origin. Furthermore, Aharonov-Bohm-type oscil-
lations are observed at low temperatures that correspond to
enclosed areas much smaller than the size of a lattice unit
cell. These resonances are therefore attributed to quasistable
trajectories that are localized in between three neighboring
antidots. Numerical simulations of the magnetoresistivity
based on the Kubo formalism support this interpretation and
allow us to specify the characteristic trajectories.

The paper is organized as follows. In Sec. II, the sample
preparation and the experimental setup are discussed. Sec-
tion III is devoted to the experimental characterization of the
resonances. In Sec. IV, we present numerical simulations,
identify the relevant trajectories, and relate these results to
the experiments. A summary and conclusion are given in
Sec. V.

II. SAMPLE PREPARATION AND EXPERIMENTAL
SETUP

Conventional modulation doped GaAs/Al0.2Ga0.8As het-
erostructures with a two-dimensional electron gas �2DEG�
83 nm below the surface have been grown by molecular
beam epitaxy. The 2DEG has an electron density of n=2.5
�1015 m−2 and a carrier mobility of 90 m2/Vs, correspond-
ing to an elastic mean-free path of 7.6 �m and to a Drude
scattering time of �=35 ps at liquid helium temperatures. A
standard Hall bar geometry has been defined by optical li-
thography and wet chemical etching. The 2DEG is accessed
electrically via Ni/AuGe Ohmic contacts. The hexagonal an-
tidot arrays have been patterned by electron beam lithogra-
phy and subsequent ion beam etching with low-energy �350
eV� Ar+ ions.19 The etch depth was 50 nm. All antidot arrays
have a lattice constant of 600 nm, while lithographic antidot
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diameters of dl=100 nm, 200 nm, 250 nm, and 320 nm have
been patterned. The measured array area was 50 �m
�25 �m.

Transport experiments have been carried out in a helium
gas flow cryostat with a variable temperature insert and a
superconducting magnet with a maximum field of B=8 T,
which is applied perpendicular to the plane of the 2DEG.
The temperature has been varied from 1.6 K to 24 K with an
accuracy of 0.1 K. For measurements at lower temperatures,
a top loading dilution refrigerator with a base temperature of
80 mK has been used. An ac current �frequency 33 Hz, am-
plitude 5 nA� was passed through the antidot array. The lon-
gitudinal ��xx� and Hall ��xy� components of the resistivity
tensor have been determined from voltage differences mea-
sured in the corresponding four-probe setups.

III. EXPERIMENTAL RESULTS

Figure 1 shows the measurements of �xx as a function of B
for arrays with lithographic antidot diameters of dl
=100 nm, 200 nm, and 320 nm. Due to lateral depletion of
the 2DEG around the antidots of about 100 nm, their elec-
tronic diameters de are larger. They can be estimated from
the Shubnikov-de Haas oscillations observed in the antidot
arrays, which give the Fermi wavelength in the array as well
as, via their onset, the number of occupied transverse modes
at the bottleneck formed by adjacent antidots. This way, ef-
fective electronic diameters of de�300 nm, 400 nm, and 550
nm, respectively, are found.

In the array with the smallest antidots �Fig. 1�a��, typical
commensurability oscillations in �xx are observed that,
within the simple commensurability picture, in which the
cyclotron diameter rc=m*vF / �eB� matches the lattice con-
stant in the resistivity maxima, can be attributed to orbits
around 1, 3, and 7 antidots.12 Here, the resonance around one
antidot occurs at B=270 mT. In comparison to the decay of
the Shubnikov-de Haas oscillations with increasing tempera-
ture, the temperature dependence of the commensurability
oscillations is weak, which indicates their classical origin.
Note that there is an additional shoulder at B=200 mT and a
peak at 70 mT with a weak temperature dependence �vertical
arrows in Fig. 1�a��, which cannot be identified in this com-
mensurability picture.

Figure 1�b� shows the corresponding measurements on a
sample with dl=200 nm. Here, only one strong resonance
with a classical character is visible at B=130 mT, which,
from simulations as described below, can be attributed to a
superposition of the commensurability oscillations identified
in Fig. 1�a�. In addition, a weak resonance is observed at B
=400 mT. It is clearly not related to the Shubnikov-de Haas
oscillations that set in around B=0.6 T, and shows a weak
temperature dependence. Such a structure is also present in
an array with dl=250 nm �not shown�. Moreover, in Fig.
1�b�, a small feature is observed between B=0.5 T and 0.7 T
which, however, cannot be clearly distinguished from
Shubnikov-de Haas oscillations. In arrays with even larger
antidot diameters �Fig. 1�c��, three maxima, superimposed on
a Shubnikov-de Haas resonance, are detected at B�0.45 T,
0.87 T, and 1.15 T. The main focus of the present paper is on

the investigation of these resonances. The corresponding
Hall measurements are shown in Fig. 2. While the structure
of the conventional commensurability oscillations is re-
flected in �xy�B�, no signatures of the novel resonances are
detected here.

FIG. 1. �Color online� Longitudinal magnetoresistivity of the
hexagonal antidot arrays at temperatures of T=1.5 K, 2.5 K, 4 K, 8
K, 12 K, 16 K, and 24 K, as observed for arrays with a=600 nm
and different values of dl �inset�. In �a�, the well-known resonances
corresponding to cyclotron orbits around 1, 3, and 7 antidots are
observed. In �b� and �c�, a known resonance is observed around B
=130 mT. The additional resonances are indicated by arrows. The
inset in �c� shows a zoom in from the main figure of the region of
interest.

MECKLER et al. PHYSICAL REVIEW B 72, 035319 �2005�

035319-2



To obtain further insight into the character of these struc-
tures, we have studied the magnetotransport of the array with
dl=320 nm in a dilution refrigerator; see Fig. 3. Around B
=0, the well-known Altshuler-Aronov-Spivak oscillations
with a period of �B=8 mT are observed �not shown�,13

which evolve into quasiperiodic Aharonov-Bohm-type oscil-
lations with a period of �B=16 mT for B�60 mT. The
Aharonov-Bohm period corresponds to a characteristic area
of A=h /e�B=2.6�10−13 m2, in rough agreement with the
area of a lattice unit cell �Acell=3.1�10−13 m2�. This evolu-
tion has been reported and interpreted previously.14 An addi-
tional, superimposed oscillation, however, with a period of
�B�120 mT is observed in the magnetic field regime where
the novel classical resonances are detected. Interpreting this
oscillation in terms of an Aharonov-Bohm effect, the en-
closed area equals A�3.4�10−14 m2, which corresponds to
about 11% of a unit cell. All periodic oscillations smear out
as the temperature is increased, with the amplitude decaying
roughly 	1/T; the oscillation with the larger period persists
to higher temperatures.

IV. INTERPRETATION AND DISCUSSION

We interpret our results in terms of commensurability os-
cillations that exist in the open electron pockets formed in
between three adjacent antidots. Quasistable orbits may form
by consecutive reflections of the electrons at the antidot
walls. It seems plausible that such trajectories become more
stable as de /a increases. We determine the characteristic area
of such a pocket from Apocket=

1
2 �Acell−
�de /2�2� and esti-

mate in our large antidot array to Apocket�3.6�10−14 m2,
i.e., significantly smaller than the area of the unit cell. Hence,
an increased Aharonov-Bohm period can be expected, al-
though the exact period depends on the details of the closed
trajectory.

In order to substantiate this interpretation, we have per-
formed model calculations based on the Kubo formalism.20

The antidot lattice is modeled by a two-dimensional, hexago-
nal array of hard-wall cylinders of the estimated electronic
diameter de for the samples of Fig. 1. For each value of
B , 105 electrons with a fixed Fermi energy adapted to the
experimental conditions �EF=8.86 meV� are injected at ran-
dom positions and with random velocity directions within a
unit cell of the lattice. Their trajectories are calculated to a
length of 50 �m, corresponding to a time of flight of 240 ps.
The electron velocity correlation function �vi�t ,B�v j�0�� is
calculated, where the brackets denote averaging over all
trajectories.21 Within the Kubo formalism, the components of
the magnetoconductivity tensor for a degenerate two-
dimensional electron gas are obtained from

�ij�B� =
m*e2


�2 �
0



�vi�t,B�v j�0��e−t/�dt �1�

In Eq. �1�, m*=0.067me is the effective electron mass in
GaAs. Elastic scattering due to random impurities is taken
into account via the exponential cutoff function that appears
in the integrand. Here, a Drude scattering time of �=35 ps
has been chosen, in accordance with the mobility of the pris-
tine 2DEG. This model is a simplified version of the more
thorough treatment presented in Ref. 4. In particular, neither
the driving electric field nor the finite slope of the antidot
walls are taken into account. Nevertheless, our simplified
model allows us to identify the trajectories that generate the
additional resonances. In Fig. 4, the results of the simulated
�xx�B� for the three arrays under study are reproduced. For
the largest antidots �de=550 nm�, pronounced resistivity
minima are found around B=0.78 T, 1.4 T, and 1.85 T, while
the commensurability resonance around a single antidot is
barely visible at B�0.3 T.

To gain more insight into the origin of these structures, we
have taken Poincaré sections along the perpendicular bisec-
tor of the line connecting the centers of two neighboring
antidots; see Fig. 5. As the magnetic field increases to B
=0.6 T, stable regions emerge with a structure as shown in
Fig. 5�a�. Around the resistivity maximum at 1 T, this pattern
fades and evolves into a second one shown in Fig. 5�b�,
which is most pronounced around the minimum in �xx at 1.4
T. As one goes to larger magnetic fields, the stable regions
gradually fade until they can no longer be identified. We pick
the Poincaré sections at B=0.6 T and 1.2 T for a detailed

FIG. 2. Hall resistivities of the three arrays of Fig. 1, measured
at T=1.5 K. In contrast to the conventional commensurability os-
cillations, the additional resonances cannot be identified. Note the
negative Hall effect in the array with the small antidots �inset�.

FIG. 3. Magnetoresistivity of the array with dl=320 nm as mea-
sured in the dilution refrigerator in the magnetic field regime of the
novel resonances. A smooth background has been subtracted. Here,
the quasiperiodic Aharonov-Bohm oscillations are modulated with a
period of �B�120 mT.
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discussion. In both cases, stable regions are found which
contain the two types of trajectories shown in the right parts
of Figs. 5�a� and 5�b�, respectively. The first type is labeled
by 1 and consists of skipping orbits around an individual
antidot. This type is present for all magnetic fields above 0.5
T and covers a continuously increasing area in the Poincaré
section as B is increased up to 2 T. Such skipping orbit
trajectories have already been discussed for square antidot
lattices.10 The second type is triangularly or rosette-type
shaped trajectories that form quasiclosed figures by consecu-
tive reflections at walls of adjacent antidots. They are labeled
by 2–4 in Fig. 5. The areas of the corresponding regular
islands in the Poincaré sections have broad peaks, centered
around the minima in �xx at B=0.78 T and 1.4 T. Type 2
trajectories with two consecutive bounces at the same wall
are present only for B�1 T. Hence, we attribute the struc-
ture in the resistivity of the array with the large antidots to
the triangular or rosette-shaped trajectories. They are most
important around the minima of �xx, which is a consequence
of the large magnetic field, since localized states that gener-
ate a minimum in �xx�B� translate into a minimum in �xx�B�
for �xy ��xx, as is the case here. Thus, a characteristic feature
of the novel commensurability resonances that distinguishes
them from those known previously is the fact that the mag-
netic field at which the quasistable trajectories are most pro-
nounced corresponds to a minimum in �xx.

Despite this qualitative agreement between the experi-
mentally observed features and the simulations, quantitative
differences are apparent. In particular, the positions of the
measured minima and maxima in �xx differ from the simu-
lated ones, and their amplitudes are weaker, an effect that,
due to the observed temperature independence, cannot be
attributed to thermal smearing. Also, the structure stemming
from rosette-type trajectories can be identified in simulations
of the Hall resistivity �not shown�, in contrast to our Hall
measurements. One possible reason for these discrepancies
may be nonspecular scattering at the antidot walls. Low-
energy ion beam milling has been the technique of choice for
patterning of the antidots, since it is established as a method
to generate nanostructures with walls of high specularity

around 85%.19 We expect that the small fraction of non-
specular scattering may lead to some degree of smearing, but
most likely not to a displacement of the extremal points.
Rather, we interpret these deviations as a manifestation of
soft antidot walls, probably in combination with some disor-
der in the antidot sizes, shapes, and positions, as well as the
driving electric field. We are not aware of experimental work
that determines the wall steepness for the etching technique
we used. However, it seems plausible to assume that the
steepness is comparable to that one obtained in Ga�Al�As
samples of similar electron density, patterned by other dry
etching techniques, like those used in Ref. 2. More elaborate
simulations that use the wall steepness as a parameter4,5 have
been able to establish a close to perfect agreement with the
experimental observations of Ref. 2. As an example, we note
that a peak is observed in the experiments on antidot arrays
with small diameters at small magnetic fields �Fig. 1�a��,

FIG. 4. Simulated longitudinal magnetoresistivity of the array
with de=550 nm. Weak resonances are found in 0.6 T�B�2.2 T.
The inset shows the corresponding simulations for the arrays with
de=300 nm and de=400 nm. Here, the star denotes an unidentified
resonance, while the cartoon to the upper right sketches the type of
trajectory found in the feature indicated by the arrow.

FIG. 5. Poincaré sections �left� taken from the array with de

=550 nm at B=0.6 T �a� and 1.2 T �b�. The sections are taken along
the y direction at x=0; see the right part of �a�, where the gray areas
denote the antidots. The characteristic trajectories �right� found in
the stable regions are assigned according to the numbers in the
stable regions; see the text. Note that only the intersections of the
trajectories with vx�0 are plotted in the Poincaré sections.
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which cannot be attributed to a trajectory by our simulations.
A similar discrepancy in square lattices2 could be resolved by
the softness of the walls,4 a fact that suggests that the devia-
tions in our study can be explained by soft walls as well. In
general, soft walls tend to deform the trajectories, which in
turn causes some resonances to be significantly displaced,
while the sensitivity to the wall steepness depends on the
resonance.4 Such a deformation would be in tune with the
observation that the areas enclosed by the simulated trajec-
tories �Fig. 5� are smaller than the measured enclosed areas
�Fig. 3�. Also, the peak around 0.35 T in the simulated array
with de=300 nm can be identified in a Poincaré section of
the hard wall simulation �inset in Fig. 4�, but is not observed
experimentally. It seems plausible to us that such a trajectory
is very sensitive to an even moderate softening of the wall.
To find out whether more realistic simulations, or experi-
ments on samples with steeper walls,10 are able to resolve the
discrepancies, is beyond the present study.

For the sample with the smallest antidot diameter, the
simulations reproduce the experiments remarkably well in
the range rc�a �Figs. 1�a�, 2, and 4�. The measured negative
Hall effect �Fig. 2� is reproduced in our hard wall simula-
tions �not shown�, in contrast to hard wall simulations per-
formed for square lattices.5 In square lattices consisting of
antidots with similar ratios d /a, simulations do not suggest
the existence of type 2 orbits, independent of the wall
steepness.10 Thus, the wall steepness seems less critical in
hexagonal arrays, but becomes more relevant as de /a in-

creases. We therefore conclude that a hexagonal lattice
strongly favors the formation of stable orbits in between an-
tidots as compared to square lattices.

V. SUMMARY AND CONCLUSION

In summary, we observe resonances in hexagonal antidot
lattices with large antidot diameters. Classical simulations
suggest that they can be attributed to classical, quasiperiodic
trajectories of various shapes that are caught in between
three adjacent antidots. This interpretation is supported by
measurements at temperatures below 1 K, where the samples
show Aharonov-Bohm-type oscillations with a characteristic
area similar to that one of an electron pocket in between
antidots. It remains to be seen whether such resonances are
also visible in other types of antidot lattices with optimized
parameters. In order to improve the quantitative agreement
with simulations, it would be interesting to perform more
sophisticated calculations with realistic potential landscapes,
inclusion of the driving electric field, disorder, and the wave
nature of the electrons.
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