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In this paper, we investigate the general properties of lattice spin models that have string and/or membrane
condensed ground states. We discuss the properties needed to define a string or membrane operator. We study
three three-dimensional spin models which lead to Z2 gauge theory at low energies. All the three models are
exactly soluble and produce topologically ordered ground states. The first model contains both closed-string
and closed-membrane condensations. The second model contains closed-string condensation only. The ends of
open strings behave like fermionic particles. The third model also has condensations of closed membranes and
closed strings. The ends of open strings are bosonic while the edges of open membranes are fermionic. The
third model contains a different type of topological order.
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I. INTRODUCTION

The discovery of fractional quantum Hall �FQH� liquids
by Tsui, Stormer, and Gossard1 in 1982 showed that not all
the states of matter are associated with symmetries �or the
breaking of symmetries�. As an example, FQH liquids cannot
be described by the Landau theory2,3 of broken symmetries
and local order parameters.4,5 In Landau’s theory, the internal
order is defined by the symmetry of the states. Symmetry is
a universal property of the states, i.e., a property shared by
all the states in the same phase. The symmetry group �SG�
can thus characterize the internal orders of those states. The
internal order of FQH liquids is the internal structure of their
quantum ground state. The kind of order that explains this
internal structure of FQH liquids is a topological order.4,5

Topological order is a special case of more general quantum
order.5,6 Topological or quantum order cannot be character-
ized by symmetry breaking since all FQH states have the
same symmetry. To characterize quantum orders, we need to
find universal properties of the wave function. One way to
characterize quantum orders is through the projective sym-
metry group �PSG�.7 The PSG is the group of symmetry of
the mean-field ansatz of a mean-field Hamiltonian Hmean that
describes a quantum ordered state. Two different physical
wave functions obtained from two different mean-field An-
sätze can have the same symmetry and different PSGs. Thus
the PSG gives a more refined characterization of the internal
orders than the SG and can describe those internal orders that
are not distinguished by the symmetry group.

The topological order, as a special case of quantum order,
is a quantum order where all the excitations above ground
states have finite energy gaps. FQH liquids present nontrivial
topological orders in which the degeneracy of the ground
state depends on the topology of the space.8,9 The ground
state of FQH liquids on a Riemann surface of genus g is
q̃g-fold degenerate where q̃ is the ground-state degeneracy in
a torus topology. This degeneracy is robust against any per-
turbations. For a finite system of size L the ground-state de-
generacy is lifted and the energy splitting is �e−L/�.. This
robustness is at the root of the proposal of fault-tolerant
quantum computation at the physical level.10

A particular class of quantum orders is the one from string
condensation.11 We say we have string condensation in the
ground state ��� when �a� a certain closed-string operator
W��̄� satisfies

���W��̄���� = 1. �1�

�b� The closed-string operator cannot be decomposed into
smaller pieces W��̄�=W��1�W��2�¯W��n� where each
piece satisfies ���W�������=1.

A string net is a branched string. It turns out11 that quan-
tum ordered states that produce and protect massless gauge
bosons and massless fermions are string-net condensed
states. Moreover, different string-net condensations are not
characterized by symmetries, but by projective symmetry
group. In this case, the PSG describes the symmetry in the
hopping Hamiltonian for the ends of condensed strings. Then
the characterization of different string-net condensations
classifies different topological or quantum orders. Systems
that feature string-net condensation, if gapped, feature a
ground-state degeneracy that depends on the topology of the
system and that is robust against arbitrary local perturba-
tions.

Ends of open strings are particlelike objects which can
have a nontrivial statistics.12 When on a two-dimensional
system such a quasiparticle winds around another quasipar-
ticle of a different kind, its wave function picks a phase. The
particle has undergone an Aharonov-Bohm effect, whose to-
pological nature is described by a Cherns-Simons theory.13

This phenomenon corresponds to the fact that the end of an
open string can be detected by a closed string of another type
that encloses its end.

On a three-dimensional �3D� lattice, the end of an open
string can be detected by a closed surface. So we can enquire
about the meaning of the condensation of closed membranes.
Similar to closed-string condensation, closed-membrane con-
densation is a superposition of closed membranes of arbi-
trary sizes, shapes, and numbers. Just like closed-string con-
densation, closed-membrane condensation also implies
topological order. Many 3D models have both closed-string
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and closed-membrane condensation due to a natural duality
between strings and membranes in 3D space. But it may be
possible to have 3D models with only string condensation.
We will present an example.

We also build a model with a different kind of closed-
string and closed-membrane condensation. We argue that this
model has a different type of topological order.

II. Z2 LATTICE GAUGE THEORY: A MODEL WITH
STRING AND MEMBRANE CONDENSATION

Let us consider a three-dimensional cubic lattice. Then we
can place a spin 1/2 on each link of the lattice. A string
operator can be defined by drawing a curve � connecting the
sites of the lattice and acting with a �z on all the links be-
longing to �:

W��� = 	
j��

� j
z. �2�

A membrane operator M��� is obtained by drawing a two-
dimensional surface � in the dual lattice and acting with a
spin flip �x on all the links orthogonal to �:

M��� = 	
j��

� j
x. �3�

As expected, closed membranes are able to detect the ends of
open strings. The open string flips the spin on the membrane
where it punctures it because the membrane operator anti-
commutes with the string operator when they intersect in
only one point,

W���M��̄���� = − M��̄�W������ , �4�

where �̄ is a closed surface in the dual lattice. If the sign of
a closed-membrane state is flipped we know that there is the
end of an open string inside. If the string punctures the
closed membrane in two points, then the end of the string is
not inside and the sign of the state will not be flipped be-
cause the two operators will in fact commute. A closed mem-
brane can detect the presence of a particle �the end of an
open string� inside even if the membrane is actually very far
from the particle.

We would like to stress that not all products of operators
along a string give us a nontrivial string operator. Similarly,
not all products of operators on a membrane give us a non-
trivial membrane operator. The product of identity operators
along a string or on a membrane is an example of a trivial
string operator or membrane operator. However, in our case,
the nontrivial algebraic relation �4� between the large string-
operator and membrane operator ensures that both the string
operator and the membrane operator defined above are non-
trivial.

A plaquette operator is the product of �z on all the spins
belonging to the same plaquette p. A closed-string operator
W��̄� can also be expressed as a product of plaquette opera-
tors. When we multiply two neighboring plaquette operators,
the �z acts twice on the shared link, and so the resulting
operator is the product of �z on the border of the two
plaquettes.

A star operator is on the other hand the product of �x on
all the links extruding from a site s: As=	 j�s� j

x. Similarly

then, a closed-membrane operator M��̄� is the product of all
the star operators enclosed in such a two-dimensional closed

surface �̄:

M��̄� = 	
j��̄

� j
z = 	

s�V

As, �5�

where V is the volume enclosed in �̄: �̄=�V. The star opera-
tor is then the operator corresponding to the elementary
closed membrane, the cube. If we consider in the dual lattice
the six faces orthogonal to the links of a star, we see that they
form a cube. Since when multiplied with each other the stars
cancel their interiors, they are surface operators and not vol-
ume operators. So in general, the product of two membrane
operators is still a membrane operator because the interior
cancels.

An example of a model featuring both membrane and
string condensation is given by the following Hamiltonian:

Hspin = − g

p

	
j�p

� j
z − U


s
	
j�s

� j
x, �6�

so that the Hamiltonian is the sum of all the plaquette opera-
tors and star operators. Such a Hamiltonian defines a Z2 lat-
tice gauge theory.14 The model is exactly soluble since all the
plaquette operators and star operators commute with each
other.10

Having a spin on each link, the dimension of the local
Hilbert space is 2. If N is the number of the sites, on a cubic
lattice we have 3N links.17 The dimension of the global Hil-
bert space is hence 23N. How many states can we label with
the operators 	 j�p� j

z and 	 j�site� j
x? We have N star opera-

tors, and 3N plaquettes in 3D. However, not all these
plaquettes are independent. Indeed, in each cube the product
of the eight plaquettes is identically 1, as it is immediate to
verify. This gives us N constraints on the plaquettes. The
number of independent plaquettes is thus 3N−N=2N. To-
gether with the star operators, we can then label all the 23N

states. We have a finite degeneracy of the ground state due to
topological global constraints on the star and plaquette op-
erators �if we are on a torus for instance�.

This model features both closed-string and closed-
membrane condensation. Closed-string operators and closed-
membrane operators both commute with the Hamiltonian be-
cause every closed string �membrane� shares either 0 or 2
links with any star �plaquette�:

†Hspin,W��̄�‡ = 0, �7�

†Hspin,M��̄�‡ = 0. �8�

Thus the ground state is an eigenstate of W��̄� and M��̄�
with eigenvalue ±1 since W��̄�2=M��̄�2=1. This leads to a
condensation of the closed-string and the closed-membrane

membrane operators �W��̄��= �M��̄��= ±1 regardless the
size of the strings and the membranes.
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Physically, when acting on the ground state, the open-
string operator creates a pair of Z2 charges at its ends, while
the open-membrane operator creates a loop of Z2 flux at it
edge. So it is natural that a 3D Z2 gauge theory has both the
closed-string and closed-membrane condensations.

In order to have string or membrane condensation, it is
important that they do not dissolve, i.e., they are not decom-
posable into smaller objects that also condense. For example,
a closed-string operator can be written as a product of two
open-string operators W��̄�=W��1�W��2�. We require that
the open-string operators do not condense. That is,

�W��1���W��2��
�W��̄��

→ 0 �9�

as the size of strings approaches infinity. If closed mem-
branes can be written as the product of smaller objects, and
each smaller object still condenses, then there is no need to
talk about membrane condensation, and we cannot expect to
have topological order. It is the fact that a big closed
membrane—which can explore the topology of the lattice—
condenses that implies a topological order. For the same rea-
son open membranes must be forbidden in the ground state.
We can obtain it by making them pay an energy cost or by
means of a constraint, as we will see in Sec. IV.

We would like to remark that the theory �6� can be
mapped into a model with Majorana fermions on the links.
We put six Majorana fermions at each site and one so-called
ghost Majorana fermion at each link. Then we “move” the
Majorana fermions from the sites to the midpoints of each
link according to the directions shown in Fig. 1. So at this
point we have three Majorana fermions at each link, two
coming from the sites plus the initial ghost Majorana fer-
mion. The mapping is given by the following representation
of the Pauli matrices:

�i = � jk
i � j�k. �10�

III. A MODEL WITH STRING CONDENSATION ONLY

In this section we want to show a model that has closed-
string condensation but no closed-membrane condensation.
Membranes either pay in energy or, if they commute with the
Hamiltonian, dissolve into smaller pieces.

Let us consider the following exactly solvable model on a
cubic lattice.11,12 We introduce six Majorana fermions at each
site of the lattice, namely, �i

a, where a=x , x̄ ,y , ȳ ,z , z̄. Define
the plaquette operator in the plane 	
:

F̂p	

= − �i


�i
	�i+	̂

	̄ �i+	̂

 �

i+	̂+
̂


̄
�

i+	̂+
̂

	̄
�

i+
̂

	
�

i+
̂


̄
, �11�

with 	 ,
=x ,y ,z The Hamiltonian is then

H3D = g

p

�F̂pxy
+ F̂pyz

+ F̂pzx
� , �12�

where the sum is taken on all the plaquettes in the xy ,yz, and
zx planes �see Fig. 1�.

This model is exactly solvable because all the plaquette

operators commute with each other �F̂�i
, F̂�j

�=0.
Let us introduce now the following complex fermion op-

erators at each site i:

2�x = �x + i�x̄, 2�y = �y + i�ȳ, 2�z = �z + i�z̄. �13�

We project down to the physical Hilbert space with an even
number of fermions per site i:

�− �
a=x,y,z�a,i
† �a,i = 1. �14�

The projection above makes the theory a gauge theory. The
physical states are invariant under local Z2 transformations
generated by

Ĝ = 	
i

Gi

a=x,y,z�a,i

† �a,i, �15�

where Gi is an arbitrary function on the sites i with the only
two values ±1.

The Hamiltonian �12� acts on spin-3 /2 states11,12 by
means of the following mapping:

�i
ab =

i

2
��i

a�i
b − �i

b�i
a� . �16�

The operators �i
ab act on the local four-dimensional physical

Hilbert space, that is, after the projection. In terms of the �i
ab

we can write down the Hamiltonian acting on spin-3 /2
states:11

H3D � H3/2 = g

p

��i
ab�

i+b̂

b̄a
�

i+b̂+â

āb̄
�i+â

bā � . �17�

The ground state of H3D has closed-string condensation. This
means that we can define closed strings that commute with
the Hamiltonian H3D. What kind of strings can we define in
this model �or similar models�? We can define two types of
strings running on links: strings that end at the midpoint of
the links and strings that end on the sites. The open-string
operator of the former type is

FIG. 1. A three-dimensional model with Majorana fermions on
the sites. The six Majorana fermions label the six vectors from a site
in the following way: x� + x̂ , x̄�−x̂ , y� x̂ , ȳ�−ŷ , z� ẑ , z̄�

−ẑ. The plaquettes in the three planes are shown. F̂pxy
, F̂pyz

, F̂pzx

are, respectively, the plaquettes F̂i1i2i3i4
, F̂i2i3i6i7

, F̂i4i3i6i5
, where i1

= i; i2= i+ x̂; i3= i+ x̂+ ŷ; i4= i+ ŷ; i5= i+ ŷ+ ẑ; i6= i+ x̂+ ŷ+ ẑ; i7= i
+ x̂+ ẑ.
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W���I = − ��i1
a1�i1

b1���i2
a2�i2

b2� ¯ ��in
an�in

bn� , �18�

where � is an open string running on the lattice links. Strings
that end on sites would decompose in edges all commuting
with the Hamiltonian and hence not giving a closed-string
condensation; therefore we will focus only on the strings of
type Eq. �18�. The pair of indices ab gives the shape of any
element of the string. �i

a�i
b=�i

x�i
x̄ is associated with a hori-

zontal string straddling the site i, while �i
ȳ�i

x is associated
with an L-shaped elementary string crossing the site i. These
strings have end points at the midpoints of links. Moreover,
if we close a string around the elementary loop �the square�,
we obtain the plaquette operator

W��p� = F̂p. �19�

Large �contractible� loops are products of these elemen-

tary loops: W����=	p��F̂p, where � is a surface made of
squares of the lattice and �� its contour. We notice that the
product of loops with some overlap gives a loop and not a
net because the interior cancels. In fact the interior is identi-
cally 1 because the Majorana fermions square the identity.
The important fact is that loops—contractible or not—
commute with the Hamiltonian, as it is easy to check:

†H3D,W��̄�‡ = 0. �20�

So the ground state of H3D has closed-string condensation.
We want now to argue about the degeneracy of the ground

state if the lattice has a torus topology. The dimension of the
total Hilbert space is computed in the following way. We
have six Majorana fermions per site and with them we de-
fined three complex fermion operators. Three complex fer-
mion operators generate an eight-dimensional local Hilbert
space at each site. So the dimension of the total Hilbert space
is 8N. The projection onto the physical Hilbert space at each
site gives us thus a four-dimensional local Hilbert space at
each site, because there are four states out of eight with an
even number of fermions. Therefore after the projection the
Hilbert space is 4N=22N dimensional. How many states can

we label with the commuting operators F̂p? We have 3N such
operators, but not all of them are independent. We have local
constraints and global constraints on them. The local con-
straint is given by the fact—which it is immediate to prove—
that in each cube the product of all the plaquettes is identi-
cally equal to 1:

	
p�c

F̂p = 1, �21�

where c labels the cubes in the lattice. This gives us N con-
straints. The global constraints are given by the periodic
boundary conditions. These conditions provide three con-
straints. It turns out that the number of independent plaquette

operators F̂p is 3N−N−3=2N−3. So we can label 2N−3
states out of 3N and this means we are left with a
22N−�2N−3�=eightfold degeneracy of the ground state. This de-
generacy is due to the closed-loop condensation.

Notice that closed strings are not decomposable into
smaller objects that still commute with the Hamiltonian.
Small elements—called “dimer”—of the type �i

a�i
b �which is

an elementary string of the I type� never commute with some

of the plaquettes F̂p.
What we want to argue now is that the model Eq. �12� is

a model with string condensation only. The membrane op-
erator that we want to construct should trap the ends of
strings which now exist on the centers of the links. Because
of this, it is not natural to use the faces of the cubic lattice or
the dual lattice to form the membrane. The dual lattice of the
links is formed by octahedrons �see Fig. 2�. We can put many
octahedrons together to form a volume. The surface of such
a volume is a natural choice of membrane which traps the
centers of the links. The elementary �smallest� membrane
corresponds to the faces of a single octahedron �see also Ref.
15�. What is the operator for the elementary membrane? No-
tice that each elementary membrane contains a single link,
say �i , i+ x̂�. So a natural choice of the elementary membrane
operator is �i

x�i+x̂
x̄ . A generic membrane operator is the prod-

uct of the elementary membrane operators for the enclosed
octahedrons. On each interior lattice site j, enclosed by the
membrane, we have a product

	
	�j

�j
	, �22�

where 	=x , x̄ ,y , ȳ ,z , z̄. In the projected physical Hilbert
space, 		�j�j

	=1.11 So the product of the elementary mem-
brane operators is a membrane operator that only acts on the
sites on the membrane. The membrane operator also satisfies
an important condition in that it commutes with all the
closed-string operators. The membrane operator anticom-
mutes with the open-string operators of one end of the open
string enclosed by the membrane. So the membrane operator
can detect the presence of the trapped ends of strings. How-
ever, the membrane operator, in general, changes the fermion
number by an odd number �on a site on the membrane�. So
the membrane operator defined above, although having many
of the right properties, does not act within the physical Hil-
bert space.

Let us compare the model H3D and the model Eq. �6�.
Notice that the plaquette terms in H3D map well onto the spin
model Eq. �6�. We can associate �z with i�i

ā�i
a and see that

F̂p�	 j�p� j
z. So the string operator in the model H3D can be

mapped into the string operator in the model Eq. �6�. What

FIG. 2. The dashed lines represent the cube in the cubic lattice.
The solid lines represent the octahedron.
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does not map well is the star term for the reasons stated
above. In order to build a good star operator so that the star
maps onto the term −U
s	 j�s� j

x, we need to put an addi-
tional ghost Majorana fermion on each link and then realize
the mapping Eq. �10�. Because of this, we obtain the mem-
brane operator in the model H3D from the membrane opera-
tor in the model Eq. �6�.

After many trials, we fail to obtain a membrane operator
with the right properties. This leads us to believe that the
model H3D �12� has no membrane condensation.

IV. EXACTLY SOLVABLE MODEL WITH MEMBRANE
CONDENSATION

The two models discussed above were constructed to have
string condensation. The first model also has a membrane
condensation. In this section we will directly construct a
model that has a membrane condensation. The model is the
following. We start with a cubic lattice with N sites and put
four Majorana fermions at each link; thus we have 12N Ma-
jorana fermions in total. We label the Majorana fermions
according to the directions orthogonal to the link. For ex-
ample, on a link �i , i+ x̂� we have the following Majorana
fermions:

��i,i+x̂�
y , ��i,i+x̂�

ȳ , ��i,i+x̂�
z , ��i,i+x̂�

z̄ . �23�

We can define the complex fermion operators at each link
�i , i+ â�:

2�b,�i,i+â� = ��i,i+â�
b + i��i,i+â�

b̄ , �24�

where a ,b=x ,y ,z and a�b. Of course on a link �i , i+ x̂� we
can only define �y and �z and so on. So at each link we have
defined two complex fermion operators and thus at each link
there is a four-dimensional local Hilbert space H. Since the
number of links on a 3D cubic lattice with N sites is 3N, the
total Hilbert space H�3N has dimension 43N=26N.

On each link we define the Link operator in this way:

L̂�i,i+a� = ��i,i+a�
b ��i,i+a�

b̄ ��i,i+a�
c ��i,i+a�

c̄ , �25�

where a�b�c and they take values in the set �x ,y ,z�. In a
cubic lattice each link is shared by four crossing faces and
every face has as contour four links. For each link, we can
uniquely associate one Majorana fermion to each of the four
faces that share that link. Since each face is bordered by four
links, each face receives a total of four Majorana fermions
from the links that border it. This assignment is univocal.
Each Majorana fermion is assigned to one and only one face.
The corresponding face operator is defined as

F̂s = ��i,i+a�
b ��i+a,i+a+b�

ā ��i+a+b,i+b�
b̄ ��i+b,i�

a , �26�

where the face s is on the plane �ab� and a�b and again
they take the values �x ,y ,z�. Notice that the face operator
corresponds to a link operator in the dual lattice. Notice also
that the operator on the link �l� anticommutes with any of the
four adjacent face operators because they have a Majorana
fermion in common:

�L̂�l�,F̂s�+ = 0. �27�

After the discussion of the previous sections, we know that
we can define a good elementary closed-membrane operator
by taking the product of the six face operators on a cube.
This is equivalent to a star operator on the dual lattice. The
cube operator is then

Ŝc = 	
s�c

F̂s. �28�

The cube operator shares two Majorana fermions with any
adjacent link �l� so they commute:

�L̂�l�, Ŝc� = 0. �29�

Bigger membrane operators are the product of all the faces
that make the surface on which the operator is defined:

M̂� = 	
s��

F̂s. �30�

Open membranes do not commute with the link operator,
because they share one Majorana fermion on the border of
the membrane. But a closed-membrane operator, being the
product of cubes, does commute with the link operator.

The last operator we want to define is the corner loop
operator. It is the operator that collects in a loop the six
Majorana fermions that are associated with each corner of a
cube. For instance, the corner made by, say, the links �i , i
+ x̂� , �i+ x̂ , i+ x̂+ ŷ� , �i+ x̂ , i+ x̂− ẑ� is labeled by the vector j

= �x̄ ,y , z̄� and the associated corner loop operator Ĉ j is

Ĉi
x̄yz̄ 
 ��i,i+x̂�

z̄ ��i,i+x̂�
y ��i+x̂,i+x̂+ŷ�

x̄ ��i+x̂,i+x̂+ŷ�
z̄

� ��i+x̂,i+x̂−ẑ�
y ��i+x̂,i+x̂−ẑ�

x̄ �31�

�see Fig. 3�. At each site i there are eight corners that are

FIG. 3. �Color online� The cube operator and the corner loop
operator with the nomenclature of the Majorana fermions forming a
corner loop.
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labeled by j= �a ,b ,c� with a=x , x̄ ,b=y , ȳ ,c=z , z̄.
So the expression for the generic corner loop operator on

the site i is

Ĉi
�a,b,c� = ��i,i+a�

b ��i,i+a�
c ��i,i+b�

a ��i,i+b�
c � ��i,i+c�

a ��i,i+c�
b , �32�

where a ,b ,c=x , x̄ ,y , ȳ ,z , z̄. The corner loop operators com-
mute with both the link and cube operators but, interestingly
enough, not all the corner loop operators commute with the
others. As can be seen in Fig. 4, a corner loop shares only
one Majorana fermion with two other corner loops belong-
ing, respectively, to two other adjacent cubes. These corner
loop operators do not commute with each other when they
are based on adjacent sites and the indices in the direction of
the connecting link are conjugate and have only one index in
common. Consider the case of corner operators at the sites i
and i+z; then for example we have

�Ĉi
xyz̄,Ĉi+z

xȳz�+ = 0, �33�

�Ĉi
xyz̄,Ĉi+z

xyz� = 0. �34�

Notice that we have the following constraint for the product

of the eight corners coming from a site i: 	 j=1
8 Ĉi

j=1. This
means that on a cubic lattice with N sites we have N con-
straints on the corner operators. Notice also that the cube is
not the product of its eight corners. Indeed, also the product
of eight corners in a cube is identically 1 because in the
product each Majorana fermion appears twice and they
square the identity. We thus have also the following con-

straint at each cube: 	j=1
8 Ĉj=1. Here j of course runs instead

on the eight corners belonging to the same cube. The cube is

almost the square root of 	j=1
8 Ĉj. Actually, the cube operator

is made of the product of four of these corner loop operators.
We have two different ways of choosing the four corners that
make the cube out of the eight possible corners on the cube,
namely, the corners on the even or odd sites, as is shown in
Fig. 5. So we can write



c

Ŝc = 

c

	
j�i�c�even

Ĉj = 

c

	
j�i�c�odd

Ĉj, �35�

where j� i�c�even means that j runs on the four corners at
even sites in each cube c, and similarly for the odd term.

In this model we want closed-membrane condensation. As
we have seen, it is necessary that �i� the cube operator com-
mutes with the Hamiltonian; �ii� all the smaller pieces that
compose a closed membrane must be forbidden or pay some
energy cost, so that the closed membranes will not dissolve.
In order to make it impossible for the membrane to decom-
pose into open parts, we can use the link term in the Hamil-
tonian. The border of an open-membrane operator does not
commute with it because they share one Majorana fermion.
The link term has also the effect of making it impossible for
the strings to run on the links. So if this model has closed-
string condensation, it will be of a different type.

We also need to put in the Hamiltonian the corner opera-
tors. They are needed to make the model not infinite degen-
erate. Consider the following set of commuting corner opera-
tors:

Seven = �Ci
xyz,Ci

xyz,Ci
x̄yz̄,Ci

xyz� , �36�

Sodd = �Ci
x̄yz,Ci

xȳz,Ci
xyz̄,Ci

xyz� . �37�

This choice is equivalent to taking all the corner operators in
the even cubes and none in the odd cubes, as is shown in Fig.
6. All the operators in Seven�Sodd commute with each other,
as it is straightforward to check. We are now ready to write
down the Hamiltonian for this model:

FIG. 4. A triple of noncommuting corner loops. The corner op-
erator above does not commute with the two below. Each corner
term affects three cubes.

FIG. 5. The cube operator and four corner loop operators. The
cube is made of the product of only four such loops. These four
operators all commute with each other because they have no Majo-
rana fermion in common. The four corner loops shown in the figure
are chosen on the odd sites.
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Hf = − g

c

Ŝc − h

�l�

L̂�l� − U 

even c

Ĉi
j. �38�

Since all the terms commute with each other, the model is
exactly solvable. The ground-state manifold is

L = ���� � H�3N�Ŝc��� = L̂������ = Ĉi
j��� = ���� . �39�

What is the ground state of this model like? All the states
obtained acting on a ground state with operators commuting
with the Hamiltonian are still states in the ground state. The
ground state of the Hamiltonian �38� cannot contain open
membranes, because their border does not commute with the
link term. If the membrane is closed, it is the product of cube
operators and it commutes with the Hamiltonian, so closed-
membrane states are allowed in the ground state.

It is of crucial importance to consider nontopologically
trivial closed membranes. They are noncontractible closed
membranes and are not the product of cubes. A noncontract-
ible closed-membrane operator is the product of all the faces
on a plane 	:

M̂	
big = 	

s�	

F̂s, �40�

where 	=xy ,yz ,xz. This big noncontractible membrane still
commutes with the Hamiltonian because it commutes with
the cubes, the corners, and has no border, so it commutes
with the links as well. The noncontractible membrane opera-
tor is of capital importance for the topological structure of
the ground-state manifold, as we will see soon.

Also strings on the links are forbidden for the same rea-
son. Small loops corresponding to the corner loops in the

Hamiltonian are allowed, but they cannot join to form bigger
loops because they are disconnected. A binary term of the
type ��i,i+a�

b ��i,i+a�
c always commutes with the links but not

with the cube operators. We call it a “hinge term.” It does not
commute with corner operators situated at an adjacent cube.
This term corresponds to the edge of a cube. We can join the
hinge terms in a string orthogonal to the links. Thus the
following string operator can be defined. We first draw a
string that cuts the faces in two and is orthogonal to the links.
The elementary string � a

b is orthogonal to the links in the a
direction and runs in the b direction. To this elementary
string we associate the operator

w�� a
b� = ��i,i+a�

c ��i,i+a�
b̄ ��i−b,i−b+a�

b ��i−b,i−b+a�
c , �41�

where a ,b ,c are three orthogonal directions. So each el-
ementary string operator defines a particular cube c. A big

string operator Ŵ��� is the product of many elementary
strings and is obtained making the product of all the w�c� on
the even cubes crossed by the string �see Fig. 7�:

Ŵ��� = 	
even c��

w�c� . �42�

Because we take the hinge operators only on the even cubes,
these strings always commute with the corners that we have
put in the Hamiltonian. The ends of an open string do not
commute with the cubes so these strings commute with the
Hamiltonian only when they close. Therefore this model has
a different type of closed-string condensation. Notice that

FIG. 6. A section of the cubic lattice is shown. The picture
shows the set of commuting corner operators selected for the
Hamiltonian. At even sites, we choose the upper corners �marked
with a � in the xy and xy quadrants and the lower corners �marked
with an �� in the other two quadrants. We make the complementary
choice on odd sites. This is equivalent to alternately taking all the
lower corners or all the upper corners in a square. This means that
in even cubes all the corners are taken, but in the odd ones none.

FIG. 7. �Color online� The string featured in the model.
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strings and membranes anticommute if they intersect in a
single point and thus an open-string operator anticommutes
with a closed-membrane operator if its end is trapped inside
the membrane.

Now what about the closed-membrane condensation? We
established that they commute with the Hamiltonian. Now
we have to prove that they do not dissolve into smaller
pieces. Even cubes are elementary closed membranes that
actually dissolve in the corners. But we are interested in
closed membranes of arbitrary size. Can they dissolve? A
bigger closed membrane can at most “lose” its corners if they
belong to even cubes. Sometimes the corners get smoothed
as can be seen in Fig. 3. So closed membranes do not dis-
solve and we have a particular type of closed-membrane con-
densation.

Does this model have topological order? The answer is
yes. It has a finite ground-state degeneracy that is stable
against perturbation. The degeneracy depends on the exis-
tence of a nontrivial algebra of noncontractible membranes
and strings. Consider the noncontractible membrane opera-
tors �40� and now consider the following noncontractible
string operator orthogonal to the plane xy:

Ŵ = ���i,i+x�
y ��i,i+x�

z̄ ����i−z,i−y+x�
z ��i−z,i−y+x�

y � ¯ . �43�

This noncontractible string commutes with the Hamiltonian
but flips all the noncontractible membranes in the plane xy.
These two operators realize the four-dimensional algebra
�x ,�z on the ground-state manifold L. We have three such
algebras so the dimension of the total algebra is 64. This
nontrivial algebra acts on the vector space L which is there-
fore eight dimensional. The model has topological order.

We can constrain this model onto a physical Hilbert space
of even number of fermions on each link by putting a con-
straint on the links as follows. The constraint is that of an
even number of physical fermions on each link, so for ex-
ample, on each link �i , i+ ẑ� we require the constraint

�− ��x
†�x+�y

†�y = 1 �44�

of an even number of fermions, and analogous constraints on
the links along the other two axes. Again we can define pro-
jection operators to project down to the physical Hilbert
space. The local projection operators are obviously

P�i,i+â� =
1 + �− �N�i,i+â�

2
, �45�

where

N�i,i+â� 
 �b,�i,i+â�
† �b,�i,i+â� + �c,�i,i+â�

† �c,�i,i+â� �46�

and a�b�c take a value in x ,y ,z. The global projection
operator is

P = 	
links

P�i,i+â�. �47�

After the projection, the physical Hilbert space is 23N dimen-

sional. The projection makes the link term trivial: L̂�l�=1.

This is a full local bosonic model because the total Hilbert
space is a product of finite-dimensional local Hilbert spaces
and the Hamiltonian is the sum of local bosonic operators.
They are bosonic in the sense that they all commute with
each other when they are far apart.

After the projection, the model becomes a system of spins
1/2 on the links and we can map the Hamiltonian �38� onto
a Hamiltonian with � operators acting on the links. All we
have to do is to map the corner operators correctly. The cor-
rect mapping is

Ci
xyz = ��x�i

x ��y�i

x ��z�i

x , �48�

Ci
xyz = ��x�i

x ��ȳ�i

x ��z̄�i

x , �49�

Ci
xȳz = ��x�i

z ��ȳ�i

z ��z�i

z , �50�

Ci
xyz̄ = ��x�i

z ��y�i

z ��z̄�i

z , �51�

Ci
x̄yz = ��x̄�i

x ��y�i

z ��z�i

z , �52�

Ci
xyz = ��x̄�i

x ��ȳ�i

z ��z̄�i

z , �53�

Ci
xyz = ��x̄�i

z ��ȳ�i

x ��z�i

x , �54�

Ci
x̄yz̄ = ��x̄�i

z ��y�i

x ��z̄�i

x �55�

for the �commuting� corner operators in G, that is, at even
sites i. On the odd sites i+a we have to assign the � opera-
tors in a complementary way, that is, sending �x��z and
vice versa in order to have the right commutation-
anticommutation properties.

In order to write the Hamiltonian �38� in terms of the new
variables, we have to find the expression for the cube opera-
tor. It turns out that

Ŝc = Ĉi
xyzĈi+x+y

xyz Ĉi+x+z
x̄yz̄ Ĉi+y+z

xyz �56�

so we see that neighboring cubes have complementary ex-
pressions in terms of � x ,� z.

In terms of the � operators, the one-half-spin model thus
becomes

H1/2 = − g

c

Ŝc − U 

even c

Ĉi
j

= − g

i

��x�i

x ��y�i

x ��z�i

x ��x̄�i+x+y

z ��ȳ�i+x+y

x ��z�i+x+y

x

���x̄�i+x+z

z ��y�i+x+z

x ��z̄�i+x+z

x ��x�i+y+z

x ��ȳ�i+y+z

x ��z̄�i+y+z

x

− U 

even cubes

���x̄�
z ��y�

x ��z�
z + ��x̄�

x ��y�
z ��z̄�

x

+ ��x�
z ��ȳ�

z ��z�
z + ��x�

x ��ȳ�
x ��z̄�

x � . �57�

We can give an explicit expression for the ground states. Let
�0�= �01¯0N� be the totally polarized state with all the spins
down. Then if we consider the state
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��000� = 	
c

1 + Ŝc

2 	
s

1 + Ĉs

2
�0� , �58�

this is obviously a ground state; indeed it is immediate to see

that for any Ŝc , Ĉi
j

Ŝc��000� = Ĉi
j��000� = ��000� . �59�

The cube operators generate the group of the �contractible�
closed-membrane operators,

M = �Ŝc�; �60�

the corners do not make a group because the product of
corners is not a corner. Since the cubes generate a group, the
ground state ��000� contains the sum of all possible contract-
ible closed-membrane states, immersed in a broth of corners:

��000� = 	
s

1 + Ĉs

2 

M̂��M

M̂��0� , �61�

where M̂� are membrane operators defined on the contract-
ible surfaces �. The other sectors of the ground state can be

reached by means of the noncontractible membranes M̂	.
The ground-state manifold can thus be written as

L = span���ijk�� , �62�

where i , j ,k=0, 1 and

��ijk� = M̂xy
i M̂yz

j M̂xz
k 	

s

1 + Ĉs

2 

M̂��M

M̂��0� . �63�

V. EDGES OF OPEN MEMBRANES

An open string in the model �12� has two ends that are
particlelike excitations. Open-string states are excitations be-
cause they do not commute with some of the plaquettes.
Open strings have no tension, which means that their ends
are free to hop in the lattice without paying additional en-
ergy. A longer string does not cost more energy than a shorter
one. These elementary excitations are shown to be be fermi-
ons by means of their hopping algebra.11

In the model of Hamiltonian �57�, open membranes are
forbidden because their border violates the constraint on the
links. So open-membrane states are out of the physical Hil-
bert space. To make open membranes possible, we have to
contour them with a ring of Majorana fermions. Then the
following membrane operator defined on the open surface �
makes states that are within the physical Hilbert space:

M̂� = 	
s��

F̂s 	
�i,i+â����

��i,i+â�
a �64�

where b�a. Notice that b can be chosen among the other
three different Majorana operators that exist on the link

�i , i+ â�, whereas the Majorana fermion ��i,i+â�
a belongs to the

face operator F̂s.
Now the open-membrane states pay an energy cost be-

cause the membrane operator does not commute with the
cube operators. In the model Eq. �57� the elementary excita-
tions are open strings or open membranes. An open mem-
brane does not commute with the link term because of its
edges. So bigger membranes cost more energy than smaller
ones: the membranes have a tension. The elementary excita-
tion is therefore a single edge that exists on the link of the
lattice.

The contour 	�i,i+â������i,i+â�
b is a closed- �fermionic�

string operator. This fact makes the edge of the membrane
have a fermionic property. To give a precise definition of a
fermionic edge, let us consider a system whose linear size in
the z direction is given by Lz. We also assume periodic
boundary conditions in the z direction and Lz to be odd. Now
consider an open membrane that wraps around the z direction
once. The open membrane has the topology of a cylinder
with two circles as its two edges. Clearly both circles contain
odd numbers of links since Lz is odd. When the cylinder is
very long, it looks like a string with two ends. Using the
statistical algebra of Ref. 12, we find that the ends can be
viewed as fermions in the x-y plane. In contrast, the edges of
the membrane in the first model �6� do not have such a fer-
mionic property. It is in this sense that we call the edge of the
membrane in the present model fermionic.

VI. CONCLUSIONS

In this paper we discussed three bosonic models on three-
dimensional lattices with nontrivial topological orders. All
models contain Z2 string condensations, and hence are de-
scribed by Z2 gauge theories at low energies. Despite this,
the three models contain three different Z2 topological or-
ders. The first model �6� contains both string and membrane
condensations. The ends of condensed strings �the Z2

charges� and edges of condensed membranes �the Z2 vortex
loops� are bosonic. The first model gives rise to the standard
Z2 gauge theory at low energies. The second model �12�
appears only to have a string condensation. The ends of
strings are fermions. The third model �57� also contains both
string and membrane condensations. But this time, the ends
of the strings are bosonic and the edges of the membranes
are fermionic. The third model gives rise to a different topo-
logical order.

String-net and membrane condensed states are not just an
abstract construction, they can be physically implemented.
One way to realize the string-net and membrane condensed
states is through ultracold atoms confined in an optical lat-
tice. The optic lattice has the very useful property that the
confining potential of the optic lattice may depend on the
atomic spins. By tuning the laser frequency, we can tune
such a spin-dependent confining potential. This allows us to
tune the spin-spin interaction between atoms confined in the
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optical lattice. This may allow us to realize some of the
Hamiltonians studied in this paper.

Frustrated spin systems appear quite commonly in nature.
So another possibility is to find the string-net or membrane
condensed states in those frustrated spin systems. The third
type of promising system is Josephson junction arrays.16 The
charge on a superconducting island or the flux through a
superconducting ring may play the role of the spin degree of
freedom. The Josephson junction array is quite tunable. Re-
cent progress in quantum computing has find ways to reduce
the decoherence. So building a Josephson junction array to

realized the constructed Hamiltonians may also be possible.
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