
Theory of the spin EPR shift: Application to Pb1−xMnxTe

R. K. Das
Department of Physics, Gopalpur College, Gopalpur-on-sea, 761 002, Orissa, India

G. S. Tripathi*
Department of Physics, Berhampur University, Berhampur-760 007, Orissa, India

P. K. Misra
Department of Physics, Mesa State College, Grand Junction, Colorado 81502, USA

Department of Physics, University of Houston, Houston, Texas 77204, USA
�Received 20 October 2004; revised manuscript received 9 May 2005; published 18 July 2005�

We derive a theory for the spin-contribution to the electron-paramagnetic resonance shift �Ps� for an elec-
tronic system in the presence of a periodic potential, spin-orbit �SO� interaction, conduction electron-local
moment interaction, and an applied magnetic field. An effective equation of motion of the Green’s function is
derived in the presence of the aforesaid interactions in a representation defined by the periodic part of the
Bloch function. The spin-EPR shift is expressed as a function of the matrix elements of the momentum, Pauli
spin-operators, and conduction electron-local moment interactions. We apply the theory to calculate Ps at Mn2+

ion in the diluted magnetic semiconductor �DMS� Pb1−xMnxTe, as a function of the carrier concentration. The
electronic structure of the DMS is calculated using a modified six-level k� ·�� ��� is the momentum operator in
the presence of SO interactions� model. Contributions from band-edge interactions as well as from far bands
are included and relative strengths of these contributions are analyzed. Ps is found to be anisotropic arising due
mainly to the SO interactions. Calculations of Ps for two typical hole densities agree fairly well with the
experimental results for p-Pb1−xMnxTe. Discrepancies between theory and the experiment are analyzed.
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I. INTRODUCTION

The electron paramagnetic resonance �EPR� shift, which
is a measure of an extra field �internal field� created at the
magnetic ion site in magnetic materials or materials �metals
and/or semiconductors� with magnetic impurities by the par-
tial polarization of electrons and/or carriers in an applied
magnetic field, constitutes an important study involving car-
riers and their interactions with the magnetic ions in an elec-
tronic system. The corresponding quantity in the nuclear
magnetic resonance �NMR� is the Knight shift1–3 which de-
pends on the electron-nuclear hyperfine interaction. Both the
studies furnish, in addition to ideas about the aforesaid inter-
actions, important informations regarding the wave functions
of the carriers and also the Fermi surface characteristics of
the system.

Recently measurements of the EPR shift �mentioned as
the EPR Knight shift� at Mn2+ site in diluted magnetic semi-
conductors such as PbMnTe and SnMnTe were reported.4

While both n-type and p-type materials were considered for
Pb1−xMnxTe only p-type materials were considered for
Sn1−xMnxTe; both for the compositions, x=0.0003 and
0.001. The EPR measurements were performed with a
Brucker X-band spectrometer. Hall effect measurements
were performed by a standard four probe dc technique. The
systematics of the experimental observation are as follows:
In case of Pb1−xMnxTe, measurements were performed for
carrier concentrations ranging from 5�1016 cm−3 to about
2�1019 cm−3, for x=0.0003 and 0.001. The experimenters
mentioned that they did not observe any appreciable differ-
ence in the shifts in the composition range considered. For

p-Pb1−xMnxTe, the EPR shift is about −5.5�10−3 at p
=1017 cm−3. With increase in the hole concentration, the shift
increases and becomes positive at p=1019 cm−3. On the other
hand, for the n-type material, the shift is about −4�10−3 at
n=1017 cm−3 which decreases and becomes −11�10−3 at
about n=3�1018 cm−3. However for p-Sn1−xMnxTe, the
range of carrier concentrations considered is approximately
between 5�1019 cm−3 and 2�1021 cm−3; the range here
corresponds to the carrier concentrations normally found in
semimetals. The experimenters claim that theirs is the first
observation of the EPR shift in the diluted magnetic semi-
conductors. They tried to interpret their results by using an
empirical formula which is a function of the electron-
magnetic ion interaction, the carrier g factor and the density
of states at the Fermi surface.

We were motivated by these results because of our expe-
rience of working in the theoretical resonance phenomena,
such as the Knight shift,5–7 the chemical shift8,9 and indirect
nuclear spin-spin interactions10,11 in one of the host systems,
namely PbTe. We have recently done some theoretical inves-
tigations concerning the magnetization and electronic struc-
ture of the diluted magnetic superconductor �DMS�
Pb1−xMnxTe12,13 and the electronic structure of
Pb1−x−yMnxSnyTe.14 The experimental results together with
our aforesaid experience inspired us to pursue a rigorous
theory of the observed phenomena. It may not be out of
context to mention here that diluted magnetic
semiconductors15–21 in general and the aforesaid systems22–24

in particular have attracted considerable attention due to the
possibilities of carrier-mediated ferromagnetism in these sys-
tems, which could be of use in the emerging subject of spin-
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tronics. Thus research in the DMS has acquired immense
current interest and importance.

In Sec. II, we derive a theory for the the spin contribution
to EPR shift �denoted by the symbol Ps� in the presence of an
applied magnetic field, spin-orbit interaction and electron-
local magnetic moment interactions. The spin-orbit interac-
tion is considered because these systems show large carrier g
factors arising due mainly to this interaction. It may be noted
that the g factors can also be affected by electron-local mo-
ment interactions.25 However, we have not considered this
effect in our theory. It is well known that magnetic vector
potential destroys the lattice translational symmetry. How-
ever, this problem has been tackled by one of us previously
in the derivation of the orbital magnetic susceptibility by
using both Roth’s function26,27 and Green’s function28 and
incorporating the Peierl’s phase factor. We follow a Green’s
function approach here because of its inherent importance
and popularity. The essential results of both the approaches
are the same. The use of the Peierl’s phase factor results in
writing the effective equation of motion of the Green’s func-
tion in a space defined by a magnetic wave vector, �� =k�

+ ih� ��� k, where h� =eB� /�c and B� is the applied magnetic
field. Interband effects are considered and Ps is obtained fi-
nally as a function of the matrix elements of the momentum
operator, Pauli spin operators, the electron-local moment ex-
change operator and the density of states.

Section III describes the details of the application of the
theory to p-Pb1−xMnxTe, a diluted magnetic semiconductor
based on the narrow gap lead salt, PbTe. We have chosen a
p-type system because the valence band states transform like
Pb s states which are relatively easier to handle than the
conduction band states which transform like the Pb p orbit-
als. We have calculated Ps for two typical carrier �hole� den-
sities, p=5�1017 cm−3 and p=3�1018 cm−3. Experimental
results are not available below the former value and our
model shows certain inconsistencies above the latter value of
the carrier density. We have calculated our values by consid-
ering three variants of the carrier electronic structure based
on the k� ·�� model.29,30

Section IV outlines the exchange interaction matrix ele-
ments which appear in the theory. The origin of the longitu-
dinal and transverse contributions is also discussed in this
section. Finally, we discuss our results followed by appropri-
ate concluding remarks in Sec. V.

II. THEORY OF THE SPIN-EPR SHIFT

In this section we derive a theory of the spin-EPR shift.

The shift corresponds to a change in the magnetic field ��B� �
experienced by magnetic ions in an electronic system due to
partial polarization of conduction electrons in the presence of

an applied magnetic field B� and the electron-local moment
�of the magnetic ion� interaction. For example, if the inter-

action of the local magnetic moment M� of a magnetic ion in

a diamagnetic environment is given by Hdia=−M� ·B� , then the
same interaction in a conduction-electron environment is
given by

H = − M� · B��1 +
�B�

B�
� . �1�

�B� /B� corresponds to the EPR shift, P. Since this shift is less
than a few percent, the applied magnetic field and the
electron-local moment interactions are considered as pertur-
bations. We start, with the equation of motion of the one
electron Green’s function in the presence of the aforesaid
interaction, the periodic potential and the spin-orbit interac-
tion in the real space and derive an effective equation of
motion for the same in the k� space and separate the nonper-
turbing and perturbing parts of the Hamiltonian. Following
Eq. �1� the EPR shift on the jth site is given by the expres-
sion

Pj
�	 = � −

�2


�B��Mj
	�

B�→0,M� j→0

, �2�

where 
 is the thermodynamic potential and is given by31


 = −
1

�
Tr ln�− G�l

� . �3�

Tr involves summation over both imaginary frequencies and
one-particle states forming a complete orthonormal set and
G�l

is the one-particle Greens function. The meaning of G�l
would be clear in the following.

The one particle Green’s function G�r� ,r�� ,B� ,M� j ,�l� in the
presence of a periodic potential V�r��, spin-orbit interaction,

applied magnetic field B� , and local magnetic moment at the

jth site M� j satisfies the equation32

��l − H�G�r�,r��,B� ,M� j,�l� = �r� − r��� , �4�

where �l is the complex energy,

�l =
�2l + 1�i�

�
+ �, l = 0, ± 1, ± 2, . . . , �5�

� being the chemical potential and �−1=kBT. Further, the
one-particle Hamiltonian is

H =
1

2m
�p� +

e

c
A��2

+ V�r�� +
�

4m2c2�� · �� V � �p� +
e

c
A��

+
1

2
g0�0B� · �� + HI, �6�

where

HI =
1

2gJ�0
�

j�
M� j · ��J�r� − R� j� . �7�

In Eqs. �6� and �7�, A� is the magnetic vector potential, and

J�r�−R� j� is the strength of the exchange interaction between
the conduction electron and the local moment at the jth site.
Further gj is the Lande g factor of the localized electron and
�0 is the Bohr magneton. G satisfies the lattice translational
symmetry in the absence of the applied magnetic field. How-
ever, this symmetry is destroyed by the magnetic field. In
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order to take care of this lack of lattice symmetry in the
presence of the magnetic field, we express G as a product of
the Green’s function G which satisfies the lattice translational
symmetry and the Peierl’s phase factor28 using the symmetric

gauge for the vector potential value A� �r��= 1
2B� �r�,

G�r�,r��,B� ,M� j,�l� = eih� ·r��r��G�r�,r��,B� ,M� j,�l� . �8�

Here, as mentioned earlier,

h� =
eB�

2�c
. �9�

It would be pertinent here to comment on Eq. �8�. The phase
factor has the effect of translating the origin of the vector
potential. The general Peierl’s phase is �e /2�c��A�r��
+A�r���� · �r�−r���. The phase factor has been used by many
authors.33,34 It can be traced to Peierl’s original paper.35

However, recently there have been some attempts36,37 to im-
prove the treatment of Bloch electrons in a constant magnetic
field beyond Peierl’s approximation. A general theoretical
approach for the nonperturbative Bloch solution of
Schrödinger equation in the presence of a constant magnetic
field is presented.36 Using a singular gauge transformation
based on a lattice of magnetic flux lines, an equivalent quan-
tum system with a periodic vector potential is obtained. For
rational magnetic field this system forms a magnetic super-
lattice for which Bloch’s theorem then applies.

Derivation of the effective equation of motion by using
Eq. �8� in Eq. �4� is quite complicated. However, this has
been done in detail in an earlier work of one of the authors
concerning the magnetic susceptibility of Bloch electrons.28

Their effective equation of motion can be slightly modified
to obtain the following:

��l − H��� ��G�k�,�l� = I , �10�

where

H��� � 	 H0�k�� + H��k�� . �11�

These are given by

H0�k�� =
1

2m
�p� + �k��2 + V +

�

4m2c2�� · �� V � �p� + �k��

�12�

and

H��k�� = − i
�

m
h�����k

� +
1

2
g0�0��H� +

1

2�0
�

j

1

gj
Mj

	�	J .

�13�

Repeated indices here and elsewhere in the work imply sum-
mation over Cartesian components and �, as mentioned ear-
lier, is given by

�� = k� + ih� � �� k. �14�

Equation �10� is derived in a representation defined by the
periodic part uk���r�� of the Bloch function �k��, where k� is the
reduced wave vector. Further

�� = p� +
�

4mc2�� � �� V , �15�

momentum operator in the presence of the spin-orbit inter-
action and h��=����h�. Here ���� is an antisymmetric ten-
sor of third rank and we follow Einstein summation conven-
tion. Equation �3� can be further simplified by writing the
frequency summation as


 = −
1

2�i
tr 


c

����G���d� , �16�

where

���� = −
1

�
ln�1 + e−���−��� �17�

and tr involves summation over one particle states only. The
contour c encircles the imaginary axis in an anticlockwise
direction. Equation �10� can be solved by a perturbation ex-
pansion of G�k� ,��,

G�k�,�� = G0�k�,�� + G0�k�,��H�G0�k�,��

+ G0�k�,��H�G0�k�,��H�G0�k�,�� . �18�

We have retained terms up to second order since we are
interested in the EPR shift independent of the applied field
and the local moment. In Eq. �18� G0�k� ,�� satisfies the equa-
tion

�� − H0�k���G0�k�,�� = I �19�

and is diagonal in the basis uk���r��. The first two terms in Eq.
�18� would not contribute to the EPR shift, and this could be
easily tested from the inspection of Eq. �2�. Using Eq. �18�
and the identity28

�k
�G0�k�,�� =

�

m
G0�k�,����G0�k�,�� , �20�

we can write

G�k�,�� = �
j

Mj
	B� 1

2gj
��G0��G0�	JG0 + G0�	JG0��G0�

−
i

m
�����G0��G0��G0�	JG0

+ G0�	JG0��G0��G0�� . �21�

Here G0 is the compact form of G0�k� ,��. Equation �16� is
evaluated using Eqs. �17� and �21�. Denoting the contribu-
tions of the first and second terms of Eq. �21� to 
 as 
1 and

2, we write


 = 
1 + 
2, �22�

where
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1 = �
j

H�Mj
	 �

nk����

� 1

2gj
�	J�

n�,n��
�n��,n�

� f��Enk��� �23�

and 
2 is obtained after a straightforward but little tedious
evaluation as


2 = �
j

H�Mj
	 �

n,m,k�,�,��,��m�n

�
i

m
����

� 1

2gj
�	J�

n�,n��
�n��,m��

�
�m��n�

�

Emn
f��Enk��� .

�24�

In Eqs. �23� and �24� f��Enk�� is the first derivative of the
Fermi function and Enk� satisfies the equation

H0unk���r�� = Enk�unk���r�� . �25�


2 arises due to the spin-orbit interaction and is zero in the
absence of it. This is a very important term in semiconduc-
tors with large spin-orbit interaction energy. The matrix ele-
ments of type Qn�,n�� are given by

Qn�,n�� =
�2��3


c
�

cell
unk��

* �r��Qunk���r��dr� , �26�

where 
c is the unit cell volume and

Emn = Em�k�� − En�k�� . �27�

From Eqs. �2� and �22�–�24� the spin contribution to the EPR
shift at the jth site is given by

Pjs
	� = − �

n,k�,�,����,m�n

1

2gj
��	J �n�,n����n��,n�

�

+
i

m
����

�n��,m��
�

�m��,n�
�

Emn

� f��Enk�� . �28�

A more rigorous analysis would have yielded additional
terms arising out of the effect of the spin-orbit interaction on
the orbital motion of Bloch electrons. However, since we are
interested only in the spin-contribution to the EPR shift, we
have not considered these terms. Equation �28� can further
be written in terms of the effective g factor as

Pjs
	� = −

1

2 �
nk����

� 1

2gj
�	J�

n�,n��
gnn

� �k���n��,n�
� f��Enk�� ,

�29�

where the effective g factor gnn
� �k�� is defined through the

equation

gnn
� �k���n��,n�

� = g0�n��,n�
� +

2i

m
���� �

m�n,��

�n��,m��
�

�m��,n�
�

Emn
.

�30�

Equation �29� can be applied to both metals and semiconduc-
tors with magnetic ions and appreciable spin-orbit interac-

tion. In the following sections we have applied this formula
to the calculation of the EPR shift at Mn2+ site in
Pb1−xMnxTe. However, it can be expressed in a simplified
way, if we make drastic approximations, by considering the
quantities appearing on the right-hand side of Eq. �29�, av-
eraged over the Fermi surface, as

Pjs = Jjsdgeff ���F� , �31�

where

Jjsd = � 1

4gj
�zJ

F
, �32�

geff is the average value of the effective g factor evaluated at
the Fermi surface and ���F� is the density of states which is
obtained by considering the fact that −f���−�F�=��−�F�.
Equation �31� is the formula used for the experimental
analysis.4 However, in what follows, we shall use Eq. �28�
for the evaluation of the spin-EPR shift. In order to do this
we consider the carrier-concentration dependent electronic
structure of Pb1−xMnxTe in the following section.

III. ELECTRONIC STRUCTURE OF Pb1−xMnxTe

A. k� ·�� model

We wish to calculate the electronic structure of
Pb1−xMnxTe using a k� ·�� model and use it for the evaluation
of the EPR shift. Details of this kind of calculation are pre-
sented in an earlier work14 by two of the authors. We only
reproduce a part of it which is essential to make the paper
self-contained. Depending on the level of sophistication and
the character of the particular problem at hand, one can use
one-band or multiband Kohn-Luttinger29 or Kane30 model
Hamiltonians. The principles of both the models are same.
However, in the original Kohn-Luttinger effective mass rep-
resentation, only interactions within the valence band are
treated exactly; interactions with all other bands are consid-
ered using perturbation theory. However, in the Kane’s
model, both valence and conduction bands are treated ex-
actly.

The method supposes that energy bands and wave func-
tions have been determined by some process for a reference
point in the Brillouin zone, k�0. Then we ask for these quan-
tities at a neighboring point k�. Let �n�k� ,r�� be the wave func-
tion for a state in the nth band at position k� in the zone, and
let � j�k�0 ,r�� refer to the jth band at k�0. It is convenient to
define a set of functions29

� j�k�,r�� = ei�k�−k�0�·r�� j�k�0,r�� . �33�

These functions form a complete orthonormal set. The un-
known �n�k� ,r�� is expanded in terms of the known functions
� j,

�n�k�,r�� = �
j

Anj�k��� j�k�,r�� , �34�

where Anj�k�� are the expansion coefficients. It may be noted
that we cannot expand �n�k� ,r�� directly in terms of � j�k�0 ,r��
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since functions belonging to different wave vectors are or-
thogonal. Substituting Eq. �34� in the following eigenvalue
equation,

� �2

2m
+ U�r����n�k�,r�� = En�k���n�k�,r�� , �35�

we obtain, following a straightforward but tedious process,
the effective equation of motion:

�
j
��Ej�k�0� − En�k�� +

�2

2m
�k2 − k0

2�� jl

+
�

m
�k� − k�0� · �� lj�Anj�k�� = 0 �36�

in which

�� lj =
�2��3


c
�

cell
d3rul

*�k�0,r���� uj�k�0,r�� . �37�

There is one equation for each value of the band index l. The
index n �on Anj� refers to the nth solution of the equations,
and may be suppressed without leading to misunderstanding.
The condition for this infinite set of simultaneous, linear,
homogeneous equations to have a nontrivial solution is that
the determinant of the coefficients should vanish. A general
element of this determinant has the form

H jl − E�k�� jl �38�

with

H jl = �Ej�k�0� +
�2

2m
�k2 − k0

2�� jl +
�

m
�k� − k�0� · �� lj . �39�

The problem is to diagonalize the effective Hamiltonian ma-
trix, whose elements are given by Eq. �39�.

Although this procedure has been developed with the in-
tention that it will be used to relate energies of states at
neighboring points of the zone, there is nothing in the deri-
vation of the effective Hamiltonian which restricts us to this
situation. If enough states are included in the Hamiltonian,
there is no reason why the bands cannot be obtained through-
out the zone. This supposes that there is enough experimental
or theoretical information available from other sources to fix
the values of the momentum matrix elements on which the
calculation depends and which may be regarded as adjust-
able parameters. It may be mentioned, in passing, that a Tay-
lor’s expansion of E�k� −k�0� is also used for this purpose.
However, this is not a popular method.

B. k� ·�� model for PbTe

The host material PbTe is a narrow gap degenerate semi-
conductor with the minimum gap EG occurring at the L
point, �2� /a�� 1

2 , 1
2 , 1

2
� in the Brillouin zone. In addition to the

band edge states, there are two more bands each above and
below the minimum gap, which contribute to the k� ·��
model32,33 �Fig. 1�. In the presence of the spin-orbit interac-
tion, each band is Kramer’s split and there are 12 states

altogether. In the usual k� ·�� approach5 for lead salts, the
Hamiltonians for the band edge states are diagonalized ex-
actly and the far bands �both conduction and valence� are
treated using second order perturbation theory, keeping terms
up to k4 in the energy expansion. We call this method the old
model. This can still be extended to include terms up to k6 as
to be applicable at high carrier densities. This extension is
termed as the old model plus sixth-order corrections to the
energy. However, as we shall see later both these models do
not work satisfactorily for our calculation.

Therefore, we consider an improvement as follows. In-
stead of diagonalizing the band edge Hamiltonians only, all
the six bands could be diagonalized exactly through a 12
�12 matrix. However, this must be done numerically. Al-
though with the availability of modern computing facilities,
this is no longer formidable; application of this model to our
present theory involving matrix elements of momentum and
s�p�-d hybridization operators would be enormously diffi-
cult. The other way is to follow a successive diagonalization
of the band edge states. This is also formidable. Therefore,

FIG. 1. Schematic picture of energy levels at the L point of the
Brillouin zone in PbTe. The L-point double group basis functions
are taken from Mitchell and Wallis �Ref. 32� and the ordering of
bands is as per Bernick and Kleinman �Ref. 33�.
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we have rediagonalized the band edge states by considering
the energies and wave functions of the first diagonalization
as the basis and treated the far bands, as usual, by perturba-
tion theory. We have followed such an approach to calculate
the Fermi energy and the density of states �DOS� as func-
tions of carrier density for p-Pb1−x−ySnxMnyTe recently.14

The physical justification of this rediagonalization is that,
although the first diagonalization is exact, the second diago-
nalization was necessitated because H�= �� /m�k� ·�� �k�0 is
chosen as the origin of the calculation� is carrier concentra-
tion dependent and its strength increases as a function of this
carrier density. With the change in the carrier density, the
shape of the Fermi surface changes, resulting in the change
of the Fermi momentum. This Fermi momentum is not bor-
rowed from experiments, but obtained, by solving the disper-
sion relation self-consistently which in turn depends on the
H�. Thus there is an effective dependence of the carrier den-
sity on the accuracy of the treatment of H�. This is called the
new method.14,38

It may be noted that final results of this work are pre-
sented in a small paragraph of about dozen lines in Ref. 38.
However, the focus there was on the carrier electronic struc-
ture calculation in the lead salts without magnetic ions. We
reproduce some identical equations below from Refs. 14 and
38 to make the paper self-contained.

The diagonalization of the band edge Hamiltonians de-
scribed by the Mitchell and Wallis �MW�39 basis states and
Bernick and Kleinman �BL�40 ordering with the above H�
give ��1 ,�2� for the conduction band and ��3 ,�4� for the
valence band, and the corresponding energies are E2

− and E1
+.

These are

�1 = QL62
− � − TkzL61

+ � + Sk+L61
+ � , �40�

�2 = QL62
− � + TkzL61

+ � + Sk−L61
+ � , �41�

�3 = QL61
+ � + TkzL62

− � − Sk+L62
− � , �42�

�4 = QL61
+ � − TkzL62

− � − Sk−L62
− � , �43�

and

E2
− = �2

− +
�2k2

2m
+ �1/2�EG�W − 1� , �44�

E1
+ = �1

+ +
�2k2

2m
− �1/2�EG�W − 1� , �45�

where

Q = �1 + W

2W
�1/2

, �46�

T =

�2
�

m
t

EG
�W�1 + W�

, �47�

and

S =

�2
�

m
s

EG
�W�1 + W�

. �48�

�L62
− � ,L62

− �� and �L61
+ � ,L61

+ �� are the basis functions for the
conduction and the valence band-edge states in the MW
notation.39 � and � denote the Kramer’s conjugate pairs. The
other symbols are

s = �L61
+ ���+�L62

− �� = �L61
+ ���−�L62

− �� , �49�

t = − �L61
+ ���z�L62

− �� = �L61
+ ���z�L62

− �� , �50�

k± =
�kx ± iky�

�2
, �51�

�± =
��x ± i�y�

�2
, �52�

W = �1 + �k�
2 + �kz

2, �53�

� = 2
�2

m2

s2

EG
2 , �54�

FIG. 2. The Fermi energy �in eV� is plotted as a function of hole
concentration. p2 � 3 is chosen for the abscissa because, for a free-
carrier-type behavior, the curve should have been a straight line.
Thus departure from the linear behavior suggests the manifestations
of nonparabolicity of the energy bands and nonspherical Fermi
surfaces.
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� = 4
�2

m2

t2

EG
2 , �55�

and

k�
2 = kx

2 + ky
2. �56�

�2
− and �1

+ are the conduction and valence band energies at the
L point which is considered as the origin of the k� space. As
mentioned earlier, we have rediagonalized the Hamiltonian
considering Eqs. �40�–�43� as the basis wave functions and
Eqs. �44� and �45� as the corresponding energies. After redi-
agonalization, we obtain

�1 = X��1 + X�3 + X��4, �57�

�2 = X��2 + X��3 − X�4, �58�

�3 = X��3 − X�1 − X��2, �59�

and

�4 = X��4 − X��1 + X�2. �60�

The new conduction band and valence band energies are

E2
− = E2

− + �1/2�EGW�X − 1� �61�

and

E1
+ = E1

+ − �1/2�EGW�X − 1� . �62�

The symbols used are

X = ��1 + ��2 + 2 + �2, �63�

� =
2P11

EGW
, �64�

 =
2P13

EGW
, �65�

�2 =
4�P14�2

EG
2 W2 , �66�

X� =�1 + X + �

2X
, �67�

X =


�2X�1 + X + ��
, �68�

and

X� =
�

�2X�1 + X + ��
. �69�

P11, P13, and P14 are single group momentum matrix ele-
ments and are defined in Ref. 39. The total energy for both
the conduction and the valence bands can be obtained by
treating the far bands using perturbation theory. The evalua-
tion of this energy, the Fermi energy and the density of states

is given in detail in Ref. 14. In the limits of �, , and � going
to zero, our new method reduces to our old method. The
band gap as a function of Mn concentration x is given by41

EG�x� = EG�0� + 2.51x . �70�

In Figs. 2 and 3, we plot the Fermi energy versus p2/3 where
p is the hole concentration and the density of states �DOS� vs
��FP

�1/2, respectively. In Fig. 2, the abscissa is chosen as p2/3

instead of p because the Fermi energy is linear in p2/3. De-
viation from the linear behavior suggests nonparabolic en-
ergy bands and nonspherical Fermi surfaces. Figure 3 also
reveals the same kind of deviation from linearity for the
DOS as a function of �F

1/2. Similar behavior was observed in
p-Pb1−x−ySnxMnyTe as well.14

IV. EPR SHIFT IN p-Pb1−xMnxTe

In the preceding sections we have discussed the theory of
the EPR shift and the electronic structure of p-Pb1−xMnxTe
as a function of carrier density �in this case the hole concen-
tration�. We shall now consider both these aspects together
and evaluate the EPR shift at the Mn2+ site in p
-Pb1−xMnxTe as a function of the hole concentration. The
MW basis states for the band edge levels at the L point are39

L61
+ ���� = � i cos �+R↑�↓��sin �+S±↓�↑� , �71�

and

FIG. 3. The density of states is plotted as a function of the
square root of the Fermi energy. For parabolic bands, this should
have been linear. Departure from the linearity implies that the bands
are nonparabolic and Fermi surfaces nonspherical.
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L62
− ���� = sin �−Z↑�↓� ± cos �−X±↓�↑� , �72�

where R is an atomic s state around Pb, Z and X± are atomic
p states with mz=0 and ±1, respectively, and S± are the
atomic d states with mz= ±1. In Eq. �71� about 90% of the
contribution comes from the s orbitals, cos �± and sin �± are
the spin-orbit mixing parameters; � and � denote the param-
eters of a Kramer’s pair and the spin states ↑ and ↓ refer to

the eigenstates of Sz in a coordinate system with X= �1̄1̄2�,
Y = �11̄0�, and Z= �111� axes of a valley at one of the L
points out of the four in the Brillouin zone. We evaluate the
matrix elements of �zJ�r�� and �xJ�r�� using these wave
functions and these are

�L61
+ ������zJ�r��L61

+ ����� = ± A
c, �73�

�L62
− ������zJ�r��L62

− ����� = ± B
c, �74�

�L61
+ ���xJ�r��L61

+ �� = − a1
c �75�

and

�L62
− ���xJ�r��L62

− �� = b1
c, �76�

where

A = a1 − a2, �77�

B = b1 − b2, �78�

a1 = cos2 �+�R�J�r��R�/
c, �79�

a2 = sin2 �+�S+�J�r��S+�/
c, �80�

b1 = sin2 �−�z�J�r��z�/
c, �81�

and

b2 = cos2 �−�X+�J�r��X+�/
c. �82�

We briefly describe the calculational procedure below. In
PbTe the energy surfaces at the L points are approximately
prolate spheroids with the major axes in the �111� directions.
Therefore, within the first Brillouin zone there are eight half-
spheroids or equivalently four completely spheroidal energy
surfaces. However, as discussed earlier, with k� values away
from those at the band edges, the surfaces of constant energy
become cylindrical. The momentum, spin and the exchange
interaction matrix elements occurring in Ps are evaluated at
an arbitrary k� point by using the wave functions �Eqs.

�57�–�60�� and the MW wave functions for the far bands. In
the absence of a magnetic field all the four valleys at the
�111� zone edges are equivalent. However, in an arbitrarily
oriented external magnetic field, neither the matrix elements
of �� nor the Fermi population factors are identical in the four
valley at the �111� zone edges. It is convenient to treat the
problem of four valleys by evaluating the susceptibility in
each of the four symmetrically equivalent coordinate systems
�Xn ,Yn ,Zn , :1–4� with each Zn axis along the principal axis
of one of the four valleys. Following Mitchell and Wallis we

take X1, Y1, Z1 axes along �1̄1̄2�, �11̄0�, �111�, crystallo-
graphic directions, respectively. The remaining three coordi-
nate systems are generated by four fold rotations about the Z
axis �001�. Since, when the field is applied in �001� direction,
all the four valleys are equivalent, we evaluate P in one
valley and multiply by four to account for all valleys.

We can express Z direction in terms of the crystallo-
graphic directions as

Z = azx1
X1 + azy1

Y1 + azz1
Z1, �83�

where azx1
=2/�3, azy1

=0, and azz1
=1/�3. Using the well-

known transformation formula, we have

Pjs
zz = �

�,�=X1

Z1

az�az�Pjs
��. �84�

Since we are interested in the diagonal components of the
EPR shift tensor, Eq. �84� can be written as

Pjs
zz = azx1

2 Pjs
x1x1 + azy1

2 Pjs
y1y1 + azz1

2 Pjs
z1z1. �85�

Using the above values of azx1
, azy1

, and azz1
, we have

Pjs
zz = 1

3 Pjs
z1z1 + 2

3 Pjs
x1x1. �86�

Denoting Pjs
z1z1 as Pjs

l and Pjs
x1x1 as Ps

t , we can write Pjs as

Pjs = 4� 1
3 Pjs

l + 2
3 Pjs

t � , �87�

where Pjs
l and Pjs

t are the longitudinal and the transverse
spin-EPR shifts for any valley. These two quantities are ob-
tained from Eq. �28� and are

TABLE I. Different contribution to Ps
l �all values in the units of 10−3� at Mn2+ ion in Pb1−xMnxTe. Both two-band �band edge� and

far-band contributions are considered. The far-band contributions together are opposite to the dominant two-band contributions. The far
bands contribute about one-third of the two-band contribution. At higher carrier concentration the fraction of the far-band contributions
increases further and is about one-half of the two-band contribution.

p �cm−3� Ps
l �two-band� Ps

l �far-band-inter� Ps
l �far-band-intra� Ps

l

5�1017 −2.22 0.679 0.0257 −1.5

3�1018 −1.98 0.905 0.071 −0.999
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Pjs
l = −

1

4 �
n,k�,�,��,��,m�n

���zJ�r��n�,n���n��,n�
z

+
1

m

��zJ�r��n�.n����n��,m��
−

�m��,n��
+ − �n��,m��

+
�m��,n�

− �

Emn

� f��Enk�� �88�

and

Pjs
t = −

1

4 �
nk�,�,��,m,��,m�n

���xJ�r��n�,n���n��,n�
x +

1
�2m

��xJ�r��n�,n�����
+ − �−�n��,m���m��,n�

z − �n��,m��
z ��+ − �−�m��,n��

Emn
� f��Enk��� , �89�

where n stands for the wave functions �3 and �4 and m does
for �1, �2, and other far band basis functions. Enk�� is the
total valence band energy. In Eqs. �88� and �89�, we have
taken gj =2 because for Mn2+, S= 5

2 , and L=0. Different ma-
trix elements are evaluated by taking �1 to �4 for the band
edge states and L62

+ �, �, L5,4
+ �, � and L61

− �, � and L5,4
− �, � of

the MW paper39 for the far bands. The k� summation was
done numerically by considering cylindrical coordinates in
the momentum space. The spin-orbit mixing parameters
sin �± and cos �±, and the single group energy values are
taken from Bernick-Kleinman.40 The single group momen-
tum matrix elements such as P11, P13, P14 for PbTe were
obtained through a private communication.42 The s�p�-d ex-

change parameters a1, a2, b1, b2, A and B are obtained from
Dietl et al.43

V. RESULTS AND DISCUSSION

Our results for Ps are presented in Tables I–III. We have
calculated the anisotropic EPR shift for two typical carrier
densities, p=5�1017 cm−3 and p=3.5�1018 cm−3 in three
different ways. Apart from the use of the present electronic
structure which gives Ps �new�, we have also calculated Ps
�old� by using the old method of single diagonalization of
band edge states and extending this to include sixth order
terms in k�

2 and kz, which gives the contribution, Ps �old
+sixth order�.

TABLE II. Different contributions to Ps
t �all values in units of 10−3� at Mn2+ ion in Pb1−xMnxTe. Both two-band �band-edge� and far-band

contributions are considered. Both the contributions are of the same sign, unlike in Ps
l . The fraction of far-band contributions is much smaller,

which increases with increase in carrier density.

p �cm−3� Ps
t �two-band� Ps

t �far-band-inter� Ps
t �far-band-intra� Ps

t

5�1017 −0.615 −0.002 −0.016 −0.633

3�1018 −0.570 −0.0029 −0.08 −0.653

TABLE III. Results of Ps �all in the units of 10−3� calculated in three different ways and comparison with experiment. Ps �new� is
calculated using the modified k� ·�� model in which case the Hamiltonian for band edge states are rediagonalized. Ps �old� represents the
model in which the band-edge states are diagonalized only once and energy is expanded up to k4 terms. Ps �old+sixth order� follows the old
method except that the total energy expression is expanded up to k6 terms. However, inclusion of extra terms does not improve the old results
for the carrier densities considered. The new model gives better agreement with the experimental results.

p �cm−3� Ps �new� Ps �old+sixth order� Ps �old� Ps �expt.�

5�1017 −3.69 −5.14 −5.14 −3.14

3.5�1018 −2.98 −4.98 −4.98 −2.00
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From Table III, we see that the present model gives better
results vis-a-vis experimental results,4 justifying its better ac-
curacy. In Tables I and II, we present the longitudinal �Ps

l�
and transverse �Ps

t� contributions to Ps. It is observed that
there is considerable anisotropy. Each of these contributions
is expressed as a sum of a two-band contribution Ps

� �two-
band�, Ps

� �far band-inter� which takes into account the inter-
action of the valence band with the other two conduction
bands and Ps

� �far band-intra� which considers the interaction
of the valence band edge with the other two valence bands.
Here � stands for l and t. In both cases we see that the
two-band contributions are dominant. While in the longitu-
dinal shift, the far-band-intra contribution is smaller than the
far-band-inter contribution, the reverse thing happens in case
of Ps

t . While in case of Ps
l , the far band contributions have

opposite sign with regard to the band-edge contributions, in
case of Ps

t , all the three contributions have the same sign, for
both the carrier densities. In case of Ps

l , �Table I� the far band
contributions together account for a significant fraction of
the dominant two band contribution, which increases with
increase in the carrier density. On the other hand, for Ps

t

�Table II� the far band interactions together constitute a very
small fraction of the two-band contributions. However, as in
Ps

l , this fraction increases with increase in the carrier density.
There is considerable anisotropy, as expected, due to the

large spin-orbit interaction which contributes to the aniso-
tropy of the g factor. The anisotropy could also result from
sp-d hybridization,25 but we have not considered it here. Fur-
ther, the two band or band-edge contributions are dominant,
as expected, because of the smaller energy gap between the
band edge states. Another mechanism which we have not
considered is the contribution due to the core polarization
which is an intra-atomic phenomenon. However, we cannot

comment on its possible strength without a quantitative
analysis for the Mn2+ ion.

Now we wish to comment on the higher theoretical values
obtained in comparison with the experimental values. While
the values obtained in the new model are slightly higher than
the experimental values, those obtained following the old
method are considerably higher. The old model gives larger
Fermi energies owing to the inadequate treatment of inter-
band interactions in the k� ·�� method. Because of the narrow
gaps in these semiconductors, departure from the linear be-
havior occurs for small concentrations and this is not re-
flected in our old model. The slightly higher new values may
be due presumably to the core polarization and other mecha-
nisms we have not considered.

In conclusion, we wish to state that we present in this
work a reasonably detailed theory of the spin-EPR shift in
Pb1−xMnxTe. There is a good agreement with experimental
results for the two typical carrier densities considered. Not-
withstanding the encouraging results, there is still scope for
improvement. In deriving Ps, we have neglected some terms
which should have given some additional contributions ow-
ing to the spin-orbit interactions alone, in addition to the
term retained which modifies the carrier g factor. There
could be some contribution from the interaction of the mag-
netic ions mediated by carriers �RKKY� which is oscillatory
in nature. However, this contribution is not expected to be
significant since RKKY interaction results from second-order
effects. In spite of the omission of these possibly useful
mechanisms, we see that our results agree fairly well with
the experimental results.
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