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The transport properties of diluted magnetic semiconductors (DMS) are calculated using the dynamical
mean field theory (DMFT) and the Boltzmann transport theory. Within the DMFT we study the density of
states and the dc resistivity, which are strongly parameter dependent such as temperature, doping, density of the
carriers, and the strength of the carrier-local impurity spin exchange coupling. Characteristic qualitative fea-
tures are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative
determination of important parameters defining the underlying ferromagnetic mechanism. We find that spin-

disorder scattering, formation of bound state, and the population of the minority spin band are all operational
in the DMFT in different parameter ranges. We also develop a complementary Boltzmann transport theory for
scattering by screened ionized impurities. The difference in the screening properties between paramagnetic
(T>T,) and ferromagnetic (T<T,) states gives rise to the temperature dependence (increase or decrease) of
resistivity, depending on the carrier density, as the system goes from the paramagnetic phase to the ferromag-
netic phase. The metallic behavior below 7. for optimally doped DMS samples can be explained in the
Boltzmann theory by temperature dependent screening and the thermal change of carrier spin polarization.
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I. INTRODUCTION

Diluted magnetic semiconductors'=* (DMS) with transi-
tion temperatures as high as 150 K (GaMnAs at 5% Mn)'~3
or even above room temperature (GaMnN, GaMnP)* are at-
tracting much attention lately in part because of possible
“spintronic” applications.’ The prototypical DMS material is
Ga;_Mn, As with the Mn ions substitutionally replacing Ga
at the cation sites. It is widely believed that the ferromag-
netism in this material is carrier induced with holes donated
by Mn ions mediating a ferromagnetic interaction between
the randomly localized Mn spins.® The coupling of carrier
spins (holes in GaMnAs) and localized moments (Mn impu-
rities) gives rise to the unique magnetic and transport (as
well as optical) properties in DMS.

DMS transport properties are influenced by the exchange
interaction between the carriers and the localized moments as
spin fluctuation scattering contributes to the resistivity. The
experimentally measured dc resistivity in the DMS
materials>’-® shows interesting behavior strongly depending
on the concentration of the magnetic impurity and tempera-
ture. In In;_ Mn,As (Ref. 8) and Ga,_,Mn,As (Refs. 3 and 7)
with low Mn concentration (x<0.03) only an insulating be-
havior has been observed in transport measurements. How-
ever, near optimal doping x=0.05, where the highest value
of T, is reported, the nonmonotonic behavior (insulator-
metal-insulator) of the resistivity as a function of tempera-
ture is observed. A resistivity peak appears near the critical
temperature (7,), and the resistivity shows metallic behavior
(dpge!dT>0) below T. and insulating behavior (dp,./dT
<0) at higher temperatures. The peak has been understood
as the critical scattering effects at T of spin fluctuations.’

In this paper we present theoretical calculations for DMS
transport properties and study the role of the carrier-spin
coupling which are crucial for ferromagnetic properties.
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Transport measurements have proven useful in understand-
ing the physics of the colossal magnetoresistance (CMR)
manganites where carrier-spin coupling is also crucial.'’ In
our calculation we use a recently developed nonperturbative
method, the “dynamical mean-field theory”!! (DMFT), for
calculating the DMS transport properties. A nonperturbative
method is needed in the DMS materials because the crucial
physics involves bound-state formation and other aspects of
intermediate carrier-spin couplings not accessible to pertur-
bative methods. (We note that the most interesting phenom-
ena in the DMS involve intermediate couplings and interme-
diate temperatures. This regime is very difficult to treat by
standard analytical or numerical methods.) The DMFT has
been recently applied to the DMS system to calculate the
magnetic  transition temperature and the optical
conductivity.'>!*> The DMFT is essentially a lattice quantum
version of the Weiss mean field theory where the appropriate
density of states (including impurity band formation) along
with temporal fluctuations are incorporated within an effec-
tive local field theory. An important ingredient of DMFT'? is
that it reduces to the standard Ruderman-Kittel-Kasuya-
Yosida (RKKY) physics in the weak-coupling regime and
the double exchange physics in the strong coupling regime.

Our DMFT results show an interesting dependence of the
resistivity on carrier-spin coupling (J), carrier density (n),
doping of the magnetic material (x), and temperature (7)
revealing key features of the underlying physics. We find that
our results show many similarities to the CMR manganites,'’
especially, for a large carrier-spin coupling and near half fill-
ing of the impurity band (i.e., in the double exchange re-
gime) since the spin-disorder scattering dominates in this
parameter range. However, the DMS dc resistivity exhibits
features not found in the CMR in the weak coupling RKKY
limit (J<1.0¢t, where ¢ is the band width of the carrier).
These features arise mainly from the bound state formation
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of the carrier-local spins and the carrier occupation of the
minority spin band. The formation of the bound state gives
rise to an insulating behavior even if the carrier localization
effects are not taken into account. Experimental observation
of our predictions should lead to crucial information about
the bound state formation and impurity band physics in this
problem. Even though we focus on III-V compound based
DMS such as Ga;_,Mn As, the results presented in this paper
are general for all DMS materials.

An important limitation of the DMFT is that it is a non-
perturbative local theory that cannot really incorporate spa-
tial fluctuations, and therefore resistive charged impurity
scattering with its strong momentum dependence is essen-
tially impossible to handle in the DMFT. We therefore con-
sider the Boltzmann transport theory to calculate the resistiv-
ity of the DMS systems.'#!> The Boltzmann theory is used to
calculate the charged impurity disorder limited DMS resis-
tivity (whereas the DMFT is used for obtaining the spin dis-
order limited DMS resistivity). The charged impurity disor-
der arises here both from the ionized Mn acceptor in
GaMnAs as well as other charged defects/impurities invari-
ably present in a semiconductor. Using a relaxation time ap-
proximation we assume that the Boltzmann resistivity is due
to ionized impurities. The carriers (holes) are scattered by the
screened Coulomb potential, which we calculate using the
linearized Thomas—Fermi (TF) approximation and the ran-
dom phase approximation (RPA). We find that the dominant
temperature dependence of the resistivity comes from the
change in the screening length in the high density metallic
samples. In the metallic GaMnAs DMS samples the change
in the measured resistivity, when the temperature goes from
T, to zero, is about 20% in good agreement with our calcu-
lation. In the ferromagnetic state (T<<T,), as the temperature
decreases from 7=T7,. we find strong temperature depen-
dence of the resistivity arising from the low temperature
screening function and the thermal change of the carrier den-
sities in each spin-split subband. When all the carriers are
polarized (this happens in the low density limit) the screen-
ing function is almost independent of temperature and the
resistivity is also temperature independent. Inclusion of both
the spin disorder and the ionized impurity disorder in the
DMS transport is the important ingredient of our theory.

This paper is organized as follows. In Sec. II, we describe
our model and our theoretical approach based on the DMFT.
In Sec. III, we study, in detail, the density of states and
describe the formation of the spin polarized impurity band.
In Sec. IV, we provide the results of calculated DMS resis-
tivity within the DMFT. In Sec. V, we calculate the transport
resistivity within the Boltzmann transport theory for ionized
impurities. In Sec. VI, we summarize our qualitative findings
and providing a critical discussion of the applicability of our
results to DMS systems. A brief conclusion is given in
Sec. VIL

II. MODEL AND FORMALISM

Our basic model of the DMS systems is that of magnetic
dopants (“impurities”) interacting through a local exchange
coupling with carriers in the host semiconductor material.

PHYSICAL REVIEW B 72, 035210 (2005)

The generally accepted Hamiltonian of the system is given
by

H=Hhost+HM+HAF7 (1)

where H,,, describes carrier propagation in the host semi-
conductor band. For simplicity we consider a host material
with a single nondegenerate band. We therefore write

VZ
Hipost = 2, f dxifip(x) { om VR(X)] Palx), (2)

where « is the spin index and V is a random potential aris-
ing from nonmagnetic defects in the material (e.g., As anti-
site defects, unintentional background charged impurities,
etc.). The second (magnetic) term in Eq. (1), H,,, describes
coupling of the carriers to an array of impurity (e.g., Mn)
spins at positions R;,

Hy= 2 $oRIIS: 0ap+ W, 5l0s(R),  (3)
i,a,B

where J is the local exchange coupling between the spin of
the magnetic impurity and the the spins of the semiconductor
carriers, W is the (Coulombic) potential arising from the
magnetic dopant, R; are the positions of the magnetic dop-
ants, and o is the Pauli matrix. Here we absorb the magni-
tude of the impurity spin into the coupling J (which we take
to be positive), and represent the spin direction by the unit

vector S. The third term in Eq. (1), Hup, is the direct
Mn-Mn short-range antiferromagnetic exchange interaction

Hyp= 2 Jar(R; = Rj)si : Sj9 “4)
ij
where J,r is a direct antiferromagnetic exchange coupling
between impurity spins.

In this section we approximate our model by neglecting
the nonmagnetic random potential, Vi, and the direct antifer-
romagnetic exchange interaction, J,. Lattice defects may be
playing an important role in determining the magnetic and
transport properties of the samples, but we assume here that
these defects enter our theory only in determining the basic
parameters of the model, namely, the density of magnetically
active dopants n;, the hole density n., and perhaps the local
effective exchange coupling J between the holes and the
magnetic impurities, and do not include any defects into our
model explicitly. We include charged impurity scattering
through the Boltzmann equation in Sec. IV of this paper. We
believe that the effects of the antiferromagnetic coupling be-
tween magnetic impurities are either negligibly small or in-
corporated into the effective parameters of the model. Actu-
ally, in the parameter range of interest to us (x<<1), where
the DMS ferromagnetism typically occurs, the magnetic im-
purities are separated from each other by nonmagnetic at-
oms, and this short-range antiferromagnetic interaction,
which rapidly decays with the distance, should be negligible.
These approximations are nonessential and are done in the
spirit of identifying the minimal DMS magnetic model of
interest. Both of these effects, which may be of quantitative
importance in some situations, can be included in the theory
by adjusting the parameters of the model or perhaps at the
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cost of introducing more unknown parameters characterizing
these interactions. Recently several theories for the DMS fer-
romagnetism explicitly including spatial disorder effects and
antiferromagnetic coupling have been developed.'®

In our DMFT DMS model there are two sources of cou-
pling between the carrier and the impurity magnetic moment:
a spin-spin coupling (J) and a potential scattering (W). The
crucial physical issues are revealed by the consideration of a
ferromagnetic state in which all impurity spins S; are aligned,
say, in the z direction. Then the carriers with spin parallel to
S, feel a potential —/+ W on each magnetic impurity site and
antiparallel carriers feel a potential J+W. These potentials
self-consistently rearrange the electronic structure. The spin-
dependent part of this rearrangement provides the energy
gain which stabilizes the ferromagnetic state. The key phys-
ics issue is, evidently, whether the potential W= J is weak
(so its effect on carriers near the lower band edge is simply a
scattering phase shift) or strong (so only majority spin or
perhaps both species of carriers are confined into spin-
polarized impurity bands). Recent density functional super-
cell calculations'” suggest that in GaMnAs—J+ W is close to
the critical value for bound state formation for the majority
spin systems. Unfortunately, the precise effective values of J
and W are typically unknown in a DMS system, and may
have to be extracted experimentally.

We assume that magnetic impurities under consideration
enter substitutionally at the cation sites (e.g., Mn impurities
at Ga sites) and the IIT;_ Mn,V system as a lattice of sites,
which are randomly nonmagnetic (with probability 1-x) or
magnetic (with probability x), where x now indicates the
relative concentration (i.e., per Ga site) of active Mn local
moments in [IIMnV. If more complete information about Mn
locations on the GaAs lattice becomes available it will be
straightforward to incorporate that in the DMFT formalism.

We now introduce the DMFT for the Hamiltonian given
by Eq. (1). Within the general scheme of the DMFT, the local
(momentum independent) self-energy of the system, 2(iw,),
can be obtained from the time dependent mean field func-
tion. Then the single particle Green function is approximated
by

1
G, iw,) = -

o~ (e — ) (i) ©)

where w is the chemical potential. With the local self-energy
all of the relevant physics may be determined from the local
(momentum-integrated) Green function defined by

d’k
GIOC(iwn) = f (27T)3G(k,l(1)n)

1

= f de D(e) ot A e—Sia)’ (6)

where D(€)=[d’p/(2m)?5(e—¢,) is the density of states
(DOS) for the noninteracting system. The information of the
lattice geometry is included through the noninteracting DOS.
In our model G is a matrix in spin index and depends on
whether one is considering a magnetic (a) or nonmagnetic
(b) site. Since Gy, is a local function, it is the solution of a
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local problem specified by a mean-field function g, which is

related to the partition function Zy.=/dS exp(—S,.) with
action

Sloc=fd7-JdT’E Ca(D&0ap(T— 7)]cp(7")
ap

+ f A7, DS - 0p+ WS, gleg(7) (7)
ap
on the (a) (magnetic) site and
Sioe = J dr J AT 2 ghag(T— T (Dep(r),  (8)
ap

on the nonmagnetic (b) site. Here ¢,(7) [¢}(7)] is the destruc-
tion (creation) operator of a fermion in the spin state « and at
time 7. go(7—7') plays the role of the Weiss mean field (bare
Green function for the local effective action S),.) and is a
function of time. G, depends only on frequency and is
therefore the solution of a single-site problem. The local
Green function G, of the effective single-site problem is
solely determined by the partition function, Z,,., namely,
Gocliow,)=81n Z,,./ 8g;; which is identical to the local Green
function computed by performing the momentum integral
using the same self-energy. Then the self-energy is defined
by

Eaﬁ(iwn) = gOaB(iwn) - Gl_olc,aﬁ(iwn) . (9)

The a-site mean-field function gj can be written as gg,4
=ap+a;m- o,z with m the magnetization direction and a,
vanishing in the paramagnetic state (7>T,). Since the spin
axis is chosen parallel to m g becomes a diagonal matrix
with components parallel (gg,=ay+a;) and antiparallel (g5,
=ap—a;) to m.

The form of the dispersion given in full Hamiltonian
Eq. (1) applies only near the band edges. It is necessary
for the method to impose a momentum cutoff, arising physi-
cally from the carrier bandwidth. We impose the cutoff
by assuming a semicircular density of states D(e)
=a; J[&p/2m)318(e-¢,,)=\4*—€/2mt with t=(2m)*3/
maé. The parameter ¢ is chosen to correctly reproduce the
band edge density of states. Other choices of upper cutoff
would lead to numerically similar results. This choice of cut-
off corresponds to a Bethe lattice in infinite dimensions.
Other (perhaps more realistic) choices for the density of
states would give results qualitatively similar to our results
since the band edge density of states has the correct physical
behavior in our model. For this D(€) the self-consistent equa-
tion for g, obeys the equation

gg(lwn) = iwn + M= (l _x)<g8(iwn)_l>
~x((g(iw,) + US - a5+ W), (10)

where the angular brackets denote averages performed in the
ensemble defined by the appropriate Z., ie., (A)
=[dSP(Q)A, with P(Q)=exp(=Soc)/ Z1oe- With these mean
field functions the local Green function can be written as
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G]OC(iwn):iwil+M_g0‘ (11)

The self-energies are evaluated using Eq. (9) and the full
Green function from Eq. (5). Physical observables can be
obtained from the full Green function G(k, w). In particular,
the mean field function g, can be easily calculated at 7=0

1 1
gool@)=w+u—x——"—"—-(1-x)—, (12)
0 8oo— (W) 8oo
and T=T,
gOa'_W 1
goolw)=w+pu—x—""—5———(1-x)—. (13)
0 (gOo'_vv)z_J2 800

II1. DENSITY OF STATES

The density of states plays crucial roles in determining the
physical properties of the DMS system. Especially, the for-
mation of the impurity band arising from the impurity doping
gives rise to many different aspects from the continuum (i.e.,
virtual crystal approximation) semiconductor band model. In
this section, we calculate the DOS for different parameters
(J, x, W, and T) and show how the impurity bands are formed
and separated from the main band. We describe the DOS of
dynamical mean-field calculations applying to simple semi-
circle models. The DOS is given by the imaginary part of the
Green function

D (w)=- 1 Im G (). (14)
T

In our model for a strong magnetic coupling J>J,. two
spin polarized impurity bands appear at the bottom (majority
spin) and at the top (minority spin) of the main band. Each
isolated impurity band has the weight x. However, if the
coupling is not strong (J<J,) the impurity band is not com-
pletely separated from the main bend. All DMS samples
show that the carrier density is much smaller than the impu-
rity concentration (n<<x) due to the heavy compensation. As
the system is the partially compensated, the chemical poten-
tial w is located in the lower impurity band (if the impurity
bands are formed) or the lower band edge (if the bands are
not formed). Thus all physical properties are determined in
the lower energy band edge. Throughout this paper we only
show the DOS near the lower energy band.

In Fig. 1 we show the calculated DOS for various tem-
peratures as a function of energy. The evolutions of majority
(minority) spin DOS are shown in top (bottom) panels. In
Fig. 1(a) the strength of the coupling constant (J=1.0r) is not
strong enough to form the impurity band. Note that this value
of coupling constant (J=1.0¢) is the critical value for impu-
rity band formation as x — 0. At T=0 the majority (minority)
spin band is shifted to lower (higher) energy compared with
the noninteracting band which has a band edge at w=-2.0z.
Thus all carriers are fully polarized when the carrier density
is low. As the carrier density increases they start to occupy
the minority band if the chemical potential crosses into the
minority spin band. Recently we showed that the optical con-
ductivity of the system is dramatically changed with the oc-
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FIG. 1. Temperature dependence of the DOS for x=0.05 and for
a fixed coupling (a) J=1.0¢ and (b) J=2.0r. The evolutions of ma-
jority (minority) spin DOS show in top (bottom) panels for various
temperature 7/7,.=0.0, 0.5, 0.7, 0.9, and 1.0.

cupation of the minority band.'> We show in this paper that
the calculated dc transport properties are also very sensitive
to the minority band occupation. As the temperature in-
creases, the minority band occupation grows and the carriers
with minority spin increase due to thermal fluctuations. At
T=T,. both spins are equally populated and the bands be-
comes symmetric. As expected we have a separated impurity
band from main band for a strong coupling J=2.0r shown in
Fig. 1(b). When n=x the impurity band is fully occupied, no
low energy hopping processes to main band are allowed and
the system becomes a band insulator. If the impurity band is
partially occupied the delocalization energy increases. At the
half filling of the impurity band the system has the highest
T,.'> As the temperature increases spin disorder grows and
the band becomes symmetric. But the impurity band width of
the paramagnetic state (7=T,) is smaller than that of the
ferromagnetic state. This band shrinking occurs because the
neighboring spins in the paramagnetic state are uncorrelated.

In Fig. 2 we show the calculated majority spin DOS cor-
responding to the disordered spin state (at T=T,, bottom pan-
els) and ferromagnetic state (at 7=0, top panels). The evo-
lutions of the energy (w) dependent DOS are shown for
different doping parameter x=0.001, 0.01, 0.05, 0.1 and for
fixed coupling constant (a) J=1.0¢ and (b) J=1.5¢. In our
model the impurity level (acceptor energy level) and the for-
mation of an impurity band depend on the ferromagnetic
coupling J. If J=<J .=t the impurity level is not isolated from
the main band, but if />J_. we find an isolated impurity level
below the main band. The small dot in Fig. 2(b) indicates the
isolated impurity level in the dilute limit (x—0). As x in-
creases for J>J,. an impurity band centered around the im-
purity level is formed below the main band. For J<J_ the
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FIG. 2. The calculated majority spin DOS at T=0 (upper half)
and T=T. (lower half) is shown for various doping x=0.001, 0.01,
0.05, 0.1 and a fixed coupling (a) J=1.0z, and (b) J=1.5z.

impurities give rise to band tailing in the main band edge
instead of forming impurity band. The bandwidth of the im-
purity band for J>J,. increases with x since the number of
states of the impurity band increases with x. If x is bigger
than x. the impurity band merges into the main band. For J
=1.5¢t we have x,=0.032 at 7=0 K and x.=0.071 at T=T.,.

In Fig. 3 we show the majority spin DOS at (a) 7=0 and
(b) T=T. for a fixed x=0.05 and for various coupling con-
stant J/t=0.5,1.0,1.25,1.5¢,2.0¢t. For J<J, we see the ex-
pected band shift proportional to xJ. For J>J,. an impurity
band centered at impurity level and containing x states is
seen to split off from the main band. Due to the widening of
the impurity band with x we find the separated impurity band
when J>1.58¢ at T=0 and J>1.45¢ at T=T, for x=0.05.
Thus the separated impurity band is expected with small x
and large values of J.
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FIG. 3. The calculated majority spin DOS at (a) 7=0 and (b)
T=T, is shown for a fixed x=0.05 and for various coupling constant
J/t=0.5,1.0,1.25,1.5,2.0.

In Fig. 4 we show the calculated DOS at 7=0 for a fixed
value of J=1.5¢t and x=0.05, and for various values of po-
tential scattering W=-0.5¢,-0.25¢,0.0,0.25,0.5. The DOS
of majority (minority) spin is shown in the top (bottom)
panel. When we include the potential scattering (W) in addi-
tion to the spin-spin coupling (J), the carriers with spin par-
allel to local impurity spin feel a potential —/+ W on each
magnetic impurity site and antiparallel carriers feel a poten-
tial J+W. Thus the formation of the impurity band and the
corresponding physical properties of the system depend on
the combined coupling W=J. Figure 4 shows that while the
band edge of the minority spins is slightly dependent on the
potential scattering, the majority spin DOS is strongly af-
fected by the potential scattering. Even weak potential scat-

I =
[ J=1.5t x=0.05 T=0 =
02F 3
0.1F e —
é 0.0 :
 ——— W=-051 ]
A W=-0.25t l ]
TR e W=0.0 ]
SRR W=0.25t
F o W=0.5t
02 F 3
E s ‘ 2 ‘ 1 s 2 s 1 | 1 s 2 2 1 2 L
-3.0 25 2.0 -1.5
w/t

FIG. 4. The majority (top panel) and minority (bottom panel)
DOS at T=0 are shown for a fixed value of J=1.5¢ and x=0.05 for
various potential scattering W/t=-0.5,-0.25,0.0,0.25,0.5.
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FIG. 5. The density dependent resistivity at 7=T,. for a fixed
value of x=0.05 and for various coupling constant J/t
=0.7,1.0,1.2,1.4,1.5,2.0. Insets show the DOS with the corre-
sponding parameters.

tering can change the extended majority spin band into the
spin-polarized impurity bands or the well formed impurity
band into the band tail of the main band.

In the following section we show that our calculated re-
sistivities depend strongly on whether the carriers are within
the impurity band or in the band tail of the extended main
band.

IV. de RESISTIVITY

The conductivity is calculated from the usual Kubo for-
mula. The Kubo formula for the conductivity o involves the
two particle current-current response function. Since the ir-
reducible vertex in the response function is purely local in
our approximation of DMFT there is no vertex correction.!'®
Thus, within this approximation only the simple bubble sur-
vives and the real part of the finite frequency conductivity is
given by

o(Q.7) =D, J de D(e)®(g) J %W
X A (e, w)A (g,0+ ), (15)

where A (e,w)=—(1/7)Im G (e, w) is the spectral function,
®(e)=(4r>-¢?)/3 is the current vertex for the Bethe
lattice,'® f(w) is the Fermi distribution function. For the hy-
percubic lattice!® ®(g)=1 has been used in Eq. (15), but for
the Bethe lattice the explicit form is derived in Ref. 19. The
dc resistivity p=1/0y, is then found from Eq. (15) in the
limit Q— 0 with o,,=d(Q—0), which is given by

0ulD)= 3 f de D(e)®(e) f ( af("’))A(xa o).

(16)

In Fig. 5 we show the calculated resistivity at T=T, as a
function of carrier density for a fixed value of x=0.05 and
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various coupling constants J/t=0.7, 1.0, 1.2, 1.4, 1.5 and
2.0. The insets show the density of states near the band edge
corresponding to the disordered spin state (T=T,). All calcu-
lated results show that p diverges as n— 0 due to the absence
of carriers. As density increases we find two different behav-
iors depending on the formation of the impurity band. (The
critical coupling constant which gives rise to the formation
of the well separated impurity band below the main band for
x=0.05, T=T, is J.=1.48t.) In the weak coupling limit J
=< 1.0z, where the impurity band formation dose not happen,
the resistivity-decreases as the density increases monotoni-
cally. However, in the strong coupling limit (J=J,), where
the impurity band is formed, the resistivity diverges again
when the impurity bands are fully filled (i.e., for n=x) and
the system becomes a band insulator. In the intermediate
coupling regime (1.0t<J<J,.) the resistivity shows non-
monotonic behavior.

In Fig. 6 we show the calculated resistivity as a function
of temperature for various density. For the strong coupling
limit (J=2.0r), in Fig. 6(a), we find a crossover (resistivity
peak) separating a good metal at low 7 from a semiconductor
at higher T. The resistivity peaks are proportional to the en-
ergy separation between the chemical potential and the band
edge of the minority band. In the high temperature regime
above the resistivity peak the decreasing resistance with in-
creasing temperature, characteristic of a semiconductor or
insulator, is due to thermal excitation of the carriers from
impurity band to the upper minority spin band. The resistiv-
ity decreases with density because the carriers in the main
band are scattering off the impurities. But at low tempera-
tures most carriers in the impurity band contribute to the
scattering and give nonmonotonic density dependence of the
resistivity. The metallic behavior at low temperature can be
understood by the disappearance of the coherent central qua-
siparticle peak in the DOS. For the weak coupling limit (J
=1.07), in Fig. 6(b), the resistivity can be explained by the
scattering effects in the main band except the behavior in the
ferromagnetic state (T<T,). For T<T, the resistivity
changes from insulating at low densities to metallic at high
density. Details of this behavior are given in Fig. 7. We see
that the resistivity crossover takes place only at low densities
since the minority band is occupied by the carriers at high
density.

In Fig. 7 we show the dc resistivity as a function of tem-
perature for different densities in the low temperature regime
(T<2T,). In Fig. 7(a) we use the parameters x=0.05 and a
strong coupling J=2.0z. In this case all carriers (if n<x)
occupy the impurity band and stay mainly at Mn sites. Thus,
the carriers in the impurity band follow the fluctuation of the
localized Mn spin. At half filling of the spin polarized impu-
rity band (n=0.025) the resistivity has the lowest value and
its behavior corresponds to that of the double exchange (DE)
model (see Fig. 10), that is, the resistivity decreases below
the critical temperature because of the spin disorder scatter-
ing as the temperature decreases.?’ In the low density limit
(n<<0.25, less than half filling) the resistivity is dominated
by the “impurity band” contribution and the resistivity in-
creases as density decreases due to the lack of mobile carri-
ers. As the carrier density is increased above the half filling

035210-6



TRANSPORT PROPERTIES OF DILUTED MAGNETIC...

100 ——T1— ——
e J=2.01, x=0.05

L ) ]

80

L | L | L | L I L
00005 01 015 02 025
(a) Th

15— — 1 T T
J=1.0t, x=0.05

P R B

d 015 02 025
(b) T/t

FIG. 6. The calculated resistivity for (a) a strong coupling

J=2.0¢r with densities 7=0.01,0.015,0.02,0.025,0.03,0.035,

0.04,0.045 (top to bottom) and (b) a weak coupling J=2.0r with

densities 7=0.008,0.01,0.015,0.02,0.025,0.035,0.04,0.045 (top
to bottom). Dots indicate 7, for given densities.

(n>0.25) the resistivity increases due to the filling of the
band. We also find a very different temperature behavior of
the resistivity from the low density case. As the temperature
decreases the resistivity increases just below T,, then de-
creases at very low temperatures. The counter-intuitive in-
crease of resistivity just below T, (as T is decreased) arises
because, as the carrier spins are aligned to the impurity spins,
the binding of the carriers to the impurity spins increases
corresponding to an increase in the basic scattering rate. In
the very low temperature range, however, the DE-like
mechanism dominates, which gives rise to decrease of the
resistivity. (When the impurity band is spin polarized, carri-
ers which are bound to impurity site must have spins parallel
to impurity spin. Thus, as the spins order ferromagnetically,
the basic ability of carriers to move in the impurity band
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FIG. 7. The low temperature dc resistivity as a function of tem-
perature for a fixed x=0.05 and for various densities. In (a) the
results for a strong coupling constant (J=2.0f) and densities n
=0.01,0.012,0.015,0.025,0.3,0.35,0.38,0.40 are shown. In (b) we
use J=1.0¢ and n=0.015,0.016,0.0163,0.0165,0.18,0.2,0.25,0.3
(from top to bottom). Dots indicate the T, for given parameters.

0.01

increases.) The overall temperature dependence of resistivity
is very weak in the strong coupling limit. This weak T de-
pendence of the dc resistivity below 7. occurs because the
increase in scattering rate due to the binding is compensated
by DE-like mechanism.

In Fig. 7(b) we show the results for a weak coupling limit,
J=1.0t. In this case the impurities contribute to form the
band tail of the main band and the chemical potential lies in
the main band. In the low density limit (n<<n.=0.0164,
where n, is the density above which the minority band starts
to fill) the resistivity below T, increases as the temperature
decreases. The increase in resistivity is due to increased
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FIG. 8. The energy evolution of optical conductivity for (a) a
intermediate coupling J=1.0r and (b) a strong coupling J=2.0z.
Solid (dashed) lines correspond to the results for 7=0 (T=T,). The
insets show the dc conductivities with corresponding parameters.
The arrows indicate T..

carrier-spin coupling as mentioned above. But, in the high
density limit (n>n,, where at T=0 the minority spin band is
occupied) we find the resistivity decreasing as the tempera-
ture decreases. This metallic behavior in the high density
regime and for a low coupling constant can be understood by
the small scattering rate of the carriers in the minority band.
If the carriers are near the edge of the majority spin band, the
carriers form a spin-polarized bound state, so the effective
scattering rate strongly increases, which gives rise to the in-
sulating behavior as shown in the low density results. On the
other hand, if the carriers are in the minority spin band the
carriers form an antibound state at the top of the band, so that
at the physically relevant lower band edge, the effective scat-
tering rate decreases. In addition in three dimensions the
vanishing of the density of states at the band edge further
decreases the scattering. These effects are quite large and
dominate as the minority band is occupied, which gives rise
to the metallic behavior in the high density limits. In the
paramagnetic state the resistivity is almost temperature inde-
pendent. In the limit 7> T, the local Green function G(w) is
temperature independent and the resistivity depends on tem-
perature only weakly through the Fermi function (thermal
smearing around the chemical potential).

In Fig. 8 we show the relation between the optical con-
ductivity and dc resistivity. The main panels of Fig. 8 show
the evolution of the conductivity for two couplings; weak
[J=1.0z, Fig. 8(a), where the impurity band formation is not
accomplished], and strong [J=2.0r, Fig. 8(b), where the im-
purity band is well formed]; the insets show the dc resistivity
with the same parameters. The solid (dashed) lines indicate
the optical conductivity for T=0 (T=T,). When the impurity
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FIG. 9. The calculated dc resistivity as a function of temperature
for a fixed x=0.05, n=0.01, J=1.0¢, and for various potential scat-
tering W/t=-0.5,-0.2,0.0,0.05,0.2. The arrows indicate the criti-
cal temperature 7.

band is not formed (for J=1.0¢) we find approximately the
Drude form for optical conductivity expected for carriers
scattering off random impurities (a closer examination re-
veals minor differences due to density of states variations
near the band edge). In this case (and for n<n,) the dc
conductivity shows insulating behavior due to the formation
of the bound state. Since the carrier density is low enough
not to fill the minority band, the formation of the antibound
state dose not take place, which reduce the scattering rate. In
the J=2.0¢ case the density of states plot shows the formation
of an impurity band and the corresponding conductivity has
two structures: a low-frequency quasi-Drude peak corre-
sponding to the motion within the impurity band and a
higher frequency peak corresponding to excitations from the
impurity band to the main band. In this case the dc resistivity
shows metallic behavior because the reduction of the spin-
disorder scattering dominates over the bound-state forma-
tion. In In;_ Mn,As (Ref. 8) we find the Drude-like conduc-
tivity is correlated with the insulating behavior, but in
Ga,_Mn,As (Ref. 21) the midinfrared peak in the optical
conductivity is closely related to the decrease of the dc re-
sistivity below the critical temperature.

Figure 9 shows the sensitivity of the predicted behavior to
potential scattering. In this figure we use the parameters: x
=0.05, n=0.01, J=1.0¢, and for various potential scatterings
W/t=-0.5,-0.2,0.0,0.05,0.2. At zero scalar potential (W
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=0.0, middle panel) the impurity band is not formed, and the
resistivity shows insulating behavior below 7, due to the
bound state formation of the carrier spins with impurity
spins. As the potential is made more attractive (negative), the
impurity band features become pronounced and the spin-
disorder scattering decreases (the carriers move easily in the
impurity band). As the potential is made more repulsive
(positive), the impurity band rapidly rejoins the main band.
This reduces the energy gap between the Fermi energy and
the band edge of the minority band, and for a large enough
repulsive potential the minority band starts to be filled by the
carriers. Thus, the antibound state formation dominates and it
reduces the scattering rate below 7. and shows a metallic
behavior. The DMS transport properties are sensitive to the
combined coupling W=J, and not solely to the exchange
coupling J.

Now we compare the transport properties of the DMS to
those of another system with strong carrier-spin couplings,
namely the CMR manganites.'” In the CMR, instead of being
dilute random impurities as in the DMS, the Mn ions form an
ordered lattice. They possess a large local moment, to which
mobile carriers are very strongly coupled. Thus instead of a
spin-polarized impurity band, there is a spin-polarized con-
duction band, sufficiently well separated from other spin
bands. The periodic arrangement of the Mn sites means that
(in the absence of other physics) the scattering rate decreases
as T is lowered. The CMR materials can be understood well
by the DE model.?° In our model this corresponds to x=1, in
which all magnetic ions replace Ga at the cation sites. In this
case (x=1) the fully polarized spin band is well separated
from the other bands instead of forming an impurity band.
The temperature dependences of the resistivity p(7,B) and
magnetization M(T,B) are given in Fig. 10(a) for x=1.0 with
J=2.5¢t, n=0.5, and various magnetic fields. Above T, the
resistivity has a small temperature dependence since the local
spin fluctuation is saturated above T.. Below T. resistivity
decreases as magnetization increases. The origin of the resis-
tivity dependence on the magnetization is spin disorder scat-
tering, which gives rise to the scaled behavior of the resis-
tivity, p(M)/p(M=0)=1-CM,*> where C is a temperature/
field independent constant.?’ The origin of the resistivity is
qualitatively explained by the carrier scattering due to the
thermally fluctuating spin configurations, or the spin-disorder
scattering. As the spontaneous or the induced magnetic mo-
ment is developed, the amplitude of the spin fluctuation de-
creases so that the resistivity also decreases. In Fig. 10(b) we
show the resistivity for the DMS system with x=0.05. The
overall features of the temperature and the magnetic field
dependence look similar to the DE model. However, we find
that the negative magnetoresistence at 7. is very weak and
the resistivity above T, is not saturated. The fast drop of the
resistivity just below T, can be explained by spin-disorder
scattering. These ideas of the DE model have limited appli-
cability to the DMS systems, i.e., only for strong couplings
and near half filling of the spin polarized impurity band. As
shown in previous figures these ideas cannot explain the re-
sistivity behavior in low coupling and high density regimes.
Note that an important ingredient of the DMS transport prop-
erties is missing from our DMFT theory which, while ac-
counting well for the nonperturbative effects of spin disorder
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FIG. 10. The resistivity p(T,B) for various magnetic fields is
given as a function of temperature for (a) J=2.5¢, x=1.0, n=0.5,
and (b) J=2.5t, x=0.05, n=0.025. The insets show the normalized
magnetization M /M, where M|, is the saturation magnetization.

(/) and local potential (W) scattering by the magnetic impu-
rities, leaves out all ionized impurity disorder that may very
well be important.

V. ELECTRICAL RESISTIVITY: BOLTZMANN
TRANSPORT APPROACH

When the dominant scattering mechanism is the scattering
by charged impurities the Boltzmann transport theory may be
used to calculate the electrical resistivity of the carriers since
the DMFT is not well suited for treating a long-range disor-
der. Due to the band splitting in the ferromagnetic state the
carrier densities n, for spin up/down are not equal. Note that
the total density n=n,+n_. In this situation the total conduc-
tivity can be expressed as a sum of spin up/down contribu-
tions

o=0,+0_, (17)

where o, is the conductivity of the (%) spin subband. The
conductivities o, are given by
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0't=nie <T:>, (18)

m

where m is the carrier effective mass, and the energy aver-
aged transport relaxation time (7.) for the (*) subbands are
given in the Boltzmann theory by

f de 71(8)8|:— &f;(s)}
T (19)
Jda 8|:— &}

e

<7—:> =

where 7.(¢) is the energy dependent relaxation time for the
(%) subbands, and f*(e) is the carrier (Fermi) distribution
function

1
1 4 le=# " (DYkgT’

fie)= (20)

where u*(T) is the chemical potential at finite temperature.
The energy dependent relaxation time is given in the Born
approximation by

2w [ %
TR 2m)?

[He)]™! Ni|Vi:;kr|2(1 — €08 bir) 8e — €7,

(21)

where N, is the charged impurity concentration, and fo_k, is
the screened carrier-impurity Coulomb interaction, which
can be expressed as

47Ze? 1
kq* 1+[q(q)lql*’

where Z is the charge of impurities, « is the background
(GaAs) lattice dielectric constant, and ¢, is the temperature
dependent screening function.

In this paper we consider two screening approaches: the
TF approximation and the RPA. Within the TF screening we

have

2 + -

kr k

q?=qf{—§+—§}, (23)
ki kg

(22)

where ¢7,=4k"/may with k%=(37°n)"? being the Fermi
wave vector of the spin unpolarized state and agz=«h>/me?
the effective Bohr radius. kz=(67"n,)!""? is the Fermi wave
vector of the each spin-split subband. Note that the TF
screening wave vector, being a long wavelength approxima-
tion, is dependent only on the spin polarization, but not on
the temperature explicitly. It is therefore temperature inde-
pendent above the critical temperature. Within the TF screen-
ing approximation we have the energy dependent relaxation
time [by integrating Eq. (21)]

27N, EQ kK
-1 _ 2" NiTF F
[7(e)] = .

—LF4i %), 24
- (4k°1q5) (24)
F

where kp=(ki+kp)/2 and F(x)=(2/x*)[In(1+x)-x/(1+x)].
When a system is fully polarized we have k}=2"3kY and
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FIG. 11. Wave vector dependence of the effective screening
function [polarizability function I1(g) normalized its paramagnetic
state value NFzﬂpara(O)zmkg/ a?] for various polarizations &
=(n,—n_)/n.

qs=q7r/2". For the RPA the temperature dependent screen
function is given by

2 + -
4,(¢.T) = %TF YD+ g |, @)
ki kg
where I1,(q,T) is the temperature dependent static Lindhard
function for each spin subband. In Fig. 11 we show the
screening function ¢*(q,T=0)/q7,=11(q)/Ns, where Nj
=Hpm(0)=mkg/ a2, for various polarization d=(n,—n_)/n.
For an unpolarized state (6=0) there is an inflection point at
q=2k%, which is the usual Kohn anomaly. For partially po-
larized state 0<<6<<1 we have two inflection points at g
=2kF=(2n*/n)'"” and the value of TI(g=0)/Ny decreases as
0 increases. When the system is fully polarized 6=1, and
II(g) has an inflection point at g=2k5, and II(g=0)
=Np/2%3.

At T=0, f*(g)= 6(E7—¢) where E7 is the Fermi energy
for the (*) subbands, and then (7,)= 7(E%) giving the famil-
iar result o=p'=n,e*7(E})/m+n_e*HE;)/m. Within the
TF screening the ratio of the resistivity of the fully polarized
state to that of the unpolarized state becomes p(8=1)/p(S
=0)=2%3F(2*3x0)/ F(x,), where xo=(2k%/qrp)>. (Note x,
o«n'3) In Fig. 12 we show the calculated resistivity as a
function of 8=(n,—n_)/n for several value of x, Solid
(dashed) lines show the results calculated with the RPA (TF)
screening. In general, for small values of x;, p(5=1)>p(S
=0), but for large x,, p(6=1)<p(5=0). At x,=3 we have
p(6=1)=p(65=0). For GaAs x,=3 corresponds to the hole
density n~=10'"" cm™>. In relatively high density limits (large
Xp) the two approximations agree very well, which indicates
that the g=0 scattering mostly contributes to the scattering
time. However, in the low density regime (small x,) we that
find the two screening theories give very different results for
the spin polarized state. Noting that the TF approximation is
just the long wavelength limit of the RPA, we emphasize that
the RPA is obviously the better theory.
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FIG. 12. Calculated resistivity as a function of é=(n,—n_)/n for
various value of xy,=1.0,2.0,5.0,10.0 (top to bottom). Solid
(dashed) lines show the results calculated with RPA (TF) screening
function.

In Figs. 13 and 14 we show our calculated resistivity for
GaMnAs samples. We use the parameters corresponding to
GaMnAs: dielectric constant k=12.9, hole effective mass
m=0.5m,, impurity density N;=10?' cm™, and the magnetic
coupling constant /=120 meV nm.? Figure 13 shows nor-
malized resistivity p(T)/p(T,) as a function of temperature
T/T. for several values of hole density. In Fig. 13 there are
two independent sources of temperature dependence in our
calculated resistivity—one source is the energy averaging
defined in Eq. (19) and the other is the explicit temperature
dependence of the finite temperature RPA screening function
q(q,T). Since the Fermi temperature is much higher than the
critical temperature (7./Tp<<1) the screening function is
weakly temperature dependent above the critical temperature
(unpolarized state). Thus the decrease of the resistivity above
T, with increasing temperature arises from the thermal en-
ergy averaging. This is a well-known high-T effect of ionized
impurity scattering in semiconductors: p(7) decreases with
increasing 7 due to the thermal averaging. As density de-
creases this effect is enhanced. In the ferromagnetic polar-
ized state (T<T,), as the temperature decreases from 7=T,,
the screening length increases until all the holes are polar-
ized. In this temperature range we find a strong temperature
dependent resistivity. This strong temperature dependence
arises from the low temperature screening function and the
change of the carrier densities of the each subband. When all
the carriers are polarized (i.e., at low density and tempera-
ture) the screening function is almost independent of tem-
perature and the resistivity is also therefore temperature in-
dependent. The interplay between the screening length and
the down spin (—) carrier density gives rise to the minimum
of the resistivity in the low density regime. The decrease of
the scattering time due to the fast increase of the down spin
density overwhelms the increase of the scattering time due to
the decrease of the screening length, producing the non-
monotonic behavior for p/N;=<0.1 and T/T.~0.5 in Fig. 13.
But in the high density regime, where the spins are not fully
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FIG. 13. Calculated resistivity, p(T)/p(T,), as a function of tem-
perature. In (a) the RPA results are shown with hole densities
p/N;=0.05,0.1,0.2,0.5. In (b) the TF screening results are shown
with hole densities p/N;=0.01,0.05,0.1,0.2. Here the impurity
density N;=10%" cm™ is used.

polarized even at low T, screening is the dominant effect on
the temperature dependent resistivity. As the density in-
creases the relative low temperature resistivity, p(T)/p(T,),
decreases until the holes are partially polarized. The change
of screening wave vector is larger in this case, leading to the
monotonically increasing p(7) in the T<T, regime.

In Fig. 14 we show our calculated resistivity as a function
of temperature for two hole densities (a) p/N;=0.1 and (b)
p/N;=0.2 with finite temperature RPA screening function.
The temperature dependence of the impurity (i.e., Mn) mo-
ment magnetization as well as the hole spin polarization is
given in the insets, which is calculated using the Weiss mo-
lecular mean-field theory for delocalized carriers.® Note that
the hole gas is almost fully spin polarized upto 7/7,.=0.5 at
low density, but at higher density the holes are partially po-
larized even at 7=0. The bottom insets show the calculated
temperature dependence of the finite temperature screening
wave vector ¢,(0). At high density the screening wave vector
changes by 6% when the temperature increases from zero to
T. due to the partial polarization of the holes at 7=0. But at
low density the decrease of the screening wave vector is
about 20%. In the metallic GaMnAs samples the change of
the resistivity when the temperature goes from 7, to zero is
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FIG. 14. Calculated resistivity as a function of temperature for a
hole density (a) p/n;=0.1 and (b) p/N;=0.2 with the finite tempera-
ture RPA screening function. The top insets show the temperature
dependence of the Mn ions and hole magnetization. The bottom
insets show the calculated temperature dependence of the TF
screening wave vector ¢,(0). Here the impurity density N;
=10%' cm™ is used.

about 20% in good agreement with our calculation. Similarly
the observed decrease of p(T) for T> T, also arises naturally
in our theory as a consequence of thermal averaging. Thus,
the temperature dependence of the resistivity in the metallic
DMS samples may be arising almost entirely from the tem-
perature dependence of screening and thermal averaging in
the charged impurity scattering.

VI. DISCUSSION

We have developed in this work two complementary theo-
ries for understanding the DMS transport properties. Our
work establishes that the DMS transport, even in ideal intrin-
sic circumstances, is rather complex, and depends sensitively
on many system parameters including the exchange cou-
pling, the magnetic impurity density, the carrier density, the
temperature, the band parameters of the parent semiconduc-
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tor (e.g., effective mass, etc.), and the details of the charged
impurity distribution (and therefore compensation). Given
such a complex parameter space, it is not meaningful to try
to develop quantitative transport theories at this early stage
of the subject since all the intrinsic parameters may not be
known. We therefore focus in this work on developing a
comprehensive qualitative theoretical description which em-
phasizes general broad features of how various parameters
affect DMS transport behavior. As such we have concen-
trated in this work on understanding temperature and carrier
density dependence of dc resistivity in a model DMS system,
keeping primarily the extensively studied Ga,;_,Mn, As sys-
tem in mind. Even for GaMnAs, the transport data for vari-
ous values of Mn concentration (x=0.01-0.1) cover much
too broad a range of behavior for a unified and coherent
theoretical description. For example, low (and sometimes
large) Mn concentrations (x<0.03 and sometimes x>0.05)
are known to lead to insulating transport behavior usually
attributed to a disorder-driven metal-insulator (Anderson) lo-
calization. We neglect all localization effects in our theory.
The localized GaMnAs regime in all likelihood requires its
own characteristic theoretical description such as the bound
magnetic polaron percolation theory?> whose transport
properties?® have recently been theoretically analyzed.

Even without the disorder-induced strong localization
complications, neglected completely in this work, we face
the formidable difficulty of using the semiconductor valence/
conduction band (the valence band for GaMnAs, where the
carriers mediating the ferromagnetic interaction are holes) or
the magnetic impurity induced impurity band (i.e., Mn in-
duced d band in the fundamental band gap of GaAs) picture
for describing the carrier dynamics. The precise nature (i.e.,
valence band versus impurity band) of the DMS carriers is
still a controversial issue although it is likely that at the
very high doping densities (e.g., Mn density ~10%! cm™ in
GaMnAs) of the DMS interest the impurity band overlaps
strongly with the valence band (i.e., forms the tail of the
valence band), and therefore, the distinction between the va-
lence and the impurity band picture is not a real qualitative
difference. Our DMFT theory, presented in Secs. II-IV of
this paper, clearly shows that in the strong exchange cou-
pling (J/t>1) regime the impurity band picture applies
whereas in the weak-coupling regime (J/t<<1), the valence
band picture applies. It is possible that GaMnAs belongs to
the intermediate coupling regime (J/#~ 1), where it may be
more appropriate to think of the holes to be residing in the
extended tail of the valence band, presumably with an en-
hanced effective mass compared with the GaAs valence band
hole mass. Such a coupled impurity-valence band picture of
GaMnAs is consistent with recent optical spectroscopy
measurements,®2! but more experimental work is needed to
settle this question.

The theoretical strength of our DMFT description is that,
being a nonperturbative technique, it can handle both strong-
coupling and weak-coupling regimes, and our results pre-
sented in Figs. 610 of this paper show qualitative difference
between the strong-coupling regime (J/¢=2) with an impu-
rity band well separated from the semiconductor band and
the intermediate-coupling regime (J/t=1) with only band
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tailing and no separate impurity band formation. Tempera-
ture, carrier density, and impurity concentration all play
qualitatively important roles in determining the dc transport
properties within the DMFT, and sorting out the details with
respect to experimental results may be extremely difficult.
The weakness of the DMFT is that it can only include
spin-disorder scattering (controlled by J) and Mn impurity
induced local potential scattering (controlled by W) effects
on transport properties. As such it leaves out the most impor-
tant scattering mechanism which may be operational in real
samples, namely scattering by charged impurities which is
often the most important resistive scattering process in
heavily doped semiconductors below the room temperature
(or the optical phonon scattering regime which may well be
above the room temperature). The reason the DMFT is un-
able to account for charged impurity scattering is that the
Coulombic impurity potential is long ranged, and the DMFT
by construction is a local theory. Thus, rewriting our starting
Hamiltonian [Eq. (1)] more completely we have

H=Hhost+HM+HAF+[Hi+Hc]’ (26)

where H; is the carrier-charged impurity interaction and H.. is
the carrier-carrier (i.e., hole-hole in GaMnAs) interaction. In
principle, the terms (i.e., H;,H,) within the square bracket
are parts of the H,,, but it is important to appreciate their
considerable (perhaps even dominant) importance in deter-
mining the dc transport properties. To include the charged
impurity scattering effects on transport, we use the highly
successful and robust semiclassical Boltzmann transport
theory to the DMS systems assuming a mean-field approach
where the long-range Coulomb impurity potential arising
from H; (assuming random impurity scattering) is screened
by the polarization bubble diagrams arising from H,.. This
type of Boltzmann transport theory is extremely successful
in describing the semiconductor transport properties.’* We
note that our DMFT and Boltzmann transport theories are
complementary—the DMFT treats the spin disorder and the
local potential scattering associated with the Mn dopants and
the Boltzmann theory treats the scattering by screened
charged impurity scattering.

The magnetic DMS properties enter the Boltzmann theory
only indirectly through the carrier spin polarization calcula-
tions. Spin disorder scattering is not explicitly included in
the Boltzmann theory although it is straightforward to do so.
Our Boltzmann theory manifests nontrivial interplay among
temperature dependent screening, temperature dependent
spin polarization (i.e., spin up-down carrier densities), and
thermal energy averaging, leading to temperature dependent
resistivity (Figs. 13 and 14) that are rather similar to experi-
mental observations® in GaMnAs. Based on this qualitative
similarity we conclude that much of the GaMnAs DMS
transport is dominated by screened charged impurity scatter-
ing with spin disorder scattering playing only a rather minor
quantitative role. Recently, Lopez-Sancho and Brey'> have
come to a very similar conclusion for GaMnAs transport
properties.

Before concluding we now discuss our theoretical results
in light of the existing DMS transport data. Although there
are some experimental transport data in other DMS systems
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FIG. 15. The schematic diagram for the experimental GaMnAs
dc resistivity for decreasing hole density (from bottom to top) (see
Ref. 3).

(most notably InMnAs with qualitatively similar behavior to
GaMnAs), truly extensive and reliable transport data® are
available only for Ga;_,Mn,As (in the x~0.01-0.08 regime)
DMS samples. Even for this well-studied system, experimen-
tal transport results are problematic, and have considerable
spread in the sense that nominally “identical” GaMnAs
samples (i.e., same nominal carrier density and Mn concen-
tration made in the same growth run) may have different T,
and transport properties. This situation is improving as
sample quality and processing (e.g., annealing) techniques
improve, but experimental DMS transport properties are still
not robust in a quantitative way. This is of course very un-
derstandable given the very large parameter space (i.e., ex-
change coupling, hole density, Mn concentration, defects,
and impurities, compensation, band structure parameters,
etc.) that DMS transport depends on. With these serious ca-
veats we show in Fig. 15 a schematic depiction of the ge-
neric experimental observation for p(7) in GaMnAs for vari-
ous hole densities. At high hole density the system shows
“metallic” behavior for T<<T, with p(T) increasing some-
what with T upto T, and then decreasing slowly for 7>T..
Even the optimally doped most “metallic” GaMnAs is, how-
ever, at best a bad metal with mobilities of the order of
10 cm?/V s with kz/~ 1 where [ is the transport mean free
path. It is important to realize that the DMS transport is
always extremely highly resistive due to the very large
amount of impurities and defects invariably present in the
low temperature molecular beam epitaxy (MBE) process
needed for producing homogeneous GaMnAs samples. Thus,
from the perspective of the heavily doped semiconductors,
although the DMS systems may be above the Mott limit (i.e.,
the carrier density in the Mott metallic range), they are close
to being Anderson insulators due to strong disorder effects.
As the hole density decreases the system eventually becomes
an insulator at low enough carrier densities (the top curve in
Fig. 15), with p(T) decreasing monotonically increasing 7.
Two generic features of Fig. 15 are: (1) a peak (or a kink)
in p(T) near T=T,, and (2) the slow decrease of p(T) for
T>T.. Both of these generic features of p(T) as well as the
metallic high-density behavior are qualitatively (perhaps
even semiquantitatively) well explained by our Boltzmann
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theory approach including only scattering by ionized impu-
rity scattering. This is apparent by comparing Fig. 15 with
Figs. 14 and 13 where our Boltzmann theory results are
shown.

Physically, the increasing p(7) with T (<T,) arises from
the decreasing strength of screening due to the interplay of
two independent and competing physical effects: Tempera-
ture induced suppression of screening and spin polarization
(i.e., the spin polarization decreasing with increasing tem-
perature) induced enhancement of screening with increasing
temperature. As explained in Sec. V the competition between
these two effects depends on the carrier density, leading to
some weak nonmonotonicity in p(T) for T<T,. In this
screening picture, the resistivity peak or cusp at T= T, arises
from the ferromagnetic to paramagnetic transition which af-
fects screening as the carrier density of states (which is in-
versely proportional to the screening length) changes from
one in the fully spin polarized state to two in the fully para-
magnetic phase. Thus, even without any spin disorder scat-
tering effects, just screened ionized impurity scattering by
itself will give rise to the peak or the kink in p(7) at T=T...
The spin disorder scattering, which also produces a kink at
T=T, (see, for example, Figs. 7 and 9), play only a minor
role in the resistivity “maximum” at 7. in optimally metallic
GaMnAs with most of the peak structure arising from the
screening properties of ionized impurity scattering. The re-
sistivity anomaly of the metallic feromagnet in the vicinity of
the T, has been explained by the spin fluctuation,? in which
the carriers are scattered by magnetic fluctuation through the
exchange interaction. However, the transport mean free path
of the DMS systems is much smaller than the correlation
length near T, due to the very large amount of impurities and
defects. Thus, the strong impurity scattering gives rise to
suppressing the resistivity anomaly. Recently, by treating
transport beyond the Boltzmann description, Timm et al.,?
propose that impurity scattering would cause to stronger re-
sistivity anomaly near T.. This disorder-induced anomaly
near 7, may explain the resistivity peak for heavily doped
DMS systems.

The second generic experimental feature in Fig. 15, the
slow decrease of p(T) for T>T,, cannot be explained at all
by spin disorder scattering since spin disorder should remain
large in the paramagnetic system (7=T,.) and certainly
should not decrease with increasing 7. Our Boltzmann theory
provides a natural explanation (Figs. 13 and 14) for the de-
creasing p(T>T,) as arising from the energy averaging of
the relaxation time [Eq. (19)], i.e., p(T) decreases with in-
creasing T simply because the holes move “faster” at higher
temperatures (i.e., increasing kinetic energy with increasing
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T). This decreasing p(T) with increasing T (>T,) also shows
that our neglect of phonon scattering in the transport theory
is a valid approximation since the phonon effects will always
increase p(T) with increasing T. p(T) will increase again
when phonon scattering starts dominating over ionized im-
purity scattering at much higher temperatures. The relative
lack of importance of phonon scattering in the DMS systems
arises from their very strong charged impurity resistive scat-
tering effects as reflected in very small sample mobilities.

VII. CONCLUSION

In this paper we investigate the transport properties of the
diluted magnetic semiconductors using the dynamical mean
field theory and the Boltzmann transport theory. We have
shown that the resistivity depends strongly on the system
parameters, i.e., exchange coupling, carrier density, doping,
and temperature. The resistivity drop with decreasing tem-
perature in the ferromagnetic state can be partially explained
by the screening theory for metallic samples. The parameter
dependence of the resistivity contains important information
about the physics of diluted magnetic semiconductors. We
find that in the strong exchange coupling regime the spin
disorder scattering and the formation of the bound state in
the impurity band compete to produce an unusual behavior in
the temperature dependent resistivity. We also show that in
the weak coupling regime the occupation of the minority
spin band is critical to the scattering mechanisms, and sub-
stantially reduces the resistivity because the repulsive inter-
action between local moments and “wrong-spin” carriers
suppresses the carrier amplitude at the impurity site, reduc-
ing the effective carrier-spin coupling. Our Boltzmann trans-
port theory for charged impurity scattering is in good quali-
tative agreement with the existing DMS experimental data,
showing that transport in the DMS GaMnAs system may
very well be dominated primarily by screened ionized impu-
rity scattering (with spin disorder scattering playing only a
minor secondary role), at least for the optimally doped me-
tallic GaMnAs samples. We have completely neglected the
detailed band structure complications (e.g., spin-orbit cou-
pling in the valence band) in our theory. These effects are
certainly very important, but our interest in this paper is the
development of a conceptually coherent qualitative theory
for the DMS transport identifying the main transport mecha-
nisms, and as such we have neglected all nonessential com-
plications.
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