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The concept of “recombination resistance” introduced by Shockley and Read �Phys. Rev. 87, 835 �1952�� is
discussed within the framework of the thermodynamics of irreversible processes ruled by the principle of the
minimum rate of entropy production �MREP�. It is shown that the affinities of recombination processes
represent “voltages” in a thermodynamic Ohm-like law where the net rates of recombinations represent the
“currents” and the Onsager coefficients of the phenomenological laws represent the inverse of the “resis-
tances.” The quantities thus found allow for the definition of “dissipated power” which is to be related to the
rate of entropy production of the recombination processes dealt with. The goal of this paper is thus to give a
thermodynamical ground to the recombination resistance concept. But, also stressed is the potentiality of the
MREP variational method. To this purpose, the simple case of the ideal �Shockley� diode, where diffusion
forces are active as well, is considered.
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I. INTRODUCTION

Crystal defects are physical entities of primary impor-
tance in solid state physics. Owing to the breaking of trans-
lational symmetry, they originate localized levels capable of
trapping electrons or holes. On this ground, the physical
properties of materials such as semiconductors can be modi-
fied by suitable doping determining the sign of majority car-
riers. Impurity or intrinsic defects may originate localized
levels allowing recombinations of electron-hole pairs in-
jected into bands by some excitation mechanism, thus affect-
ing the lifetime of free carriers. The content of intrinsic de-
fects at �lattice� equilibrium is ruled by general laws.1 But in
reality it strongly depends on the history of the sample dealt
with. Depending on the nature of the defects, three basic
schemes are to be considered. They are the Shon-Klasens
�SK� scheme, in which a conduction band electron recom-
bines with a hole kept in a localized level, the opposite
Lamb-Klick �LK� scheme, in which a valence band hole re-
combines with a localized electron, and the Prener-Williams
scheme, in which both electron and hole are localized within
a two level center.2

At equilibrium, the occupation of electron �hole� levels is
ruled by the Fermi-Dirac distribution fn�E��fp�E�=1
− fn�E��, that is, fn�E�=1/ �1+exp��E−EF� /kT�� where E and
EF stand for the actual and the Fermi levels. The equilibrium
densities of conduction band electrons and valence band
holes are3 n̄=Nnexp��EF−EC� /kT� and p̄=Npexp��EV−EF� /
kT�, respectively, where EC and EV are the energy levels of
the bottom of the conduction band and of the top of the
valence band, respectively, Nn=2�2�mekT /h2�3/2 and Np

=2�2�mpkT /h2�3/2, me and mp the electron and hole effective
masses, respectively. It is to be pointed out that distinction
between electron and hole traps is considered for conve-
nience since only the capture cross section determines the
trapping properties. Often, in the physics of semiconductors
a hole trap is presented as a deep electron level, while a hole
trapping level is presented as an acceptor level. In the phys-
ics of ionic crystals it is usual to define the trapping proper-

ties by means of the defect-charge states. Thus, negative
charge defects are traps for holes �positive carriers�. On the
contrary, positive-charge defects are traps for electrons
�negative carriers�. But there are cases where these rules do
not hold � for example, the U− centers�.4 Also the distinction
of carrier capture for trapping or recombination may be con-
sidered as conventional, since in both cases we are dealing
with changes in level occupancies. Thus, for a general dis-
cussion about capture processes it is convenient to follow the
model of trap classifications used by Simmons and Taylor
�ST�:5 “When a trap is empty it is ready to receive an elec-
tron, and thus it is operating as an electron trap. When the
trap contains an electron, it is ready to receive a hole, and
hence is a hole trap. �We are assuming that the traps are
monovalent.� It is convenient to assume that the traps exist-
ing below the equilibrium Fermi level are neutral when filled
with an electron and that the traps positioned above the equi-
librium Fermi level are neutral when empty. �…� Thus a trap
positioned above the equilibrium Fermi level is neutral when
acting as an electron trap and negatively charged when act-
ing as a hole trap. On the other hand, a trap positioned below
the equilibrium Fermi levels is neutral when acting as a hole
trap and positively charged when acting as an electron trap.”

Departure from equilibrium can be obtained by different
excitation sources. In this paper, we are considering ionizing
photons causing band-to-band transitions. As the excitation
source is turned on, carriers injected into the conduction and
valence bands are drawn by the several processes occurring
in the material, including trapping in metastable levels. The
latter process allows crystals to attain excited states which
can be held after the excitation source is turned off. In this
case, the fundamental state can be reached by thermally
stimulated processes.6 Under steady excitation, the popula-
tion of electron or hole levels attain a steady distribution
after a time which, in some cases, may be very long.7 The
statistic of occupancy of the traps may be obtained from two
different points of view. The first of these, which was used
by Shockley and Read �SR�,8 considers the rate equations for
the conduction and valence bands. The second, which was
used by ST,5 considers the rate equations for a particular
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trapping center. In the nondegenerate case, both these approaches lead to an occupation f�E� of trap levels with energy E and
density Nt�E� which is given by

f�E� =
cnn + cpNpexp��EV − E�/kT�

cn�n + Nnexp��E − EC�/kT�� + cp�p + Npexp��EV − E�/kT��
, �1�

where cn and cp stand for the electron and hole capture prob-
abilities, respectively. The basic assumption of the two ap-
proaches is that, at the steady state, the population of elec-
tron or hole levels can be described by means of a Fermi-
Dirac-like function with suitable quasi-Fermi levels �QFL�.
For free carriers it was found that

np

np
= exp��Fn − Fp�/kT� , �2�

where Fn and Fp stand for QFLs of free electrons and holes,
respectively.

QFLs play a role in the rate of recombination processes. A
suggestive idea introduced by SR considers the recombina-
tion rate at the steady state as a current passing through a
resistance, called a “recombination resistance” �RR�, depend-
ing on the kinetic parameters of the process dealt with. In the
simplest cases, recombinations follow from two capture pro-
cesses, that is, hole and electron capture, so that two resis-
tances are to be considered, that is, near equilibrium

Rn = kT/nptcn �3�

for electron capture and

Rp = kT/pntcp �4�

for hole capture, n̄t= f tNt and p̄t= �1− f t�Nt standing for the
equilibrium densities of trapped electrons and holes, respec-
tively, and f t for the level occupancy as given by the Fermi-
Dirac function. By presenting QFLs as “voltages,” SR
proved that in the near-equilibrium approximation the above
resistance definitions allow for the equation

��Rn + Rp� = Fn − Fp, �5�

which has the formal structure of Ohm’s law. SR also de-
rived an equation for the lifetime of free carriers, that is, �
=npR /kT�n̄+ p̄� where R=Rn+Rp. About this point they con-
cluded that “the effect of a number of different sorts of traps
may be considered on the same basis. For each variety, the
recombination is represented by a pair of resistances in series
and these series pairs are combined in parallel for the entire
system.”

At the level of the SR treatment we cannot immediately
give a thermodynamic meaning to the product R�2 which, in
the theory of electricity, corresponds to the dissipated elec-
trical power. In all probability, for this reason the concept of
RR has remained an unexplored minor outcome of SR sta-
tistics although sometimes it is recalled in papers devoted to
studies on the kinetics of electronic processes in semicon-
ductor based devices.9 The points are if, under certain cir-
cumstances, the rate of all the direct �band-to-band� and in-

direct �by localized levels� recombinations of conduction
band electrons and valence band holes can depend, according
to an Ohm-like law, on a thermodynamic force related to free
carrier densities and what is the meaning of this. To examine
these points, we investigate the recombination processes at
the steady state from the general point of view of the ther-
modynamics of nonequilibrium. To this end, we remain in
the range of linear irreversible processes, where it is possible
to apply successfully the principle of minimum rate of en-
tropy production �MREP�. This approach resembles the one
used �for a different scope� by V. Maxia.10 The goal of this
paper is to give a thermodynamic basis to the concept of RR.
But, what is more, thermodynamics is universal so that
chemical, solid state, and electrical processes can be handled
together in a MREP variational procedure. In this connection
it is shown that affinities are more suitable to represent “volt-
ages” than QFLs. Actually, we are able to define the “resis-
tances” of chemical reactions. What is better, it is shown that
the analog of “dissipated power” is closely related to the rate
of entropy production of the processes dealt with.

The paper is structured as follows. In Sec. II, basic con-
cepts of nonequilibrium thermodynamics as well as the
MREP principle are recalled. A suitable variational calculus
based on the MREP principle is presented. All considerations
are made for chemical reactions. In Sec. III, the results thus
obtained are applied to typical recombination processes in
semiconductors. In Sec. IV applications and limitations of
the thermodynamic treatment are discussed. In particular, an
equation for the affinity function is derived to account for the
diffusion and recombination processes in an ideal �Shockley�
diode. An extension to include photo-excitations in the diode
is considered as well.

II. THERMODYNAMICS OF THE NEAR-EQUILIBRIUM
STEADY STATE

A. Theory

Nonequilibrium thermodynamics lacks a constructive cri-
terion such as the one given by maximum entropy for the
equilibrium state. The latter provides a starting point for the
application of statistical mechanics and thermodynamics.
However, nonequilibrium thermodynamics shows that states
having minimum entropy production compatible with the
system constraints are stationary states.11 In reality, this prop-
erty characterizes the case of linear flux laws with constant
phenomenological coefficients. Nevertheless, MREP allows
for many nonequilibrium physical processes to be considered
within a general framework.11 Given the importance of this
matter, it is convenient to recall some essential aspects of the
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nonequilibrium theory, leaving details to the dedicated
treatises.12

The basic equation of nonequilibrium thermodynamics is
derived from the one by Gibbs. In general, the entropy
change of a system can be written as

dS = deS + diS , �6�

where deS is due to interaction with the system surroundings
�actually, we are dealing with a closed system� and diS is the
entropy production due to internal change of the system. In
the case that internal changes are due only to chemical reac-
tions, the entropy production term can be written as11

diS = −
1

T
�
k=1

c

�kdnk, �7�

where �k is the chemical potential of the k component of a
mixture containing c chemical species and dnk is the corre-
sponding molar change. For the ideal system �k=�k
+RT ln Nk where �k is a quantity independent of actual com-
position and Nk is the molar fraction of the k component. If
the system holds r chemical reactions, the molar change of
the k component can be written as dnk=�l=1

r �kld�l where �kl
is the stoichiometric coefficient of the k component in the l
reaction which shows a “displacement” d�l. Thus, the en-
tropy production can also be written as

diS = −
1

T
�
kl

�k�kld�l =
1

T
�

l

�ld�l, �8�

where �l=−�k�k�kl=−�k�kl�k−RT�kln Nk
�kl is the chemical

affinity of the l reaction. At equilibrium the affinities vanish,

so that �k�kl�k=−RT�kln N̄k
�kl. Thus, affinities can also be

written as

�l = − RT ln 	k�nk/n̄k��kl. �9�

If at any instant the entropy changes as a function of chemi-
cal composition as well as other quantities characterizing the
system, it is possible to write an equation for the rate of
entropy production, that is, dS /dt=deS /dt+diS /dt, where

diS

dt
=

1

T
�

l

�lvl, �10�

vl=d�l /dt standing for the flux or velocity of the l reaction. It
is assumed that near equilibrium fluxes are linear with re-
spect to the affinities, that is, vl=�mLlm�m where Llm are
called the phenomenological coefficients.11 As shown by
Onsager,13 based on the time reversal invariance of �micro-
scopic� mechanical laws, the phenomenological coefficients
form a symmetric matrix, that is Llm=Lml. It is to be pointed
out that the criterion for sign assignments to stoichiometric
coefficients is quite arbitrary. However, whatever the choice,
if no external forces cause internal change, diS /dt
0 holds.

B. Variational calculus

The separation of entropy contributions given in Eq. �6�
may cause some problems of interpretation when the inter-

action with photons is considered. Classically speaking, the
interaction with the electromagnetic �e.m.� field changes the
density of internal energy with a rate given by the product E� j�

where E� stands for the strength of electric field and j� for the
vector of current density. Thus, a field releasing its energy to
�emitted from� the system increases �decreases� the internal
energy and thus the entropy. If configurational or chemical
changes of the system are involved, the picture is slightly
more complex. Actually, the e.m. field, which causes depar-
ture of the chemical reactions from equilibrium, reduces the
entropy. A sequence of reactions brings the system to equi-
librium, thus producing positive entropy. At the end of the
process, the net change of chemical entropy is null. But re-
actions may produce heat and photons which alter the inter-
nal energy and thus the system entropy. Thus chemical reac-
tions behave like a machine converting the absorbed photons
to heat �and photons�. About the entropy balance, further
considerations will be advanced in Sec. IV. Now it appears
convenient to write the rate of internal entropy production
diS /dt as the sum of two contributions, that is

diS

dt
= �ext + �int, �11�

where �ext means the change of internal entropy due to ex-
ternal force and �int that due to the internal forces, that is,
those bringing the system to equilibrium. The definitions of
these two terms are to be searched for by means of the com-
position changes induced by absorbed photons, that is

dnk = ck�dt + �
l=1

r

�kld�l, �12�

where � stands for the flux of the whole absorbed photons
�in suitable units� and ck for the fraction of photon flux in-
ducing molar change of the k component. It follows from
Eqs. �8� and �12� that

diS

dt
= −

1

T
��� +

1

T
�

l

�lvl, �13�

where ��=−�k�−ck��k �we prefer this form to evidence that
the entropy production of carrier photo-generation is nega-
tive� in the following will be referred to as external affinity
or “force.”11 We define

�ext = −
1

T
���, �int =

1

T
�

l

�lvl. �14�

Equation �13� can be generalized to include more indepen-
dent sets of chemical reactions by adding further index la-
beling reaction sets, that is

�int =
1

T
�

l

�
lv
l. �15�

Variational procedures allowing for the MREP must ac-
count for the constraints that keep the system from equilib-
rium. These can be formalized by means of relations among
affinities which are to be inserted in a Lagrange minimiza-
tion procedure, where the affinities are the functional vari-
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ables. We will see in Sec. III that the constraints have the
form �see Appendix A�

�� − �
j

�
j = 0, 
 = 1,…,r . �16�

It is to be remarked that minimization concerns only �int, that
is, only the internal processes bringing the system to equilib-
rium. However, to get a complete definition of the steady
state, it is convenient to apply the minimization procedure to
the function

� = 2�ext + �int +
1

T
�



�
��� − �
j

�
j	 , �17�

by including �� among the functional variables. Factor 2
takes into account that �int is a quadratic form on the affini-
ties �this procedure is substantially different from that used
in Ref. 10�. It is easy to check the consistence of this varia-
tional procedure. Indeed, as a result, it is obtained that �
=�
�
 /2 and �

�
l=�
 /2 , l=1,… ,r, that is, �=�
�
.
Thus, at the steady state the fluxes within a reaction set are
the same for all reactions and the whole flux of reaction sets
is equal to the flux of absorbed photons.

In this paper we are concerned with reactions allowing for
a diagonal Onsager’s matrix. The diagonal Onsager’s matrix
is peculiar to reactions that do not show interference effects
so that11

�
l = L
l�
l, l = 1,…,c . �18�

Thus, by taking into account Eq. �16� it follows:

�
 =
��

�
j

1/L
j

. �19�

Note that, at the steady state, flux is independent of the re-
action index but depends only on the reaction-set index. The
reaction affinity is related to the external force by the equa-
tion

�
l = ��

1/L
l

�
j

1/L
j

. �20�

Now, by defining the RRs as

R
l = 1/L
l, �21�

we are able to describe a set of chemical reactions, activated
by the photon flux with external force ��, as a current �


passing through a series of resistances R
j to which is ap-
plied a voltage ��. Thus, the drop in voltage on the resis-
tance R
j, that is, �
l=R
j�
, can be calculated by means of
Eq. �20� which gives the voltage partition, that is

�
l =
R
l

�
j

R
j

��. �22�

The series resistances of a reaction channel have an equiva-
lent resistance R
EQ=1/L
EQ=�l1/L
l=�lR
l. The rate of all
chemical reactions is obtained from

� = �



�
 = ��



L
EQ	�� = LEQ��, �23�

where LEQ can be associated to the equivalent resistance of
the parallel reaction resistances R
EQ, that is, 1 /REQ=LEQ
=�
L
EQ=�
1/R
EQ. Finally, for full correspondence to
Ohm’s law we must give a meaning to the Joule equation for
the dissipated power, that is

W = �



�
�� = �



�
�
j

�
j = T�int, �24�

which corresponds to the rate of entropy production multi-
plied by temperature. This has an evident meaning: As the
electrical work dissipates the electric potential energy by
producing heat, the chemical reactions dissipate the stored
chemical energy by producing entropy �in general there is
production of heat and photons�.

We remark that Eq. �23� is local. In the context of MREP
this is a consequence of having minimized entropy produc-
tion with respect to the affinities which are defined by means
of the actual �local� concentrations. Thus we can use Eq. �23�
even when spatially dependent affinities are dealt with. In
this case diffusion forces are to be accounted for. This point
will be dealt with in detail in Sec. IV.

III. APPLICATION TO ELECTRON-HOLE
RECOMBINATIONS

Until now, for simplicity, we have considered cases where
internal changes are to be ascribed to chemical reactions. To
deal with electron-hole recombinations we should consider
more suitable units, that is, densities �cm−3� rather than mo-
lar concentrations. To this end, we must divide the rate of
entropy production by molar volume VM �cm3�, so that

��

VM
= −

d�N0�/VM�
dt

kT ln 	k�nk/n̄k��k,

where N0 stands for the Avogadro number, the other symbols
having the usual meanings. Now, dN0� /VM /dt is the reaction
flux with the desired units, that is, cm−3 s−1. In the following,
as a consequence of this unit choice, the affinities will be
calculated as

� = − kT ln 	k�nk/n̄k��k.

A. SK and LK cases

Near equilibrium �but also in most practical cases� the
rate equations can be written in the approximation of nonde-
generate statistics, that is, emission rates of trapped carriers
released into bands are independent of the occupation of
band levels. In this approximation, rate equations assume a
very simple form.8,10 For simplicity’s sake, it is convenient to
begin by considering the cases of SK and LK. Formally, they
can be dealt with as a single case. Indeed, they differ only in
what kind of carrier is trapped and what is recombined, that
is, if an electron is recombined with a trapped hole or, con-
versely, if a hole is recombined with a trapped electron. As
stated in Sec. I, this difference has no formal relevance since
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it is due only to actual level position with respect to the
equilibrium Fermi level

Let Nt mean the density of defects, pt the actual density of
trapped holes �traps empty of electrons�, nt the density of
traps empty of holes �filled with electrons�, so that Nt= pt
+nt. Owing to interactions with ionizing radiations, electrons
and holes are injected into conduction and valence bands,
respectively, with a rate �. Carriers are captured with prob-
ability ce, for conduction band electrons, and cp, for valence
band holes, respectively. Thermal releasing of electrons into
conduction bands and of holes into valence bands occurs
with probabilities se and sp �included is the interaction with
blackbody radiation�, respectively. Thus, the net rate of elec-
tron capture is8

�n = cenpt − sent �25�

and that of hole capture is

�p = sppt − cppnt. �26�

At equilibrium �n=�p=0. Thus,

npt

n̄t

=
se

ce
, �27�

pnt

p̄t

=
sp

cp
. �28�

To define affinities, we need to fix a positive direction for
processes as a sign reference for stoichiometric coefficients.
Let us take as the positive direction that of the arrow point-
ing from the valence to the conduction band. Thus, the terms
representing processes which bring electrons toward the va-
lence band, as well as holes toward the conduction band, are
associated with the stoichiometric coefficient equal to −1.
The opposite sign is associated with the terms describing
processes in the opposite direction. On this ground, the elec-
tron affinity is

�n = − kT ln��n

n̄
	�a�nt

n̄t
	�b� pt

p̄t
	�c� �29�

with �a=�c=−1, since n and pt appear in a term of negative
direction, and �b= +1, since nt appears in a term of positive
direction. Thus, we can write

�n = − kT ln� nt

npt

npt

n̄t
	 . �30�

The hole affinity can be obtained in an analogous way, that
is,

�p = − kT ln� pt

pnt

pnt

p̄t
	 . �31�

The external affinity is

�� = − kT ln��n

n̄
	−ca� p

p̄
	−cb�

with ca=cb= +1 since the reaction is on the positive direc-
tion. Thus

�� = kT ln�np

np
	 , �32�

so that the loop constraint �16� is satisfied, that is, ��− ��1

+�2�=0. For steady states near equilibrium we can write,
approximately,

�n = cenpt�1 −
nt

npt

npt

n̄t
	 , �33�

�p = cppnt�1 −
p

pnt

pnt

p̄t
	 . �34�

In the same approximation, the latter equations can be re-
written as

�n =
cenpt

kT
�n = Ln�n, �35�

�p =
cppnt

kT
�p = Lp�p, �36�

where

Ln =
cenpt

kT
, Lp =

cppnt

kT
�37�

are the Onsager’s coefficients. Finally, by definitions, the
RRs are

Rn =
1

Ln
=

kT

cenpt

, Rp =
1

Lp
=

kT

cppnt

,

which agree with that found by SR �see Eqs. �3� and �4��.
Note that the steady current is

� = �n = �p =
��

Rn + Rp
,

so that

��Rn + Rp� = ��.

By taking into account the definitions of QFLs for free car-
riers �see Eq. �2��, it follows:

�� = kT ln np/np = Fn − Fp,

so that

��Rn + Rp� = Fn − Fp,

which is exactly the result found by SR �Eq. �5��.
Note also that, according to SR �by integrating Eq. �2.9�

of Ref. 8 over the whole states of conduction band�

npt

n̄t

=
se

ce
= Nnexp��Et − EC�/kT� , �38�

where Et stands for the energy of the trapping level. Now, by
taking into account that

nt

pt
=

f t

1 − f t
= exp�− �Et − Ft�/kT� �39�

f t being the occupancy of electron traps with QFL Ft, it
follows from Eqs. �30� and �31� that
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�n = Fn − Ft. �40�

Analogously, for the affinity of the trapped hole it can be
shown that

�p = Ft − Fp. �41�

Equations �40� and �41� allow for a full correspondence to
the SR results.

B. PW case

In their paper SR considered only recombinations in
single level centers, as in SK or LK processes. Now, it is
advisable to consider also the case of two-level recombina-
tion centers as in the PW processes. With respect to the SK
�or LK� two-step processes, in the PW case we must consider
a further step, that is, the recombinations of electrons trapped
in levels labeled, say, 1 with holes trapped in levels labeled,
say, 2. The corresponding recombination rate is

�� = �n1tp2t − s�p1tn2t, �42�

where � stands for the recombination probability, n1t and p1t
for the densities of electrons and holes trapped at the level
labeled 1, respectively, n1t and p1t for the densities of elec-
trons and holes trapped at the level labeled 2, respectively,
and s� for the probability of pair production by thermal ex-
citation. At equilibrium

n̄1tp̄2t

p̄1tn̄2t

=
s�

p
, �43�

so that

�� = �n̄1tp̄2t�1 −
p1tn2t

n1tp2t

n̄1tp̄2t

p̄1tn̄2t
	 . �44�

It is easy to verify that the affinity is

�� = − kT ln
p1tn2t

n1tp2t

n̄1tp̄2t

p̄1tn̄2t

. �45�

Thus by using the definitions of electron and hole affinities
�obtained in the previous section� suitably modified to ac-
count for the index levels, it is easy to prove that ��=�n1
+��+�p2. Now, the flux of the recombination process is

�� = L��� = L���� − ��n1 + �p2�� , �46�

where

L� = �n̄1tp̄2t/kT �47�

to which is associated the RR

R� = 1/L� = kT/�n̄1tp̄2t. �48�

The current through the recombination channel is

� =
��

Rn1 + Rp2 + R�

. �49�

Note that the affinity �� is related to QFLs by the equation
��=Ft1−Ft2.

C. Case of band-to-band recombination

As a final example, let us calculate the RR associated with
band-to-band recombinations which now appears as an easy
task. Briefly, the net rate of recombinations is �G=�Gnp
−sG where �G stands for the probability of electron-hole pair
recombination and sG for the thermal emission of electrons
from the valence to conduction band. At equilibrium np
=sG /�G. Thus �G=�Gnp�1−np /np�=LG�G where �G=��

and LG=�Gnp /kT. The associated RR is RG=1/LG=kT /
�Gnp, so that the current can be written as �G=�� /RG.

IV. DISCUSSION

In the previous section we considered three main mecha-
nisms of recombinations in localized levels. We point out
that the algorithm implemented to obtain the Onsager coef-
ficients and, thus, the RRs is general. Let us briefly consider
recombinations involving formation of excitons. The process
to be considered is electrons+holes�excitons as well as
that of exciton annihilation-generation. These define an indi-
rect channel of free electron-hole recombinations whose af-
finity is still �=kT ln�np /np�. The probability factors in-
volved thus determine the corresponding RR which is to be
considered in parallel to the others.

Until now we have assumed that electrons, holes, and
phonons have the same temperatures. If this is not the case,
the Ohm representation may fail. Thus we have to search for
an additional condition that saves this representation when
differences of temperatures are to be considered.14 Before
dealing with this point in general, we consider the case of
band-to-band recombinations. Let ��G and �sG mean the
variation of kinetic parameters with respect to the equilib-
rium values �̄G and s̄G at the phonon temperature Tph. The
net recombination rate in the linear range is

�G = �̄Gnp − s̄G + n̄p̄��G − �sG


 LG��G + kTph� ln��G

�̄G

s̄G

sG
	� = LG�̃G,

where now �G is the difference of QFLs at Tph and �̃G may
be referred to as the generalized affinity which, by defining

n̄*p̄*=sG /�G, becomes �̃G=kTphln�np / n̄*p̄*�. With analo-
gous considerations, the net recombination rate of a generic l
process can be written as

�l 
 Ll��l − kTph� ln�	 j
ālj

alj
	�lj� , �50�

where the al are the corresponding kinetic parameters, �lj
having the usual meanings. Owing to the additional term, the
Ohm picture cannot represent recombinations unless in any
closed �Markovian� chain the condition �l� ln�	 jālj /alj��lj

=0 holds. Note that if the local temperature changes with
coordinates the local equilibrium reference state, affinities
and Onsager coefficients change as well. In this case, the
dependence of RRs on coordinates is to be investigated by
the MREP method applied to the entropy production of the
whole semiconductor volume. This investigation is out of the
scope of this paper.
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Recombination resistances may have a spatial dependence
in nonhomogeneous semiconductors. Their investigation can
be difficult when changes occur in the range of very small
dimensions. Indeed, in the case of systems as small as 2–5
nm, even the definition of nonequilibrium temperature is
difficult.15 However, even at a more affordable nanoscale and
mesoscopic range there remains the problem of taking into
account the entropy barriers due to boundary of domains.16

Moreover, complexities such as surface or interface effects,
tunnel processes, hot carriers, etc., may make the use of RR
picture impracticable. In reality, it calls for bulk semiconduc-
tor physics where lifetime of carriers plays a role in the
transport properties. To better illustrate this point let us con-
sider the simple case of the ideal �Shockley � p-n diode.17 In
the linear range, the continuity equations of free carriers
are18

Dn�
2n − n̄�n�

2V − � = 0 , �51�

Dp�
2p + p̄�p�

2V − � = 0, �52�

where V stands for the voltage in the diode, �n and �p for the
mobilities of electrons and holes, respectively, and � for the
local net rate of recombinations. It was found that Eqs. �51�
and �52� are consistent with the MREP principle.18 The con-
tinuity equations can be written to include photoexcitation by
substitution �→�−�. From the point of view of the MREP
method, the variational calculus is to be applied to an en-
tropy production function including diffusion forces and
modified as Eq. �17�. By using the Einstein relations, that is,
eDp /�p=eDn /�n=kT, and by taking into account that in the
linear range �2�
�1/ n̄��2n+ �1/ p̄��2p, we obtain from the
combination of Eqs. �51� and �52�

�2� − kT
L

DpDn
�Dp

n̄
+

Dn

p̄
	� = 0. �53�

Now, let us define the free carrier lifetimes as �p
= p̄ /kT LEQ as �n= n̄ /kT LEQ, which allow for the definitions
of diffusion length of electrons, ln=�Dn�n, and holes, lp

=�Dp�p. By defining the characteristic length l of the affinity
function as

1

l2 = kT
LEQ

DpDn
�Dn

n̄
+

Dp

p̄
	 =

1

Dp�p
+

1

Dn�n
=

1

lp
2 +

1

ln
2 �54�

Eq. �53� becomes �2�−� / l2=0. For simplicity’s sake, in the
following we refer to the Shockley’s diode scheme.19 Densi-
ties depend on the x coordinate only, the edge of the p region
is at x=0 and xTp and xTn mark the transition region in the p
and n side, respectively. Thus, the affinity equation becomes

�2�

�x2 −
�

l2 = 0. �55�

As boundary condition for the solution of Eq. �55� we re-
quire only that far from the biased junction the affinity van-
ishes �owing to the equality between electron and hole QFLs:
local equilibrium�. Consequently, the affinity is

��x� = ��xTp�exp��x − xTp�/l�, x � xtp,

��x� = ��xTn�exp�xTn − x/l�, x 
 xtn, �56�

the length l being constant �but not necessarily equal� in the
homogeneous regions. The electrical current in the semicon-
ductor is due to recombinations of minority carriers beyond
the transition region. The net rate of recombinations over the
whole diode is

G =� �d3x = A�LEQ�n�
n side

�dx + A�LEQ�p�
p side

�dx , �57�

A being the cross section area of the diode. In the case of
semi-infinite homogeneous regions, the electrical current I
=eG is thus I=eS�lLEQ�p�1�xTp�+eS�lLEQ�n�1�xTn�. Let us
define rEQ=REQ/e2Sl as the electrical RR normalized with
respect to the volume of the semiconductor whose thickness
is as wide as the diffusion length. Thus

I =
��xTp�
e�rEQ�p

+
��xTn�
e�rEQ�n

. �58�

Note that extension to the nonlinear range can be obtained
from the substitution20 �→kT�exp�� /kT�−1�. Thus, in the
language of RR, the saturation currents are ISp=kT /e�rEQ�p

and ISn=kT /e�rEQ�n for holes and electrons, respectively.19 In
the case of photoexcited diode, we must add −��x� / l2LEQ to
the right side of Eq. �55� where the actual dependence of
��x� on coordinates is determined by the condition of illu-
mination �edge or uniform� as well as on cross sections of
elementary photo-excitations.

At the steady state, the entropy of the system is time
independent so that dS /dt=0, that is, deS /dt=−diS /dt. From
Eq. �13� and by taking into account of the results of varia-
tional calculus we see that diS /dt=0. This result is expected
since the chemical composition is time independent as well.
Nevertheless, it is worth dwelling upon this point to com-
plete the considerations in Sec. II. Actually, the entropy bal-
ance is based on the following scheme:

photons�h�� → Chemical reactions

→ heat + photons �h�� � h�� .

A flux of energy carried by photons, owing to internal reac-
tions, is partly converted to heat and partly to photons �of
lesser energy�. The rate of heat production is thus dQ /dt
=��h�−h��� which, divided by the system temperature, is to
be considered as the indirect contribution to deS /dt due to
the flux of ionizing photons. But the system is not isolated,
so that the heat produced by reactions is thus released to
surroundings. This causes at the steady state deS /dt=0 but a
positive entropy is released to the surroundings thus contrib-
uting to the increase in the entropy of the universe.

The definitions of RR rely on the diagonal property of the
Onsager’s matrix associated with the recombination pro-
cesses. Besides some nice cases, the generalization to nondi-
agonal processes does not appear to be possible. In Appendix
B we try to diagonalize the thermodynamic problem of a
two-reaction process that satisfies Eq. �21�.
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We again stress that the results found in this paper hold in
the linear range of nonequilibrium thermodynamics. In this
connection, it is understood that they are to be considered in
the same spirit as one considers the linear approximation
when small deviations from linearity can be disregarded.21

The validity of MREP far from equilibrium is still debated.22

Moreover, in general, relations among fluxes and forces are
not linear. However, linearization of relations is possible pro-
vided the system dealt with is near the steady state consid-
ered as the “reference state.”23 Unfortunately, the matrix of
coefficients is not symmetric for long. Thus, at the moment,
definitions of RRs �which conserve thermodynamic mean-
ings� for processes far from equilibrium appear a difficult
task.

V. CONCLUSIONS

In this paper the electron-hole recombinations in an ex-
cited material near equilibrium has been investigated within
the framework of the nonequilibrium thermodynamics ruled
by the MREP principle. A formal Ohm-like law has been
proved to hold for recombinations, thus giving a thermody-
namic ground to the concept of recombination resistances, as
defined by Shockley and Read. These are found to be related
to the Onsager coefficients of the phenomenological laws.
The entropy produced by recombinations is found to obey a
Joule-like law where �multiplied by temperature� it plays the
role of the “dissipated power.” This makes the correspon-
dence between steady electron-hole recombinations and elec-
trical processes complete, at least when linear flux laws hold.
As an example, an application to the simple ideal �Shockley�
diode is presented and an equation for the affinity function,
which can be easily extended to include photoexcitations, is
derived.

APPENDIX A

The reactions dealt with in this paper can be represented
by means of a chain-process scheme, that is,

�1 �2 … �l−1 �l … �c−1

n1 � n2 � … � nl � … � nc,

where the lth reactions depend only on the l and the l+1
components. From Eq. �9� it follows that the whole affinity is
��l,l+1=−�l+1,l=1�

� = �
l=1

c−1

�l = − �
l=1

c−1

RT ln 	k�nk

n̄k
	�kl

= RT ln�n1nc

n̄1n̄c
	 .

Now, let the above set of reactions form a closed loop. Thus,
we have to further consider a reaction nc�n1 with affinity
�c, that is,

n2 � … � nc−1

↑↓ ↑↓
n1 � nc

.

In this case �l�l=0 so that

�c = − �
l=1

c−1

�l = − � = �1 − �c.

If an external force �F moves the system from equilibrium
between components 1 and c, it is opposite to the �c force
that brings the system towards equilibrium, that is, �F=−�c.
Thus,

�F = � = �
l�c

�l

from which we obtain Eq. �16�.

APPENDIX B

Now let us consider a case where Eq. �16� holds but the
symmetric Onsager’s matrix is not diagonal. Let us consider
a two-component reaction set with fluxes

�1 = L11�1 + L12�2, �2 = L21�1 + L22�2,

which can be rewritten as

�1 = �L11 − L12��1 + L12��, �2 = L21�� + �L22 − L21��2.

At the steady state �1=�2 so that

�i =
�Ljj − ��

�L11 − �� + �L22 − ��
��,

where j� i and �=L12=L21. Moreover we see that

�i = � �L11 − ���L22 − ��
�L11 − �� + �L22 − ��

+ ����,

which does not have the formal structure of Ohm’s law. But,
by defining the new fluxes

�̃i = �i − ��� =
�L11 − ���L22 − ��

�L11 − �� + �L22 − ��
��

and the new phenomenological coefficients

L̃ii = Lii − �

we are able to diagonalize the thermodynamic problem pro-
vided a new flux is considered, that is,

�̃� = ���.

Consequently, the variational calculus is to be applied to the
function

� = − 2
���

T
+

�̃1�1

T
+

�̃2�2

T
+

�̃���

T
+

1

T
���� − ��1 + �2�� .

Now, we can define the reaction resistances as Ri=1/ �Lii

−�� and R�=1/�, where R� is to be considered in parallel
with the other two resistances. Note that in the case Lii=� it
follows that �1=�2=���, and �̃1= �̃2=0 which is consistent
with the infinite resistance.
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