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An accurate physically based Fermi-level modeling approach, amenable to be implemented in an atomistic
process simulator, is reported. The atomistic kinetic Monte Carlo method is used for point and extended
defects, in conjunction with a quasiatomistic, continuum approach treatment for carrier densities. The model
implements charge reactions and electric bias according to the local Fermi level, pairing and break-up reactions
between particles, clustering-related dopant deactivation, and Fermi-level-dependent solubility. We derive ex-
pressions that can be used as a bridge between the continuum and the atomistic frameworks. We present the
implementation of two common dopants, boron and arsenic, using parameters that are in agreement with both
ab initio calculations and experimental results.
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I. INTRODUCTION

Current microelectronic technology is facing increasingly
complex phenomena related to very high doping, reduced
thermal budget �nonequilibrium conditions�, and three-
dimensional �3D� effects. Such conditions require a deep in-
sight into the underlying physical mechanisms in order to
correctly model the material properties. In particular, high-
doping concentrations demand a correct description of diffu-
sion under extrinsic conditions.1,2 Other charge-related issues
are Fermi-level dependent solubility3,4 and clustering-related
dopant deactivation.5

Continuum modeling, based on solving partial differential
equations �PDE� discretized by the finite element method,
has been used since the 1980s, but this method is limited by
the number of equations that can be solved without running
into convergence instabilities. Moreover, meshing issues and
dimensionality make this approach extremely complicated in
3D. The International Roadmap for Semiconductors 2003
�Ref. 6� establishes the “modeling hierarchy from atomistic
to continuum” among the difficult challenges that need to be
solved before 2010. The atomistic kinetic Monte Carlo
�kMC� method,7 has proven to be a powerful approach that
allows the inclusion of comprehensive, physically based
models without significantly degrading the simulator’s per-
formance. Some semiconductor companies8,9 have already
started to develop simulators based on this atomistic kMC
approach. Modelling Fermi-level effects is one of the critical
steps in developing a comprehensive kMC simulator. Here
we will describe a detailed Fermi-level modeling approach
specially designed to be included in this methodology, which
has been implemented and tested in an atomistic kMC pro-
cess simulator.10

We first describe in detail the basic physical models and
then the particular implementation of point defects and of
two representative dopants �boron and arsenic�, and finally
show a simulation example.

II. PHYSICAL MODELS

In this section we will introduce some concepts not ex-
plicitly present in continuum models which will allow us to

adapt the formulation of Fermi-level effects in diffusion1 to
an atomistic framework.

In our simulation scheme, particles are represented atom-
istically, with a particular position, species, type �substitu-
tional, interstitial� and charge. Defects are formed by such
particles. Electrical equilibrium can be assumed even when
particle concentrations are far from equilibrium conditions
because the charge reactions are much faster than structural
reactions.11 As a consequence, the Fermi level �eF� is consid-
ered to be well defined and carrier concentrations are treated
in a continuum fashion.

A. Concentrations of charged states

Let us consider a particle X as an example of native point
defect �self-interstitials, I, or vacancies, V� in silicon, which
is the focus of our study. They can be in multiple charge
states Xj, with j=−−,−,0 , + , ++.

We denote by e�j+1, j� the energy level associated to the
charge transitions between Xj+1 and Xj. Then, the relative
concentrations are

�Xj�
�Xj+1�

=
gj

gj+1 � exp� eF − e�j + 1, j�
kT

� �1�

gj being the degeneracy factor and kT the thermal energy. We
assume the same degeneracy factor for all the charge states.

Our convention is to take the origin of energy levels at the
valence-band edge. We can assume that the electric levels of
all charged species vary with the temperature proportionally
to the band gap width Eg.12

The concentration of neutral native point defects �I0 or V0�
in equilibrium conditions, denoted as �X0�*, is controlled by
its formation energy, Ef�X0�, that is independent of eF. From
Eq. �1� one can derive the concentration of charged states
and their formation energies. The total point defect concen-
tration as a function of eF will be primarily determined by
the charge state with lower Ef. For eF=e�j+1, j� the forma-
tion energies of Xj+1 and Xj are the same and therefore
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�Xj+1�*= �Xj�*. Since there are no explicit assumptions of
equilibrium in Eq. �1� it is still valid out of equilibrium, and
then the supersaturation, defined as SX= �X� / �X�*, is the same
for all the charge states,

�Xj�/�Xj�* = �X0�/�X0�* = SX.

B. Defect diffusivities

In atomistic kMC, defect diffusivity is related to the ran-
dom walk of migrating defects. The point defect migration
frequency �m for a given charge state j of a particle X is

�m�Xj� = �m,0�Xj�exp�− Em�Xj�/kT� �2�

�m,0 being the migration prefactor and Em the migration en-
ergy. Accordingly, in three dimensions,

D�Xj� = �2�m�Xj�/6, �3�

where � is the jump distance. We have chosen � to be equal
to the second neighbors distance in the silicon lattice
�0.384 nm�. The transport capacity due to diffusion will be
DC�X�=� jD�Xj��Xj�. Under equilibrium conditions the
products D�Xj��Xj�* are going to have an activation energy of
Edif�Xj�=Em�Xj�+Ef�Xj�, denoted as diffusion energy. The
transport capacity will be dominated by the charge state with
lower Edif.

C. Electric drift

Figure 1 shows electric drift as a natural consequence of
the local dependence of the formation energies of charged
particles. Within the kMC framework, the relation between
the migration frequency in the positive and negative direc-
tions along the x axis for a point defect with charge jq is

�m,+x

�m,−x
= exp�−

�

kT

dEf

dx
� = exp� jqEx�

kT
� , �4�

where E� is the electric field and q is the absolute value of the
electron charge. The last equality assumes constant band gap.
From Eq. �4� one can derive the x component of drift veloc-
ity to be equal to

vx = ���m,+x − �m,−x�/6

which, in a first order approximation, becomes the Einstein
relation vx= jqDEx / �kT�.

D. Point-defect reactions

Reactions between particles take place in kMC when par-
ticles are within the capture radius of each other. In our
model two different reactions are implemented, pairing with
impurities �A� and break up,

Xj + Ak � AXj+k �5�

conserving the charge, and reactions of equilibrium between
different charge states,

Xj+1 + e− � Xj . �6�

The pairing reactions between repulsive species are forbid-
den. For the break up reactions, due to the charge conserva-
tion, �bk does not depend on eF. Equation �5� together with
Eq. �6� are enough to take into account the different break up
paths because we assume that the equilibrium between dif-
ferent charge states is instantaneous.

In the present model clusters are assumed to be neutral
and only neutral particles are emitted and captured. Once the
neutral particle has been emitted as a point defect, it can
change its charge state according to the local Fermi level. It
would be easy to implement extended defects charge states
in kMC, but reliable values for physical parameters �either
from calculations or experiments� would be needed.

E. Solubility

The solubility of charged species depends on eF.3,4 For the
case of a dopant Aj, the solubility limit is given by

�Aj�max�T� = �Aj�max
intrinsic�T� � exp� j

ei − eF

kT
� , �7�

where

�Aj�max
intrinsic =

��Aj�max
extrinsic�2

ni
�8�

is the solubility in intrinsic conditions �eF=ei� and �Aj�max
extrinsic

the solubility when �Aj�max�ni. Equation �7� is a conse-
quence of the fact that the formation energy of charged de-
fects depends on eF. In an atomistic framework expression
�7� can be fulfilled by trapping and emitting only neutral
particles of the type AX0 with an emission rate independent
of eF.

III. POINT DEFECTS: INTERSTITIALS AND VACANCIES

A. Vacancies

The charge levels for vacancies �V++, V+, V0, V−, and
V−−�, are well characterized,1,13 and they are represented in
Fig. 2. The dependence of the formation energies with eF for
charged vacancies using the values of Table I are displayed
in Fig. 3�a� �dashed lines�. Thick dashed lines correspond to
the most stable charge state �lower formation energy and
higher concentration� that depends on the Fermi level. As it
can be seen V+ is a metastable state, i.e., it is not the mini-
mum Ef for any value of eF. �V0�*, that is constant with eF, is
dominant for p-doped materials and of the same order as

FIG. 1. Electric drift within a kMC framework �see Eq. �4��.
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�V−�* for intrinsic silicon. The solid lines are the diffusion
energies. Em is different for each charged species, but we
assume it does not depend on eF.

The parameters displayed in Table I and represented in
Fig. 3�a� has been chosen to correctly fit the vacancy trans-
port capacity reported in Ref. 14 as well as the charge levels
of Refs. 1 and 13. The Arrhenius plot for vacancy transport
capacity with the contribution of different charge states is
represented in Fig. 4�a�.

B. Interstitials

The charge levels of silicon self-interstitials �I−, I0, I+,
I++�, are not conclusively established.1,15,13 Theoretical cal-
culations indicate that I+ is metastable but with a very low
migration energy and controls interstitial diffusion for
p-doped and intrinsic materials.15,16 However, experiments
show that in intrinsic silicon, diffusion is dominated by I0,
and I+ dominate only for eF�0.4.1,17,18 As a simplification,
and following Ref. 1, we will ignore the I++ state in our
model, and we believe it is not necessary for continuum
models as well. Therefore we will describe the interstitial
using the I+, I0, I− states. As we will see later �Sec. V�, I++

presence will not change dopant diffusivity, and it only has a
very small contribution to long hop distance of dopants. The
values of charge levels are taken from Ref. 1.

Figure 3�b� shows the formation and diffusion energies
diagram that we have set for interstitials, listed in Table I. As
commonly assumed, I0 is the dominant state near the intrin-
sic conditions and I− only has a significant contribution for
heavy n-doped materials. Theoretical calculations give a mi-
gration energy for neutral interstitials of about 1 eV, so we

have taken Em=1.0 eV for I0 and we have assumed the same
value for the other charge states. These parameters fit experi-
mental data for interstitial diffusivity in intrinsic silicon.19,20

Figure 4�b� shows the Arrhenius plots for silicon self-

FIG. 2. Electronic levels for V, I, Bi, AsV, and Asi.

TABLE I. Parameters used for charged states of silicon vacancy �Vj�, silicon self-interstitial �Ij�, interstitial boron �Bi
j�, and vacancy and

interstitial arsenic �AsVj ,Asi
j�. D0 is the diffusivity prefactor �Eq. �3��, Em the migration energy, and et the charge level measured from the

valence band edge. For T�0, we assume that et scales with band gap energy. �Ref. 12�. Prefactors for equilibrium concentrations and
formation energies of I0 and V0 are also shown. Other parameters used in this work are, for boron, Dbk,0�Bi

−�=0.4 cm2 s−1, Eb�Bi
−�

=0.1 eV; and for arsenic, Dbk,0�AsV+�=1�10−3 cm2 s−1, Eb�AsV+�=1 eV, and Dbk,0�Asi
+�=5�10−3 cm2 s−1, Eb�Asi

+�=0.1 eV. Dbk,0 is the
break-up prefactor expressed in diffusivity units �=��2 /6��bk,0�. Dbk,0 and Eb�T� can be obtained from Eqs. �11� and �12�. The point defect
capture volume is 2�3.

I− I0 I+ V−− V− V0 V+ V++ Bi
− Bi

0 Bi
+ Asi

0 Asi
+ AsV− AsV0 AsV+

Dm,0�10−3 �cm2/s� 5 5 5 1 1 1 1 1 1 1 1 4.5 4.5 1 1 1

Em �eV� 1 1 1 0.4 0.4 0.4 0.6 0.8 0.36 0.2 1.1 1.35 1.35 1.7 1.4 1.4

et�T=0� �eV� 1 0.4 1.06 0.6 0.03 0.13 0.8 1.04 0.1 0.77 0.3

�X0�0
*��1025 cm−3� 690 2.0

Ef �eV� 3.85 3.7

FIG. 3. Formation energies �Ef, dashed lines� and diffusion en-
ergies �Edif=Ef +Em, solid lines� of charged Silicon vacancy �a� and
self-interstitial �b� as a function of Fermi level �eF� using the pa-
rameter set of Table I. eF is measured from the valence band edge.
�Band-gap energy is Eg=1.17 eV for T=0 K�. Minimum values of
Ef and Edif are drawn with thick lines. Edif

int corresponds to the dif-
fusion energy for intrinsic silicon �eF=ei�. Open circles indicate the
energy crossings corresponding to charge levels.
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interstitial transport capacity. The experimental points �sym-
bols� have been extracted from Refs. 19 and 20. The lines
have been calculated using the parameters displayed in
Table I.

IV. PAIR POINT DEFECTS: BORON AND ARSENIC

Once the point defects, I and V, have been introduced, we
will focus our study on the diffusion of dopants. Substitu-
tional impurities are assumed to be immobile. Let us con-
sider now the cases in which the migrating defect can be
seen as the pair AX, where A is an impurity and X is either an
I or a V. We will describe first the diffusion of boron using Bi
and later the case for arsenic with AsV and Asi.

A. Boron

It is commonly accepted that B migrates mainly due to
interstitial mechanism, via Bi �either as an interstitial Bi or a
BI pair�, rather than via V-mediated mechanism.

The known charged states of Bi are Bi
−, Bi

0, and Bi
+.21 The

three states are included in our model, although the inclusion
of Bi

+ will only show up for systems far from equilibrium.

The pairing, break up and charge reactions related to Bi are
represented by the reactions

I0 + B−� Bi
−

↑↓ ↑↓
I+ + B−� Bi

0

↑↓
Bi

+

. �9�

In the following, we assume that substitutional boron is
always immobile and ionized �B−�. In Eq. �9� horizontal re-
actions �pairing and break-up� conserve the charge while ver-
tical reactions establish the electrical equilibrium. The rate of
the horizontal reactions will not depend on the Fermi level.
Direct break-up of Bi

+ is not included because I++ is not
implemented. The charge level values for Bi are listed in
Table I and illustrated in Fig. 2. These values have been
measured by electrical characterization.13,22,23

From the first reaction in Eq. �9� the number of broken Bi
−

per unit of volume and time will be �Bi
−��bk�Bi

−� and the
number of new formed �B−��I0��m�I0�vcapt. Consequently, in
local equilibrium conditions,

�Bi
−�

�B−�
= �I0�

�m�I0�
�bk�Bi

−�
vcapt, �10�

vcapt being the effective capture volume for pairing reaction
and �bk the break-up frequency. The ratio of Eq. �10� is in-
dependent of eF because the charges of Bi

− and B− are the
same. In contrast, �Bi

0� / �B−� and �Bi
+� / �B−� are Fermi-level

dependent. The activation energies of the �Bi
j� / �B−� fractions

are represented as formation energies in Fig. 6.
The activation energy for Bi

− break-up will be Eb�Bi
−�

+Em�I0� �see Fig. 5�, Eb denoting the binding energy. Con-
sidering energy conservation in reactions of Eq. �9� we
obtain

Eb�Bi
0� = Eb�Bi

−� + eBi
�0,− � − eI�+ ,0� �11�

and the activation energy for Bi
0 break-up will be Eb�Bi

0�
+Em�I+�. Electronic levels scale with Eg, introducing a slight
T dependence in Eb�Bi

0�. From equilibrium conditions it can
be also derived that the break-up prefactors, �bk,0, must fulfill

FIG. 4. Arrhenius plots for the relative transport capacity
�DC* / �Si�� for �a� V and �b� I in intrinsic conditions. The param-
eters are set to fit the experimental data for I �Refs. 19 and 20� and
V �Ref. 14�.

FIG. 5. Potential energy diagram showing the formation and
migration energies for Bi

− and I0, and the Bi
− binding and break-up

energies.
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�bk,0�Bi
0�/�bk,0�Bi

−� = �m,0�I+�/�m,0�I0� . �12�

Boron effective diffusivity D�B� is given by the sum of
the contribution of all mobile species

D�B� = D�Bi
−�

�Bi
−�

�B−�
+ D�Bi

0�
�Bi

0�
�B−�

+ D�Bi
+�

�Bi
+�

�B−�
. �13�

The diffusion energy value for boron under intrinsic con-
ditions in Fig. 6 �Edif

int� will be similar to the activation energy
of the Arrhenius plot of equilibrium boron diffusivity. The
small differences can be attributed to the charge states and
the modification of the charge levels with temperature. The
activation energies of the terms in the previous equation
�usually known as “defect-assisted diffusion energies” or just
“diffusion energies,” Edif�Bi

j�� are represented in Fig. 6. From
this figure it can be seen that Bi

0 is a metastable state �as
eBi

+ �eBi
−� but is the main contributor for boron diffusion in a

wide range of eF and in consequence D�B�� p /ni �Ref. 2�.
According to Fig. 6 the effective migration energy of a Bi for
eF�ei is Edif�Bi

0�−Ef�Bi
+��0.6 eV, in agreement with the

experimental observation.21 It is also noticeable, that one can
have DPP with no I++. Actually, D�B� does not depend on the
charge states of I, but on those of Bi.

The parameters listed in Table I and used in Fig. 6 have
been chosen to fit the Arrhenius plot of equilibrium boron
diffusivity, D�B�* reported in Ref. 24. In particular, the bind-
ing energy of Bi

− and migration energy of Bi
0 have been taken

to fit the boron diffusivity Arrhenius plot, and the migration
energies for Bi

− and Bi
+ are in agreement with the picture

derived from ab initio calculations25 and the experimental
D*�B� for n type silicon.2

Using the Maxwell-Boltzmann approximation, Eq. �13� is
usually written in continuum models as

D�B� = SI	DX�B� + DP�B�
p

ni
+ DPP�B�� p

ni
�2
 , �14�

SI being the interstitial supersaturation, and p and ni the hole
concentration and the intrinsic concentration, respectively.
The relations between the above diffusivity components
DX�B�, DP�B�, DPP�B� and the microscopic parameters are
therefore

DX�B� = vcaptD�I0��I0�*��m�Bi
−�/�bk�Bi

−�� ,

DP�B� = vcaptD�I0��I0�*��m�Bi
0�/�bk�Bi

−��

�exp��eBi
�0,− � − ei�/kT� ,

DPP�B� = vcaptD�I0��I0�*��m�Bi
+�/�bk�Bi

−��

�exp��eBi
�0,− � + eBi

�+ ,0� − 2ei�/kT� , �15�

ei being the intrinsic level.
These expressions can be used as a bridge between the

parameters of continuum simulators and those of a kMC
simulator. Nevertheless, the above continuum expression as-
sume Maxwell-Boltzmann and quasiequilibrium conditions,
which are not needed within the kMC approach. We should
point out that the above terms only depends on D�I0� without
dependences on I+ or I−. The ratios �m�Bi

j� /�bk�Bi
−� mean that

the diffusivity of each term can be increased by increasing
the migration rate, or decreasing the break-up rate, but in-
creasing or decreasing both leaves the magnitude unchanged.
The atomistic meaning is that the B diffusivity does not de-
pend on how fast Bi moves, but on the distance traveled
�long hop� by the Bi before breaking up.

For slightly doped material, the dominant diffusing inter-
stitial is I0, which upon interaction with substitutional boron
creates a Bi

− which in turn switches to Bi
+ very quickly be-

cause Bi
+ has the lowest formation energy for these condi-

tions. However, Bi
+ is a slow diffusant that can also switch to

Bi
0, which is a fast diffusant and provides the main contribu-

tion to the overall boron diffusivity. Notice that the most
frequent break-up reaction is for the Bi

− charge state to fulfill
microscopic reversibility of the most frequent pairing
reaction.

B. Arsenic

Once boron charged states have been explained, a similar
analysis can be done for arsenic, which has both vacancy and
interstitial contributions, related to AsV and Asi defects, re-
spectively. Arsenic reactions are

I0 + As+ � Asi
+

↑↓ ↑↓
I− + As+ � Asi

0

�16�

and

FIG. 6. Dashed lines, energy to form a Bi
j from a B− �Ef�Bi

j�
−Ef�B−�� as a function of Fermi level using the values of Table I.
Solid lines, activation energy of the contribution of Bi

j for the effec-
tive Boron diffusivity in equilibrium conditions, Edif �see Eq. �13��.
Migration energies �Em�Bi

j�� are the differences between solid and
dashed lines. Black dot indicates the value of Edif

int. The other nota-
tions correspond to Fig. 3.
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V0 + As+ � AsV+

↑↓ ↑↓
V− + As+ � AsV0,

↑↓ ↑↓
V−− + As+ � AsV−

�17�

where we are also assuming that As+ is immobile and always
ionized.

Arsenic diffusion will have all previously mentioned
contributions,

D�As� � D�AsV+�
�AsV+�
�As+�

+ D�Asi
+�

�Asi
+�

�As+�
+ D�AsV0�

�AsV0�
�As+�

+ D�Asi
0�

�Asi
0�

�As+�
+ D�AsV−�

�AsV−�
�As+�

�18�

which, in continuum models is usually reduced to26

D�As� = �f ISI − �1 − f I�SV�

�	DX�As� + DM�As�
n

ni
+ DMM�As�� n

ni
�2
 ,

�19�

f I being the fraction of interstitial-assisted diffusion.
Notice, however, that this continuum description conveys

several simplifying assumptions compared to Eq. �18�. In the
first place, the common assumption that DX and DM fit an
Arrhenius plot is only true if the contributions of AsV+ and
Asi

+ have the same activation energy, and the same must be
true for the AsV0, Asi

0 contributions. More importantly, Eq.
�19� assumes that the interstitial fraction, f I is independent of
the Fermi level �i.e., the same for the three charge states�,
and is also independent of the temperature. These assump-
tions reduce the range of applicability of Eq. �19�. Our pa-
rameter set for As is reported in Table I. These parameters fit
the equilibrium As diffusion reported by Ref. 2. The binding
energy �1.3 eV� and migration energy used for AsV0 com-
pare very well with ab initio calculations.27 The value of
eAsV�0,−� is from Ref. 2. The activation energy of f i is the
same than the value in Ref. 28.

Figure 7 shows experimental diffusivity �symbols� re-
ported in Ref. 2 for different concentrations and tempera-
tures, compared with our calculated values. We have taken
into account the field enhancement factor h.1

Figure 8 shows a comparison of profiles obtained with a
continuum approach and our atomistic approach. The lines
plot the result of solving the one-dimensional �1D� diffusion
equation1

�CAs

�t
=

�

�x
�DAs

* �CAs

�x
� , �20�

where DAs
* =hDAs, DAs being the magnitude represented in

Eq. �19�. We have simulated 1.4�104 s, 4.6�104 s, and
105 s for both intrinsic �dashed lines, 1018 cm−3 As
surface concentration� and extrinsic conditions �solid lines,
4�1019 cm−3 As surface concentration�. The 1D projection
of the obtained 3D atomistic profiles �squares, 1.4�104;

circles, 4.6�104 s; and triangles, 105 s� are in good agree-
ment with the continuum ones, for the different annealed
times at 800 °C. The effect of Fermi level is evident in the
obtained boxlike shape profile for extrinsic diffusion. The
comparison made in Figs. 7 and 8 validates the parameter
translation between atomistic and continuum formulation
�Eq. �15� and equivalent for As�.

V. DOPANT LONG HOPS INVOLVING SEVERAL
CHARGE STATES

In systems where diffusion proceeds via an intermediate
migrating species the shape of the diffusion profiles of dop-
ants can be substantially different, even though the standard
deviations of the profiles are the same.29,30 This is because
the shape is controlled by the value of the long hop distance,
	 �distance traveled by a point-defect pair before breaking
up�, which is given by30,31

FIG. 7. Arsenic diffusion dependence on the temperature and
dopant concentration. Symbols, experimental data �Ref. 2�. Lines,
calculated values �see text�.

FIG. 8. Arsenic concentration profiles under intrinsic �open
symbols and dashed lines� and extrinsic conditions �solid
symbols and lines� for 800 °C. Symbols, kMC simulations
�squares, 1.4�104 s; circles, 4.6�104 s; triangles, 105 s�. Lines
calculated for the same conditions within the continuum framework
�see text�. In order to do an even comparison, Maxwell-Boltzmann
statistics have been used in our simulation.
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	 = �1

6

�m

�bk
, �21�

taking for �m and �bk their average charge states. In the
above-mentioned case of a Bi, Eq. �21� becomes

	 = �1

6

�m�Bi
−��Bi

−� + �m�Bi
0��Bi

0� + �m�Bi
+��Bi

+�
�bk�Bi

−��Bi
−� + �bk�Bi

0��Bi
0�

which using Eq. �10� and equivalent can be written as

	 = �
1

6

�m�Bi
−�

�Bi
−�

�B−�
+ �m�Bi

0�
�Bi

0�
�B−�

+ �m�Bi
+�

�Bi
+�

�B−�
vcapt��m�I0��I0� + �m�I+��I+��

�22�

and, finally using Eqs. �3� and �13�,

	 = � D�B�
6vcapt�D�I0��I0� + D�I+��I+��

� � D*�B�
6vcaptDC*�I�

.

The last equality assumes that the I− contribution is neg-
ligible. DC*�I� is the equilibrium transport capacity of inter-
stitials. With the values we are using, 	�p /ni for eF�ei.

The temperature dependence of 	 for boron, using the
parameters of Table I is displayed in Fig. 9, both for intrinsic
and doped silicon, and compared with experimental values
for intrinsic materials.29,32

It is interesting to note that the concentrations of the dif-
ferent charge states of interstitials �namely I+ and I−� do not
directly affect boron diffusivity �see Eqs. �13� and �15��. This
could suggest that, as a simplifying approximation, one can
neglect the presence of I− and I+. However, Eq. �22� shows
that, by doing so, an incorrectly large 	 value could be ob-
tained for extrinsic materials. In fact, the magnitude of D�B�
is governed by the �m�Bi

j��Bi
j� / �B−� terms, but how Gaussian

the diffusion profile is, depends also on the �m�Ij��Ij� terms.

VI. AN EXAMPLE: BORON PILE UP AND DEPLETION
NEAR A PN JUNCTION

One of the reasons for developing the detailed modelling
of charge effects presented in this work is that, in the com-
plex processing scenarios which are now common place in
advanced semiconductor manufacturing, the dominant
mechanisms may not be apparent or, even worse, one can be
misled by intuition.

As an example, Fig. 10 shows the results after a 20 h
annealing at 750 °C of a uniformly P-type doped substrate
�1�1018 cm−3 initial boron concentration� which includes an
N-type layer �1�1020 cm−3 arsenic concentration, initially
from 0 to 25 nm�. During the annealing, B is depleted from
the junction into the N-type layer and piles up as it enters the
N side. However, it is interesting to remark that this apparent
electric drift effect was actually associated to a net flux of the
neutral Bi

0, maybe against simple intuition. Namely, the gra-
dient of eF produces a gradient of �Bi

0� / �B−� and, in conse-
quence, a diffusion flux of Bi

0 into the N region. Boron pile
up at the front of the As-rich region is a result of the lower
value of D�B� in N-type materials �see Eq. �14��. The figure
clearly shows the same dopant redistribution effect that has
been reported by other authors, both theoretically8,33 and
experimentally.34

VII. CONCLUSIONS

In this work an accurate, physically based atomistic mod-
eling of Fermi-level effects of species diffusing in silicon has
been presented. This model takes into account the charge
reactions and electric bias dependency with Fermi level,
pairing and break-up reactions between particles, clustering
dopant activation and deactivation and the Fermi-level-
dependent solubility. It also includes degenerate Fermi-Dirac

FIG. 9. Arrhenius plot for Bi long hop distance �	�. Lines, val-
ues calculated using our parameter set for intrinsic, n-doped and
p-doped silicon. Symbols, experimental values in quasi-intrinsic
conditions �Refs. 20, 29, and 32�.

FIG. 10. Dopant redistribution in a PN junction. Initially boron
has a homogeneous concentration of 1�1018 cm−3 �P region�. The
N+ region has been created with a profile of arsenic concentration
�1�1020 cm−3� from 0 to 20 nm. Subsequently, the sample has
been annealed by 20 h at 750 °C.
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statistics and band-gap narrowing.
The presented model, in particular Eq. �15�, establishes a

bridge between atomistic kMC and continuum approaches
for Fermi-level-dependent diffusivity. These atomistic simu-
lators are expected to play an increasingly relevant role in the
forthcoming years6 due to their ability to directly incorporate
ab initio parameters and complex mechanisms.
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