
Band transport model for discotic liquid crystals

L. J. Lever,1,* R. W. Kelsall,2 and R. J. Bushby1

1SOMS Centre, University of Leeds, Leeds LS2 9JT, United Kingdom
2School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

�Received 16 February 2005; revised manuscript received 7 April 2005; published 27 July 2005�

A theoretical model is presented for charge transport in discotic liquid crystals in which a charge is delo-
calized over more than one lattice site. As such, charge transport is via a banded conduction process in a
narrow bandwidth system and takes place over coherent lengths of a few molecules. The coherent lengths are
disrupted by the geometrical disorder of the system and are treated as being terminated by quantum tunnel
barriers. The transmission probabilities at these barriers have been calculated as a function of the charge carrier
energy. Phononic interactions are also considered and the charge carrier scattering rates are calculated for
intermolecular and intramolecular vibrations. The results of the calculations have been used to develop a
Monte Carlo simulation of the charge transport model. Simulated data are presented and used to discuss the
nature of the tunnel barriers required to reproduce experimental data. We find that the model successfully
reproduces experimental time of flight data including temperature dependence.
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I. INTRODUCTION

Discotic liquid crystals �DLCs� are disk shaped molecules
with rigid aromatic cores and flexible alkyl side chains. They
self-organize into structures that exhibit columnar stacking
order and liquidlike dynamics. DLCs that are free from im-
purities are good insulators and a charge must be injected
before electronic conduction can occur.1 The carrier mobili-
ties are highly anisotropic and the mobility along the column
is �103 times greater than that perpendicular to the
columns.2 In most cases, charge transport is via holes, and
mobilities can be measured using time of flight �TOF� tech-
niques. In a TOF experiment, the DLC is sandwiched be-
tween two transparent electrodes and a charge is injected at
one electrode via a short pulse of laser light. Charge then
drifts to the counter electrode under the influence of the ap-
plied field, as illustrated in Fig. 1. The time taken for the
sheet of charge to reach the cathode �i.e., the TOF� is mea-
sured as the duration of the photocurrent. This may be used
to calculate a mobility �assuming that the carrier velocity is
proportional to the field� using the equation

� =
d2

V�
, �1�

where d is the electrode separation, V is the applied potential,
and � the duration of the photocurrent.

Crystalline molecular semiconductors, such as pentacene,
exhibit charge carrier mobilities as high as 400 cm2/V s �at
low temperatures� and the mechanism for charge transport is
widely accepted to be band transport.3 Amorphous molecular
semiconductors, however, show mobilities of 10−3 cm2/V s
or less and charge transport is widely accepted to be via a
molecule-molecule hopping process. Charge carrier mobili-
ties in DLCs range from 2.5�10−6 to 0.07 cm2/V s �Ref. 1�
and span the gap, both in terms of mobility and ordering,
between single crystal and amorphous organic materials.

In DLCs, the question of whether charge transport is
banded or hopping depends on the nature of the polaron

formation. The presence of an excess charge distorts the sur-
rounding medium, giving rise to the formation of a polaron.
Depending on the strength of the coupling between the ex-
cess charge and the phonons, large �weak coupling� or small
�strong coupling� polarons are formed.4 If the electronic mo-
tion is so fast that it passes a lattice site in a time scale
smaller than the time scale of molecular vibrations, then the
lattice does not have time to relax to the new distorted ge-
ometry while the excess charge remains on that lattice site
and the polaron formation can be regarded as a perturbation
to the band structure.5 In this case, a lattice distortion �i.e., a
large polaron� is dragged along with the charge causing an
increase in effective mass and narrowing of the bandwidth.4,6

If the electronic motion is slower than the time scale of mo-
lecular vibrations, then the lattice does have time to relax to
the new distorted geometry and this can act to trap the charge
in a localized lattice distortion, or small polaron, and trans-
port is by phonon-assisted hopping between lattice sites.5

Hopping is a random-walk process and the Miller-
Abrahams formulation shows that the high mobilities found
in materials such as hexakis-�hexylthio�triphenylene �HTT6�
require hopping rates in excess of 1012 Hz. Since DLCs con-
tain imperfections,7 the actual required hopping rate will
probably be much larger than this. Furthermore, phonon-
assisted hopping leads to a positive temperature-mobility
correlation. However, in higher mobility DLCs, such as
HTT6, a weak negative temperature-mobility correlation is

FIG. 1. �Color online� Band diagram illustrating the TOF charge
transport process.
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observed.8 Even hexakis�n-hexyloxy�triphenylene �HAT6�
��=3�10−4 cm2/V s� shows a weak, almost temperature-
independent carrier mobility.9 Such a temperature depen-
dence of the mobility is easier to understand if the charge
transport is via a coherent banding mechanism.

A band transport model is described and its results pre-
sented for parameters appropriate to HTT6, which forms a
helical phase with rotational ordering between adjacent mol-
ecules and exhibits a mobility of 0.07 cm2/V s �Ref. 8�. The
description is general, though, and could be extended to any
of the higher mobility DLC systems. A band transport model
with crystalline imperfections has been developed,10 and in
this paper, the authors aim to set out the theoretical method-
ology to describe that model fully.

II. MODEL DESCRIPTION

The band was formed according to the tight-binding ap-
proach. A single molecular state was considered and a linear
combination of these molecular orbitals used to create a band
structure. This yields a dispersion relation of the form:

��k� = �b�1 − cos ka� , �2�

where a is the lattice constant; �b is half the bandwidth;
which, from the tight-binding Hamiltonian used, is twice the
charge transfer integral; and k is the wave vector. The lattice
constant for the DLC system is taken to be the core-core
repeat distance, which has been determined, from x-ray-
scattering experiments, to be 3.5 Å for triphenylenes.11 The
calculations that give the above dispersion relation assume
an infinite chain of molecules. A fundamental feature of the
model, as described below, is the presence of breaks in the
linear molecular chains. If the breaks are closely spaced then
the assumption of a periodic linear chain would not be valid.
However, our simulation results show that the experimental
data are best fitted when the distance between complete
breaks in the chain is more than �200 Å. This corresponds
to �60 molecules, which, in the tight-binding framework,
give a set of energy states that are separated by much less
than kBT, hence it can be considered as a continuous band.

There are two types of imperfections to be included in the
model. These are displacements in the plane of the molecules
and displacements normal to this plane �see Fig. 2�—let
these be labeled �x and �z, respectively. These imperfec-
tions will cause localized perturbations and breaks in the
band structure that the charge carrier must tunnel through.
The nature of the imperfections and the tunneling process
will be addressed in more detail in Sec. III. Rotational dis-
order will cause constrictions in the band structure that are
similar to those for the �x imperfections. The resulting trans-
mission probabilities will be of the same order or lower,
depending on the angular displacement. As such they are
included as part of the �x tunneling process so that the mod-
eled �x imperfections consider both the in-plane transla-
tional and rotational imperfections. It is not expected that
this will lead to any significant error because any tunneling
process that has a low transmission probability will not be
significant in the charge transport process and the coherence
length will now be correct.

A. The simulation

The simulation technique used is a semiclassical Monte
Carlo method. Charge carriers are modeled as point particles
each carrying unit electronic charge. The transport simula-
tion is one dimensional and assumes that the field is in the
direction parallel to the director of the DLC column, consis-
tent with a homeotropically aligned TOF cell. Carriers are
drifted in an electric field F and gain an amount of crystal
momentum given by

�k =
eF�

�
, �3�

where e is the electronic charge and � is a stochastic free
flight time, which is determined by phonon-scattering rates
�discussed in more detail in Sec. IV�. This gain in crystal
momentum results in a change of carrier energy in accor-
dance with Eq. �2�. The distance traveled by the carrier dur-
ing a free flight is given by

�z =
1

eF
�� , �4�

where �� is the energy change due to drifting in the field.
The carrier is drifted from the charge generation layer at the
anode until it has traveled sufficient distance to reach the
cathode. The cathode is modeled as a purely ohmic contact,
such that when a carrier is incident on it, it is absorbed.

The carriers are assumed not to interact with one another.
This follows from considering the photocurrent and the area
illuminated by the laser pulse in a TOF experiment: There
are roughly 1000 times more columns for charge transport
than there are charge carriers. The simulation is repeated
many times to generate data for an ensemble of carriers to
simulate a current.

III. IMPERFECTIONS

The two imperfections illustrated in Fig. 2 are significant
because these changes in structural conformation affect the
charge transfer integral, and the bandwidth is dependent on
this. For the in-plane dislocation, an axial displacement of
half the intercolumnar separation was assumed. This was

FIG. 2. �Color online� The two disruptions to the geometrical
ordering of the DLC considered in the model.
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modeled by considering the effect on the valance band and it
is expected that the charge transfer integral will decrease,
since less of the core area is “in contact,” which will cause
the bandwidth to decrease proportionally. An in-plane dis-
placement from equilibrium of HTT6 by 10 Å causes the
charge transfer integral to change from 0.12 eV to approxi-
mately 0.04 eV.12 Such a dislocation will result in the local-
ized narrowing of the bandwidth and was modeled as a linear
constriction as shown in Fig. 3. Various forms of the con-
striction were considered, including Gaussian and square
barriers. A linear constriction was chosen since it approxi-
mates a gradual change in bandwidth �which seems more
likely than a square constriction� and the energy dependence
of transmission probability was very similar to that of a
Gaussian one, yet the linear constriction affords an analytical
result that can be incorporated into the simulation without
the need for lookup tables, which would incur their own
errors.

In the region of the constriction, the dispersion relation
becomes

� = V�z� + ��b − V�z���1 − cos�ka�� , �5�

where V�z�=Az ; 0	z	z1 and V�z�=−A�z−z1� ; z1	z	z2.
Rearranging for k gives

k = 1/a cos−1�1 −
�� − V�z��
��b − V�z��� �6�

for the regions where �
V�z� and, since for �	V�z� the
result of the above equation will be imaginary, in the tunnel-
ing region we have

� = 1/a cosh−1�1 −
�� − V�z��
��b − V�z��� , �7�

which is only valid in the regions V�z�	�	�b. This means
that we can only treat narrowings of the band with this
method and not complete breaks.

The Wentzel-Kramers-Brillouin �WKB� formula for tun-
neling gives a tunneling probability of13

TWKB = e−2���z�dz, �8�

which, for this system, gives a transmission probability of

T = exp	−
4��b − ��

aA

 cosh−1�u�

u2 du� , �9�

where

u = 1 −
� − V�z�
�b − V�z�

. �10�

The tunneling probability is shown in Fig. 4 and goes to
unity for carriers with greater incident energy than the height
of the constriction. A reflection term is expected for this case.
However, this will be small and the majority of carriers have
incident energies much lower than this and so it has been
neglected.

The �z imperfections illustrated in terms of energy in Fig.
5 cause the overlap integral to disappear completely. This
type of imperfection was modeled as an abrupt break in the
band using a modified WKB �MWKB� approach.14 Since
there is no band structure in the tunnel barrier region, the
dispersion relation within the tunnel-barrier region was taken
to be

� =
�2�2

2m
e

, �11�

where me is the free electron mass and � is the imaginary
wave vector. The MWKB approach modifies the standard

FIG. 3. Energy diagram for band constrictions at �x imperfec-
tions, z2=10 Å.

FIG. 4. �Color online� Transmission probability as a function of
incident energy for �x tunnel barriers.

FIG. 5. Energy diagram for �z tunnel barriers.
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WKB approach by a group-velocity mismatch term given by

TR = � 4�g�g�

�g
2 + �g�

2�2

, �12�

where �g is the group velocity in the band and �g� is the group
velocity in the tunnel region. The mismatch term will be
small when the charge carrier energy is low since the group
velocity approaches zero for k→0.

The MWKB transmission probability is shown in Fig. 6;
it is dominated by the group-velocity mismatch term TR and
shows transmission probabilities for incident carriers with
energies near the center of the band around three orders of
magnitude greater than those with energies near the bottom
�or top� of the band.

IV. SCATTERING MECHANISMS

Scattering mechanisms included in the model are trans-
verse acoustic phonon-scattering, molecular vibrations caus-
ing out-of-plane motion of the triphenylene core and reflec-
tive scattering from tunnel barriers. Charged impurity
scattering has not been included since the concentration of
charged impurities in a well-prepared sample of a liquid
crystal is less than one part per billion.15 A typical TOF cell
is �20 �m thick giving �60 000 molecules per column,
therefore �considering nearest-neighbor columns� the prob-
ability of a charged impurity scattering event occurring at all
will be 	10−3 for each carrier. As discussed in Sec. III car-
rier populations are much smaller than the number of col-
umns, so carrier-carrier interactions may also be neglected.

The transverse phonon-scattering rates were calculated
according to the method of Bardeen and Shockley.16 The
transverse vibration about equilibrium positions is assumed
to propagate along the columns. The displacement from
equilibrium of an individual molecule is given by

�x = Ae±i�q·z−t�, �13�

where A is the amplitude of vibration, q the wave vector, z
the displacement along the column, x the displacement from
equilibrium,  angular frequency, and t time. If it is assumed
that the wavelength of the vibrations is much larger than the
lattice spacing, a, then the difference in displacement from
their equilibrium positions between adjacent molecules be-
comes

��x�a� − �x�0�� =
d

dz
��x�a , �14�

and we have

d

dz
��x� = ± i�q · z� . �15�

The acoustic deformation potential constant �ac describes
how strongly the deformation of the lattice interacts with the
edge of the valance band

�� = �ac
d

dz
��x� . �16�

Here �� is the change in energy of the valance band edge
caused by the transverse displacement. A linear fit was ap-
plied to data from Ref. 12 to find the change in overlap
integral with �x displacement. The band edge will undergo a
shift in energy of twice the overlap integral, and so the gra-
dient of this linear fit multiplied by the lattice constant will
give the acoustic deformation potential constant �ac. For
transverse acoustic phonons, this value was found to be 55
meV.

To calculate the scattering rate, a matrix element for the
interaction must be found. Following the method of Bardeen
and Shockley, this matrix element is given by

�Hk�k� = �acqA . �17�

The quantum analog of the amplitude of molecular vibration,
A, is found by considering the transition between the Nth
vibrational state to either the N−1 or N+1 state correspond-
ing to adsorption and emission of a phonon for a harmonic
oscillator

A = 
 �N±1
* x�Nd3r = ��

N�

2M
, N → N − 1

��N + 1��
2M

, N → N + 1,�
�18�

where M is the oscillator mass and  the angular frequency
of the vibration and N is the Bose-Einstein factor. Molecular
dynamics simulations and fitting to quasi electric neutron
scattering �QENS� experiments12 give a frequency of 5
�1012 Hz for transverse oscillations.

The Fermi golden rule was used to calculate the scatter
rates, giving

FIG. 6. �Color online� Transmission probabilities for �z tunnel
barriers as a function of incident k vector. �a� Total transmission
probability. �b� The WKB term. �c� Group velocity mismatch term.
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Pem�k� =
2�

�
�ac

2 q2 �N + 1��
2M

�k� �19�

for phonon emission and

Pabs�k� =
2�

�
�ac

2 q2 N�

2M
�k� �20�

for absorption where k is the initial state wave vector and �k�
is the density of final states given by

�k� =
L

�

1

a�bsin k�a
, �21�

where k� is the final state wave vector. Expressing the scat-
tering rates in terms of final state wave vector yeilds

Pem�k� = �ac
2 2�2

a3

�N + 1�
�b�

1

S

1

sin k�a
�22�

for emission and

Pabs�k� = �ac
2 2�2

a3

N

�b�

1

S

1

sin k�a
�23�

for absorption, where S is the cross-sectional area of the
molecular cores. The phonon-dispersion relation has been
approximated to a linear relationship and q replaced with
� /a. The scattering rates are shown as a function of the final
state wave vector in Fig. 7. The scattering rates become
much higher as carriers are scattered to the edge of the band
as the density of states is larger here.

The scattering rates for the C-H bond flexing may be cal-
culated in a similar way. The matrix element for a scattering
process can be expressed as

�Hkk�� =
 �k�
* V�r��kd

3r . �24�

The potential V�r� describes the magnitude of the change in
valence band-edge energy and, since we are considering a
longitudinal vibration, this will be the product of twice the
gradient of the plot of charge transfer integral with longitu-
dinal displacement, shown in Fig. 8. Let this gradient be �CH
�this is not the same as the constant �ac found in the previous
argument since we are dealing with molecular vibration and
not an acoustic phonon�. The amplitude of the vibration will
also be much smaller than for an acoustic phonon because a
C-H bond flexing mode is under consideration. The ampli-
tude of vibration for a hydrogen atom is �1 Å; given the
ratio of the masses of the six hydrogen atoms around the core
to the mass of the remainder of the molecule, this gives an
amplitude for the vibration for the molecule of �0.007 Å.
This is comparatively small, but from the gradient of Fig. 8 it
follows that a displacement of 0.007 Å will perturb the val-
ance band edge by 3.2 meV, which is 1.3% of the bandwidth.

Expressing � as

� =
1

�V
uk�r�ei�k.r−t�, �25�

where V is volume and uk is a Bloch function, which cancels
and allows the matrix element to be written as

�Hkk�� =
1

V
�CHA
 ei�k−k�−q�d3r = �CHA��k − k�q� , �26�

where q is the effective crystal momentum of the lattice vi-
bration.

Assuming a harmonic oscillator for the molecular vibra-
tions and treating a scattering event is a transition from the
Nth to the N±1th vibrational state for quantized molecular
vibrations A may be expressed as in Eq. �18�. Appling the
Fermi golden rule and using the density of final states in Eq.
�21� gives scattering rates of

Pem�k�� = �CH
2 �N + 1�

a�b�

1

S

1

sin k�a
�27�

for emission and

FIG. 7. �Color online� Scattering rates for transverse acoustic
phonons as a function of final state k vector. Emission rates are
shown by the dashed line and absorption by the dotted line.

FIG. 8. �Color online� Variation of charge-transfer integral with
longitudinal displacement.
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Pabs�k�� = �CH
2 N

a�b�

1

S

1

sin k�a
�28�

for absorption. The Bose-Einstein factor has been calculated
here using the frequency of 2.22�1013 Hz corresponding to
the ir absorption frequency for triphenylene C-H bond flex-
ing.

The scattering rates for the C-H bond flexing mode are
shown in Fig. 9. They display a greater difference between
emission and absorption rates than for the transverse acoustic
phonon. This is because the energy of the vibrational state is
greater, hence the Bose-Einstein factor is smaller and the
ratio �N+1� /N is larger. The transverse acoustic phonon scat-
tering rates are �1011 Hz and for the C-H flexing mode
�1011 Hz for absorption and �1012 Hz for emission.

Carriers are also scattered by tunnel barriers. If a carrier
tunnels through a barrier its wave vector remains unchanged.
When a carrier is reflected from a tunnel barrier its wave
vector is reversed. Therefore, barrier scattering is an elastic
process.

V. TEMPERATURE DEPENDENCE OF COHERENCE
LENGTH

The �z barriers shown in Fig. 2 will be dynamic since the
forces on the molecules will be unbalanced. In other words,
the �z barriers are the result of longitudinal molecular vibra-
tions. The amplitude of the motion has been measured using
QENS techniques17 and found to be �1.2 Å. This motion is
so large as to completely destroy the charge transfer integral
as the molecules move apart, and hence it cannot be treated
as a perturbation to the band structure as is the case for
transverse molecular vibrations. Being the result of a mo-
lecular motion, the population of these imperfections is ex-
pected to show a temperature dependence and follow Bose-
Einstein statistics.

Let the total coherence length lc be due to two coherence
lengths due to �x and �z imperfections

1

lc
=

1

lc
�x +

1

lc
�z . �29�

As temperature is increased, lc
�z will decrease according to

lc
�z�T� = lc

�z�T0�
N�T0�
N�T�

, �30�

where T0 is some reference temperature for which lc
�z can be

defined and N is the Bose-Einstein factor for the oscillations.
The frequency of these oscillations is 1.4�1011 Hz.17 These
molecular vibrations are slow compared to the motion of the
charge carriers. Consequently the longitudinal vibrations can
be considered as static imperfections of the ordering of the
DLC column.

The �x imperfections are also expected to show a tem-
perature dependence, however the form of it is not known.
They are a result of the liquidlike dynamics of the DLC and
not a vibration; hence, they will probably not follow Bose-
Einstein statistics as the �z imperfections do �although their
population will doubtless increase with temperature�. Fur-
thermore, since the �z imperfections have much lower trans-
mission probabilities, they have a greater effect of the mo-
bility �they have more “stopping power”� and so the
population of the �x barriers will be less significant in any
case.

�z imperfections will also exist as the result of the liquid-
like dynamics of the system and as such may not follow
Bose-Einstein statistics perfectly. However, it is reasonable
to assume that the temperature dependence of lc

�z will follow
a relationship of a similar form to that given by the Bose-
Einstein statistics �i.e., disorder will increase with tempera-
ture�.

VI. RESULTS

The simulation was designed to generate TOF data. The
principal result was the time taken for carriers to drift from
one electrode to the other and from this the mobility was
calculated. Other simulated data include phonon-scattering
statistics, energy and k space distributions, real-space distri-
butions, and tunneling probabilities. The simulation was pa-
rametrized for electric field, bandwidth, phonon-scattering
rates and energies, temperature effects due to phonons, co-
herence length, overall temperature dependence �i.e., that
due to phonon interaction and due to coherence length reduc-
tion�, and tunnel barrier dimensions. The effects of varying
these parameters will be addressed one by one in this section.
First however, it is instructive to look at energy and k-space
distributions as well as real-space distributions.

Figure 10�a� shows the charge carrier energy distribution.
It is centerd around the bottom of the energy spectrum
�which, for holes means they are at the top of the valance
band, as expected�. kBT is 31 meV at this temperature �358
K� and so carriers are expected to have about half this energy
�as there is one degree of freedom� plus that gained from the
field. The mean carrier energy is around 20 meV. Figure

FIG. 9. �Color online� Scattering rates for the C-H bond flexing
phonon as a function of final state k vector. Emission rates are
shown by the dashed line and absorption by the dotted line.
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10�b� reveals that the k-space distribution is roughly sym-
metrical; this implies that carrier group velocities are much
greater than the drift velocity contributing to the TOF. The
distribution extends to slightly higher positive k values than
negative ones, corresponding to the net drift of charge carri-
ers.

Position estimators �Fig. 11� show that carriers tend to
“bunch up” behind the more severe �z barriers, eventually
tunneling through them to continue down the column. �It is
misleading to consider an ensemble of carriers bunching up
behind a single barrier, as it is the amount of time a single
carrier spends in a given location that is increasing. How-
ever, this provides a more intuitive interpretation of the data.�

�z transmission probabilities are �10−4, whereas those for
the �x barriers are �10−2, this is reflected in the carrier
spatial distributions. Populations are artificially peaked at
barriers; this is because, in the simulation, estimator values
are sampled at every scattering event and barrier reflections
are included as scattering events. The spatial distributions
show an exponential rise in occupation density as an �z bar-
rier is approached.

The mean carrier energy is constant along the column at
about 20 meV, as is expected. Values are peaked slightly at
the site of the barriers. The reason for this is unclear, al-
though it may result from the fact that more carriers impinge
on barrier traveling in the direction of the field, and hence
they will pick up energy from the field during their free
flight. These carriers will thus have a higher mean energy
than carriers that are moving in the direction antiparallel with
the field. In any case, the peaking of energies at the barriers
is merely an artifact of the method of data sampling used in
the simulation.

A. Electric field

Charge carrier mobility is defined as the gradient of the
velocity field curve. If the group velocity is proportional to
the applied electric field then Eq. �1� holds and the charge
carrier mobility is field independent. Figure 12�a� shows the
simulated carrier velocity as a function of electric field. This
is in good agreement with the experimental data plotted in
Fig. 12�b� and confirms that the model provides a field-
independent charge carrier mobility with velocity propor-
tional to the applied electric field.

B. Bandwidth

The bandwidth is defined as the difference in energy be-
tween the top edge and bottom edge of the valence band.
From the tight-binding Hamiltonian used here, this value is
four times the charge-transfer integral. This has been calcu-
lated to be 0.12 eV �Ref. 12� giving a bandwidth of 0.48 eV.

Calculations of the polaronic bandwidth narrowing have
been carried out for oligoacenes,6 which show that the high-
est occupied molecular orbital �HOMO� bandwidth of naph-
thalene narrows by about 90% as temperature increased from
absolute zero to room temperature. The nature of the carrier-
lattice interaction is likely to be significantly different in
DLCs to that of an organic crystal phase solid such as naph-
thalene and, as such, polaronic bandwidth narrowing has not
been taken into consideration in the development of this
model. However, it is clear that reducing the bandwidth will
reduce the mobility, since group velocity is related to band-
width. Figure 13 shows how the mobility changes as the
bandwidth is reduced. It was generated using a �z tunnel
barrier width of 1.7 Å instead of 2.7 Å, as reducing the
bandwidth to very small values without increasing the trans-
mission probabilities will result in very low mobilities and
excessively long simulation run times.

The mobility dependence on bandwidth follows a power
law for small bandwidths �	100 meV�; as bandwidth is in-
creased the dependence becomes less strong. This is because
transmission probabilities are higher for carriers with ener-

FIG. 10. �Color online� Energy and k-space distributions. The
units of distribution density are arbitrary and are merely a count of
the number of times the particle occupies that state.

FIG. 11. �Color online� �a� Position of barriers �this is an arbi-
trary scale and for illustrative purposes only�. �x barriers are shown
at a height of 1 and �z barriers a height of 3. The length of DLC
was split up into 2000 “bins.” �b� The number of counts of carriers
occupying a given bin to give position density estimators. �c� Mean
carrier energy as a function of position.
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gies at the middle of the band. For small bandwidths, where
kBT is of the order of half the bandwidth, carriers have en-
ergies near the middle of the band and increasing the band-
width greatly increases mobility. Once the bandwidth has
increased so much that population densities at energies near
the middle of the band becomes very low, increasing it fur-
ther reduces the transmission probability and the mobility
dependence upon bandwidth becomes weaker.

C. Temperature effects due to carrier-phonon interactions

From Eqs. �22�, �23�, �26�, and �27� it can be seen that
there is a temperature dependence of the scattering rate. Fur-
thermore, the ratio of the probabilities of phonon absorption,
Pabs, and emission, Pem, are given by the Bose-Einstein sta-
tistics

Pem = Pabs�N + 1

N
� , �31�

where N is the Bose-Einstein factor. The temperature depen-
dence due to carrier-phonon interactions shows a positive
correlation between mobility and temperature.

The temperature dependence of the mobility is approxi-
mately linear �see Fig. 14�, and over the range of the helical
phase of HTT6 �345 K to 365 K� varies by �3%. This con-
stitutes a temperature dependence �due to phonons� that is
very weak, almost too weak to be measured by experiment.

The origin of the positive correlation is an increase in the
mean carrier energy. Scattering rates increase with increasing
temperature and the ratio between the emission and absorp-
tion rates decreases. The emission rates are higher than the
absorption rates and increasing the temperature increases the
mean carrier energy because the ratio between the emission
and absorption rates is reduced. Since the tunneling pro-
cesses are energy dependent, this results in an increase of
transmission probability and hence the mobility.

D. Phonon scattering rates and energies

As described in Sec. IV, two phonon energies were used
in the simulation �transverse acoustic �20 meV� and C–H
bond flexing �92 meV��. The absorption scattering rates were
varied independently for both transverse acoustic and C–H
bond flexing processes and the resulting mobilities plotted in
Fig. 15 over a temperature of 300–500 K.

FIG. 12. �Color online� Velocity-field curves at 358 K. �a� Simulated data, electrode separation =2 �m. �b� Experimental data �Ref. 20�,
electrode separation =23 �m. Although the electrode separations are different �to save CPU time�, the carrier velocity is a bulk property and
does not show a dependence on the electrode separation.

FIG. 13. �Color online� Dependence of the charge carrier mobility on the electronic bandwidth; �b� is a close-up of the small bandwidths
shown in �a�.
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The mobility is more strongly dependent on the scattering
rate of the 92 meV C-H bond flexing phonon than on the 20
meV transverse acoustic phonon. This suggests that the 92
meV phonon is the most important one for charge transport.
The reason for this is that absorption of the 92 meV phonon
increases the carrier energy to a level much higher than kBT.
A charge carrier with such an energy will have a higher
transmission probability upon encountering a barrier than
one at or around kBT. Therefore, increasing the scattering
rate for this phonon actually increases the charge carrier mo-
bility.

E. Temperature effects (including coherence length)

The coherence length is defined as the mean distance
along the column over which the highly ordered state persists
uninterrupted by imperfections. This has been probed by low
angle x-ray experiments and shown to be around 12 nearest
neighbors, corresponding to 42 Å.18 The mobility was found
to vary approximately proportionally to the coherence length
�for a fixed ratio between the two types of imperfection�.

The correlation between coherence length and mobility is
much stronger than the mobility-temperature correlation due
to phonon scattering. Inclusion of the coherence length-
temperature relationship discussed in Sec. V results in the
carrier mobility as a function of temperature shown in Fig.
16. It shows that the overall temperature dependence is still
weak, but shows a negative correlation between temperature
and mobility. This negative correlation demonstrates that the
temperature effects of coherence length are stronger than the
temperature effects due to phonons. Furthermore, it is in
agreement with Ref. 8, which shows a weak negative corre-
lation between temperature and mobility, over the range of
temperatures at which the helical phase exists.

F. Tunnel barrier dimensions

Of the two tunneling processes described in Sec. III, the
�z �complete break� tunnel barriers are the most significant
since the transmission probability for these is considerably
lower then for the partial breaks. The transmission probabili-
ties for these barriers are strongly dependent on the barrier
width and on the barrier height �see Fig. 17�. Both param-
eters can be varied in order to obtain the desired transmission
probabilities. The barrier width was assumed to be 2.7 Å in
order to model the longitudinal vibrations that could not be
modeled as carrier-phonon interactions. The barrier height
was varied in order to fit the experiment. The theoretical
limit for the barrier height will be the work function of the
DLC, which is approximately 6 eV �Ref. 19�.

The dependence of the mobility on the tunnel barrier di-
mensions is strong. Furthermore, the dependence of the mo-
bility on barrier width is exponential. The transmission prob-
ability also depends exponentially on the barrier width;
therefore, the mobility is proportional to the transmission
probability. This and the fact that the mobility varies propor-
tionally with coherence length imply that the �z tunnel bar-
riers are the limiting factor for charge transport.

In this model, the slow longitudinal intermolecular mo-
tions are modeled as tunnel barriers and are clearly decou-
pled from the electronic motion and so will not contribute to

FIG. 14. �Color online� The temperature dependence of mobility
due to carrier-phonon interactions shows a weak positive corre-
lation.

FIG. 15. �Color online� Scattering rates for transverse acoustic
�T� and C-H bond flexing �C-H� varied independently.

FIG. 16. �Color online� Temperature dependence of system in-
cluding coherence length-temperature relationship.
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significant polaronic narrowing of the bandwidth. The faster
transverse intermolecular motions are on a time scale of 2
�10−13 sec, which is also slow compared to electronic mo-
tion. The intramolecular motions are on time scales of
�10−14 sec and this is fast enough to couple to the electronic
motion and some degree of polaronic bandwidth narrowing
is expected.

The form of the polaronic bandwidth narrowing �i.e., in-
creasing of the effective mass of the carriers� is not known,
however, and no reasonable estimate is available. As such it
has not been included in the model; however, it is possible to
speculate on the implications for the model as bandwidth is
reduced. The effect of increasing further the effective mass
of the carriers will reduce the group velocity and will also
reduce the transmission probabilities at the boundaries be-
tween coherent domains, since this is dependent on the group
velocity mismatch. In order to fit to experimental data, it will
require that the dimensions of the tunnel barriers be reduced.
In any case, this detail does not alter the essence of the
model: that being one of charge carriers localized over a
coherent domain of a few molecules, remaining for a certain
characteristic time, which depends mainly on the bandwidth
of the carriers and the transmission probabilities at the
boundaries.

VII. CONCLUSIONS

A theoretical model has been presented for charge trans-
port in DLCs in which charge is localized over more than
one single molecule. DLCs that are well ordered show con-
siderable banding overlap between adjacent molecules and
this may persist over a domain that is tens of molecules long
before being disrupted by geometrical disorder. Therefore, it
is possible for bandlike conduction to take place over a do-
main of many sites.

Results from the model show that, for HTT6, the experi-
mentally observed mobilities of �0.06 cm2/V s can be re-
produced. Such values have previously been associated with
models based on hopping transport in a disordered system. In

the present model, the mobility is limited by the transmission
probabilities at the tunnel barriers, which appear at the inter-
faces between each well-ordered domain. The model shows
that the DLC must contain barriers at which the charge trans-
fer integral between adjacent molecules vanishes. These can
either be ‘static’ defects �which will heal after a certain char-
acteristic reorganization time� or dynamic defects due to mo-
lecular vibrations. Either way they represent a carrier-lattice
interaction that reduces mobility.

The deformation potential approach to carrier-lattice inter-
actions is not appropriate to describe the large amplitude
motion in the DLC system as it cannot be considered a per-
turbation to the band structure. The tunnel barriers present a
method of modeling a banded transport system that interacts
strongly with the lattice and exhibits some degree of charge
carrier localization. Weakly interacting vibrational modes are
modeled using the deformation potential approach. More
strongly interacting modes are modeled using the tunnel bar-
rier approach.

The effects of temperature manifest themselves in two
ways: through carrier-phonon interactions and by increasing
the disorder of the system. The increase of phonon popula-
tion increases mean carrier energy and hence increases the
transmission probabilities at the barriers. The length of the
coherent domains decreases with temperature and this re-
duces the mobility. The mobility-temperature correlation is
therefore a trade-off between the increase of transmission
probabilities and the decrease of coherent domain size. Irre-
spective of the precise balance of these two processes, the
overall temperature dependence remains weak, which is con-
sistent with experimental findings and in contrast with the
trends predicted by simple hopping theories.
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FIG. 17. �Color online� Mobil-
ity as a function of �a� �z barrier
height and �b� width.
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