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We analyze features that appear in spectroscopic characteristics of normal metals due to a finite width of the
electronic band. Electronic self-energy, renormalized density of states, optical scattering rate, and optical mass
enhancement parameter are computed for the cases when the electrons are coupled to either impurities or
phonons. The most significant effect of impurity scattering is broadening of the electronic band. For phonon
scattering, modifications arise both on the phonon and band edge energy scales. The results contrast sharply
with those for an infinite band, the approximation often employed for metals with a wide conduction band.
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I. INTRODUCTION

One of the most powerful spectroscopic techniques in
condensed matter is optical spectroscopy where measure-
ments are done with high accuracy. The optical conductivity
can be related to the characteristics of single particle excita-
tions. Because this method probes the self-energies indi-
rectly, a theoretical understanding and interpretation of the
results is important. In this paper we discuss the effect of a
finite bandwidth in simple metals and how it manifests itself
in the essential characteristic quantities of optical spectros-
copy. To do this we need to compute the electron self-energy
which defines quasiparticle mass renormalizations and life-
times as well as the renormalized quasiparticle density of
states and bandwidth. Recently, the angular and energy reso-
lution in angular-resolved photoemission spectroscopy
�ARPES� has improved considerably and this technique has
also proved itself to be another powerful tool for the study of
electronic structure. It allows a direct measurement of the
electron spectral density and consequently the self-energy at
each point k in momentum space separately. Here we will
compare self-energies with optical quantities to understand
similarities and differences.

It is known that many properties of metals can be under-
stood by considering only processes confined to the vicinity
of the Fermi surface. This is the main justification for the
standard assumption that the low energy scale is well sepa-
rated and does not interfere significantly with the high en-
ergy scale set by the width of the conduction band W. If the
bandwidth happens not to be very large as compared to other
characteristic energies in the system �for example phonon
frequencies�, it is natural to expect that its effect should be
observable in frequency and temperature dependent phenom-
ena. To our knowledge, such a situation is not well docu-
mented at present, although a number of recent theoretical
works suggest its importance.1–3

One effect of the electron-phonon interaction for finite
bandwidth is the presence of characteristic features in the
renormalized density of electronic states3 in a wide fre-
quency range, which extends far beyond phonon energies. As
one expects, these features are sharp at low temperatures and
smear out as temperature increases. However, at high tem-
peratures there is a regime where phonon scattering closely
resembles impurity scattering with a temperature dependent

relaxation time. In the optical conductivity this manifests it-
self as the complete loss of a sharp Drude peak at low fre-
quency. Such a situation has been observed previously using
the Monte Carlo technique4 by analyzing the degree of mix-
ing of phonon modes with temperature. A related issue is
bandwidth broadening. An interaction which leads naturally
to a broadening of the electronic band is the interaction be-
tween electrons and static impurities. The physical origin of
this phenomenon, as discussed by Mitrovic and Carbotte,5 is
a smearing of the sharp single particle levels. When band
electrons interact with phonons �or other bosons� that pos-
sess their own dynamics, the broadening of the band be-
comes temperature dependent. The effects related to the tem-
perature dependent band broadening were recently discussed
in connection with the high temperature behavior of the dc
electrical resistivity of metals, including metallic fullerenes.6

Mathematically, all the above effects arise due to the re-
quirement that the self-energy equations should be solved
self-consistently. Self-consistency is often a required ingre-
dient in solving a many body physics problem. However, it
was shown by Engelsberg and Schrieffer7 that it becomes
unnecessary when an infinite band approximation is adopted.
Once this approximation is relaxed, one has to bring back the
self-consistency. Therefore, the effects we discuss in this pa-
per �both the features in the density of states and the band
broadening� are in fact the consequence of a finite width of
the electronic bands.

Another motivation for this study is the recent experimen-
tal work on temperature dependence of the optical sum and
redistribution of optical spectral weight in the high-Tc
oxides.8–11 These observations are in sharp contrast with pre-
dictions made starting from an infinite band with quadratic
electronic dispersion, in which case, for example, the plasma
frequency is constant and does not depend on temperature
nor on the interactions. Knigavko, Carbotte, and Marsiglio12

have shown that some peculiarities of the observed tempera-
ture dependence of the optical sum can be understood as
finite band effects on the interacting electrons. Here we ex-
plore other spectroscopic characteristics.

Effects of the energy dependence in the bare density of
states were addressed in the literature previously. Mitrovic
and Carbotte5 and Pickett13 discussed consequences of en-
ergy dependent features located close to the Fermi level and
extending over the phonon frequency range, which is the
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situation pertinent to the A15 superconductors. More re-
cently, Freericks et al.14 reported a generalization of the
McMillan-Rowell inversion procedure of tunneling data in
the superconducting state using as an input the full band
structure from first principle calculations. Some aspects of
finite bandwidth effects in the superconducting state were
considered in Refs. 15 and 16. In this paper we concentrate
on a particular realization of a nonconstant density of
states—the finite bandwidth—and considered its effects on
the spectroscopic characteristics in the normal state in great
detail while neglecting the possibility of other energy depen-
dent features in the DOS. It should be mentioned that the
effects of finite bandwidth on optical conductivity at low
temperatures were studied by Yoo and Choi.17

Below we calculate the electronic self-energy, renormal-
ized density of states and a number of quantities, which are
frequently used in the discussion of the optical conductivity,
we show their dependence on temperature and on the param-
eters of the microscopic models used, and provide a com-
parison between them when possible. We base the main por-
tion of our discussion on the model of electrons in a finite
band with sharp edges interacting with �1� impurities; and �2�
Einstein bosons and then consider some cases of an extended
bosonic spectrum with the energy scale �ln. Our theoretical
tool is the self-consistent Migdal approximation, which as-
sumes that �ln�W and neglects vertex corrections. Exten-
sions of the Eliashberg equations beyond the Migdal
approximation18 are available in the literature19–23 �see also a
discussion in the review by Gunnarsson24�, but these go be-
yond the scope of this study. Impurity scattering is treated in
the self-consistent Born approximation.5

The range of parameters in the models we use for the
interacting electron-phonon system has certain limitations.
These constraints are appropriately understood from the bulk
of knowledge in the literature about a system with the Hol-
stein Hamiltonian, which corresponds to our case with Ein-
stein oscillators. The phase diagram of the Holstein model
has been the subject of intense theoretical studies, especially
using dynamical mean field theory.25 A number of different
many particle ground states are found. It was shown that, as
the parameters of the Hamiltonian are varied, the electronic
Fermi liquid could be replaced by a polaronic ground state,26

while the Fermi liquid itself can become unstable relative to
a charge density wave or a superconducting state at low
temperatures.27 We would like to emphasize that in this paper
we are concerned with the properties of normal metals only,
albeit with a narrow band. This means, for example, that the
mass enhancement parameter � calculated for a given
electron-phonon spectral function �see Eq. �59�� should not
be much larger than unity, etc.

The plan of the paper is as follows. In Sec. II we give an
overview of the theoretical approach used and list definitions
of the most important spectroscopic quantities. Section III is
devoted to the discussion of impurity scattering. Sections IV
and V deal with phonon scattering in the cases of the Ein-
stein spectrum and some more general spectra, respectively.
Section IV also contains examples of alternate bare elec-
tronic bands. Section VI is the conclusion.

II. FORMALISM

A. Model for the electronic band

The bare density of states N0��� is defined by the equation

N0��� =
1

N�
k

��� − �k� , �1�

where �k=�k−� with � the chemical potential, �k the elec-
tronic dispersion function, and N the number of unit cells.
The main model for the bare density of states that we use is
the one in which N0��� is assumed to be constant until it
drops sharply to zero at the band edges:

N0��� = N0	�W/2 − ���� , �2�

where W is the bare bandwidth and 	��� is the step function.
The value N0 is the parameter of the model which in prin-
ciple depends on magnitude of the hopping integrals. In our
flat density of states model it would have value 1/W so that
the total number of states in the band is 1. The chemical
potential is chosen to be at the center of the band, namely
�=0. This specific case of the half-filled band is not essential
for the discussion of the properties we are concerned with in
this paper but simplifies the numerical computations consid-
erably. We also confine ourselves to the isotropic situation.
Another model for the electronic band is discussed briefly in
Sec. IV C.

The interactions modify, or renormalize, the bare density
of states. The renormalized density of electronic states �or
density of states for quasiparticles� is defined by

N��� = �
−


+


d� N0���A��,�� . �3�

It reflects the effect of interaction that are contained in the
electronic spectral density:

A��,�� = − Im Gret��,��/� , �4�

through the real axis self-energy ���+ i0+�. The retarded
Green’s function Gret�� ,�� is defined by the relation

�Gret��,���−1 = „�G0��,z��−1 − ��z�…z=�+i0+ �5�

with G0�� ,z�=1/ �z−�� being the free electron Green’s func-
tion.

In our calculations of the optical conductivity �see Eq.
�14� below and the following discussion� one more charac-
teristic of the band structure is necessary, namely the aver-
aged square of the group velocity defined by

V�
2 =

1

N�k � ��k

�kx
	2

��� − �k�

1

N�k
��� − �k�

. �6�

Because of the isotropy assumption the dispersion �k can be
differentiated in Eq. �6� in any direction. For V�

2 we use
mainly the expression derived from the quadratic dispersion
of free electrons with lower band edge at �=−W /2:
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V�
2 =

22

mD
�W

2
+ �	 . �7�

Here D is the number of spatial dimensions, m the free elec-
tron mass. This choice is sufficient to demonstrate the finite
band effects on optical characteristics. A nearest neighbor
tight binding dispersion for electrons has also been analyzed
in this paper �see Sec. IV C�. This choice does not affect the
main conclusions based on Eq. �7� qualitatively.

B. Electron self-energy in a finite band

The most fundamental quantity for our subsequent discus-
sion is the electronic self-energy ��z�=�1�z�+ i�2�z�. The
argument z can assume any complex value, but for the dis-
cussion of the spectroscopic characteristics we need to know
��z� just above the real axis, i.e., with Re z=� and Im z=�
�1. The self-energy arises due to interactions of electrons
with the various types of scatterers present in the system and
it is found from a self-consistent solution of the correspond-
ing equations. In this paper elastic impurities scattering is
treated in the Born approximation, while for the inelastic
phonon scattering the Migdal approximation is used.

For impurity scattering it is more convenient to deal di-
rectly with the real axis equations, which read

��� + i�� = ��
−


+


d�
N0���
N0�0�

Gret��,�� . �8�

The parameter �, which has the meaning of a scattering rate,
specifies the strength of the interaction.

In the case of interaction with phonons we use the self-
energy equations formulated in the mixed real-imaginary
axis representation,2,28 which have the following form:

��z� = T �
m=−


+


��z − i�m���i�m� + �
0




d� �2F���
�f�� − z�

+ n������z − �� + �f�� + z� + n������z + ��� , �9�

��z� = �
0




d� �2F���
2�

�2 − z2 , �10�

��z� = �
−





d�
N0���
N0�0�

1

z − � − ��z�
, �11�

where �m=2�T�m−1/2�, m�Z are the fermionic Matsubara
frequencies, f��� and n��� are Fermi and Bose distribution
functions, respectively. The electron-phonon interaction is
specified in terms of the electron-phonon spectral function
�2F��� �the Eliashberg function�. The variable z can assume,
in principle, arbitrary complex values. These equations allow
for a fast solution method on the real axis.28 At first, the
solutions for ��z� are sought on the imaginary axis only, at
z= i�m where the integral in Eq. �9� vanishes. Then, the func-
tion ��i�m� is used to set up an iterative procedure on the
real axis to find ���� �note that henceforth we will use real
axis variable, such as �, as shorthand for �+ i0+�.

Note that the renormalized density of states of Eq. �3� can
be expressed in terms of the function �=�1+ i�2 defined in
Eq. �11� as follows:

N��� = − �2���N0�0�/� . �12�

The real axis self-energy, both its real and imaginary
parts, can be determined in photoemission spectroscopy
�PES� experiments, including the angular-resolved vesrion of
it �ARPES�. The accuracy of this technique has increased
dramatically in recent years and properties of both new and
traditional materials have been scrutinized �see, for example
Refs. 29–34�.

C. Outline of the calculation of the optical conductivity

In linear response theory the longitudinal optical conduc-
tivity ����=�1���+ i�2��� is given by the formula35

���� = i�xx�i�n → � + i0+�/� . �13�

For a normal metal, the response function � is calculated as
follows:

����i�n� =
2e2

2

1

N�
k

T�
m
� ��k

�k�

��k

�k�
G�k,i�m + i�n�G�k,i�m�

−
�2�k

�k� �k�
G�k,i�m� , �14�

where we have neglected vertex corrections �the Migdal ap-
proximation�. The first and the second terms are the para-
magnetic and diamagnetic contributions, respectively. Using
the spectral representation for the Green’s functions

G��,i�m� = �
−


+


d�
A��,��
i�m − �

�15�

the Matsubara sums can be performed explicitly with the
following result for the real �absorptive� part of the conduc-
tivity:

�1��� =
2e2

2 ��
−


+


d� N0���V�
2�

−





d� A��,��

�A��,� + ��
f��� − f�� + ��

�
, �16�

where V�
2 was defined in Eq. �6� above. In the main portion

of the paper we use V�
2 given by Eq. �7�. Note that the second

derivative of the dispersion, which appears in Eq. �14�, en-
ters �2 only, not �1. At small temperatures the real part of the
complex conductivity is very strongly peaked. In our calcu-
lations the � integral is performed analytically, while the �
integral is done numerically.

Since the complex conductivity satisfies the Kramers-
Kronig relation, �2��� can be obtained as the Hilbert trans-
form of �1���:

�2��� = −
1

�
P�

−





d�
�1���
� − �

, �17�

where symbol P reminds that the principal part of the inte-
gral is to be taken.
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D. Characterization of the optical response

It was suggested in the literature36–40 that a useful way of
characterizing the optical conductivity ����=�1���+ i�2���
of a metal is to express it by the extended Drude formula:

���� =
2S

�

1

�op
−1��� − i��1 + �op����

, �18�

where �op
−1��� is the optical scattering rate, �op��� is the op-

tical mass renormalization and the optical sum S is defined
by the integral

S = �
0

+


�1���d� . �19�

If all the electrons in a solid are taken into account then the
optical sum is a universal constant,41 namely S=ne2 /2m
where e and m are charge and mass of the electron, respec-
tively, while n is the total number of electrons per unit vol-
ume. The optical sum is often expressed as S=�p

2 /8 with
�p=�4�ne2 /m being the plasma frequency. If one considers
less general situations, for example if one would like to con-
centrate on a single band of finite width, S starts to depend
on parameters of the electronic system.12

The Drude formula, which accounts for elastic impurity
scattering of electrons in an infinite band, corresponds to Eq.
�18� with �op

−1=const and �op=0. When inelastic scattering
mechanisms for electrons are present, due to interaction with
phonons for example, Eq. �18� is still compatible with gen-
eral casuality requirements but both �op

−1 and �op should be-
come frequency dependent.36,37 The two functions �op

−1���
and −��op���, which are connected by the Kramers-Kronig
relations, form the real and imaginary parts of the memory
function.37,42,43 As we show later in this paper, for a finite
electronic band the memory function is frequency dependent
even in the case of elastic impurity scattering.

When the complex optical conductivity is known, the real
and imaginary parts of the memory function can be calcu-
lated as

�op
−1��� =

2S

�

�1���
�1

2��� + �2
2���

, �20�

− ��op��� = � −
2S

�

�2���
�1

2��� + �2
2���

. �21�

Note that such a procedure requires knowledge of the optical
sum S. In this paper we calculate it directly from Eq. �19�.
Experimentally, when ���� is often known in a limited fre-
quency range, some independent estimates of S �or the
plasma frequency� could be used. From an analysis of the
optical quantities �op

−1��� and −��op���, which are available
from experiments with good accuracy,35,38–40 one tries to ex-
tract information about the electronic self energy ����
=�1���+ i�2���.

Another quantity that is often used by experimentalists in
the discussion of the optical response is the partial spectral
weight11 defined as

Sp��� = �
0

�

d� �1��� . �22�

This quantity is also called the effective number of carriers,40

the name coming from the analogy with the result of the
integration of �1��� up to �=
 which is proportional to the
total number of charge carriers per unit volume.

E. Dimensionless units

In the discussion of numercal results below it is conve-
nient to use dimensionless units. We set =1 and measure
most quantities with the dimension of energy in terms of a
half of the bandwidth W /2. These quanities include energy �,
frequency � or �, self-energy �, impurity scattering rate �,
and temperature T. Densities of electronic states, both bare
N0 and renormalized N, are measured in units 1 /W. In most
cases we use the same letters for dimensional and dimension-
less quantities, introducing new notations only for reduced
temperature t=T / �W /2�, reduced electron-phonon coupling
strength a= �1/ �W /2���d� �2F��� and reduced impurity
scattering rate �=� / �W /2�. Optical conductivity and optical
spectral weight are measured in units �e2 / �2Dm�W /2�� and
�e2 / �2Dm�, respectively.

III. IMPURITY SCATTERING IN A FINITE ELECTRONIC
BAND

A. Solution for the electronic self-energy

In reduced units the self-energy equation, Eq. �8� with Eq.
�2� inserted, assumes the form

���� = ��
−1

1 d�

� − � − ����
. �23�

We recall that the convention ���+ i0+ is implied. The in-
tegral over � produces logarithms and the resulting equation
can be algebraically transformed to convenient expressions
shown below. There are two frequency regions. For frequen-
cies around zero both �1 and �2 are nonzero. This solution
can be written in the form of explicit dependencies �1��2�
and ���2� that have the form

�1��2� = � tanh−1
�1 + 2�2 cot��2/�� − �2

2

1 + �2 cot��2/��
, �24�

���2� = �1��2� + �1 + 2�2 cot��2/�� − �2
2. �25�

In this case 0��2�−s2,edge where s2,edge is the closest to
zero positive root of the equation

1 + 2�2 cot��2/�� − �2
2 = 0. �26�

The solution given by Eqs. �24� and �25� is valid in the range
of frequencies �����edge with

�edge = �1 + 2� + � tanh−1
�1 + 2�

1 + �
. �27�

At �����edge the solution to Eq. �23� has the form
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�2 = 0, �28�

���1� = �1 + coth„�1/�2��… . �29�

We see that �edge represents the renormalized band edge.
The scattering by impurities leads to the broadening of the
bare band. However, the number of states in the band does
not change. For small � �weak scattering� the renormalized
band edge can be presented as an expansion:

�edge��� = 1 + � − � ln
�

2
+

1

2
�2 + ¯ , �30�

which is not analytic in �.
In Fig. 1 we show results for the real, �1��� �dashed�, and

minus the imaginary part, −�2��� �solid� of the electron self-
energy due to impurity scattering as a function of � for the
parameter �=0.1/��0.0318. The thin curves represent non-
self-consistent self-energy, namely the result of Eq. �23� with
���� in the integrand on the right-hand side neglected, and
are for comparison with the heavy lined curves. Recall that
−�2��� is just �� times the density of states in the band; see
Eq. �12�. Therefore for the thin solid curve −�2��� is equal
to 0.1 up to the bare band cutoff at �=1 is reached. After that
it drops discontinuously to zero. When impurities are in-
cluded selfconsistently, spectral weight in the density of
states �see heavy solid curve� is transferred from low ener-
gies to energies above the bare cutoff. The drop to zero in the
heavy solid curve for −�2��� is now gradual. The band edge
is pushed from �=1 to �edge�1.164 �exact value is given by
Eq. �27��, demonstrating that the band broadens due to im-
purity scattering.

Turning to the real part of � we note that the logarithmic
singularity in the non-self-consistent �1��� �thin dashed
curve� at the bare band edge is completely removed in the
full self-consistent solution to Eq. �23�. In this case the larg-
est value of �1 is achieved at the renormalized band edge

�edge, but it is finite there, with an infinite jump in derivative.
The thin and heavy solid curves eventually merge at high
energies, just beyond �edge.

We emphasize that the band remains finite in the strict
sense, i.e., N���=0 for ���edge, because there is no spectral
weight in this frequency region. Indeed, we know that
�2���=0 for �����edge, therefore the spectral weight of Eq.
�4� can only be of the form A�� ,��=�(�−�−�1���). But no
solution to the equation �−�=�1��� is possible for any state
in the bare band, namely for ����1.

B. Discussion of characteristic features

In Fig. 2 we show a series of results for various values of
the impurity parameter �. From top to bottom ��=0.1,
0.075, 0.05, 0.025, and 0.01 The figure has two frames and
compares quasiparticle self-energies �dashed curves� with
corresponding optical property �solid curves� defined in Eqs.
�20� and �21�. In the top frame we compare the quasiparticle
scattering rate −2�2��� of Eq. �23� with the optical scatter-
ing rate 1 /�op��� of Eq. �20� and in the bottom frame we
compare the real part of the self-energy �1��� with
−��op��� of Eq. �21�, the optical mass renormalization mul-
tiplied by −�. Turning first to the top frame we note that for
an infinite band −2�2��� and 1/�op��� would both be equal
to 2��, constant independent of �, and extend to 
. Two
modifications are brought about by the introduction of a fi-
nite cutoff. First, −2�2��� and 1/�op��� are no longer equal
even at low energies and are both smaller than 2��. The
quasiparticle scattering rate �dashed curve� is above the op-
tical scattering rate �solid curve� although the two merge as
we would expect in the limit �→0 �see lower curves�. The
second modification is the drop seen in both quantities as the
band edge is approached. Remember, as we have stated be-
fore, −2�2��� is proportional to the density of states of the
interacting system and we see that the band edge �edge in-
creases with increasing � according to Eq. �27�. The corre-
sponding optical quantity is different, while its rate of de-
crease with increasing � increases as we pass through �

FIG. 1. Real �1��� �dashed
curves� and minus imaginary
−�2��� �solid curves� part of the
electronic self-energy interacting
with impurities with �=0.1/�
�0.0318. Heavy curves corre-
spond to a complete self-
consistent self-energy, while thin
curves show non-self-consistent
self-energy in a finite band.
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=�edge, it does not go to zero. Rather it stays finite to much
higher values of � and approaches negligible values only
gradually and slowly. It becomes exactly zero at �=2�edge.

The real part of the quasiparticle self-energy �1��� and
corresponding optical property −��op��� are compared in
the lower frame of Fig. 2. In all cases the sharp peak at the
band edge in �1��� is clearly seen �dashed curves�. As �
increases it increases in size and moves to higher energies. It
is important to note that for an infinite band �1��� would be
exactly zero and that the curves shown are entirely due to the
finite band cutoff. The solid curves for −��op��� follow the
same trend as we saw for �1��� with two important differ-
ences. At �→0 the optical curve is always above the self-
energy curve with both showing a linear behavior. However,
the maximum in −��op��� is not reached at the interacting
band edge. Instead it only shows a small kink at this fre-
quency followed by a broad maximum as compared with the
dashed curve. It is not until ��2�edge that the solid curve
recovers the concave upward character of the dashed curves
but they remain much larger in size.

The changes in impurity self-energy brought about by a
finite band edge modify the optical conductivity from its well
known Drude form �infinite band� in units of �ne2 /m with
n=1 �half filling�:

�1��� =
1

�

�

1 + ����2 , �31�

where � is a constant equal to 1/ �2���. The profile defined
by Eq. �31� for the real part of the conductivity at zero tem-
perature �heavy solid curve� is compared with our numerical
results �solid circles� in Fig. 3 for �=0.1/��0.0318. The
thin solid line serves as a guide to the eyes through the solid
circles. The introduction of a band cutoff has increased the
value of �1 at small � with a corresponding decrease in
optical spectral weight at higher � where the presence of a
band edge reduces the absorptive part of the conductivity and
makes it zero at �=2�edge. The increase in the dc conduc-
tivity for the parameters used here is about 6%. In the inset
of Fig. 3 we show ��1�����1�� ,W=
�−�1�� ,W�, the dif-
ference between �1��� for infinite and finite band. This
quantity starts off negative and has a crossover to positive
values around, but not exactly at, the band edge �edge after
which it keeps a fairly constant value. At �=2�edge, �1���
ends but the Drude conductivity continues to decrease like
1/�2. It is interesting, in this regard, to compute the optical
spectral weight �Sp���=�0

�d� ��1��� �compare with Eq.
�22�� for a value of �=�edge and �=2�edge. For the case
considered, these are independent of frequency −0.025 and
−0.01, respectively. As was made clear in the previous work

FIG. 2. �a� Comparison of quasiparticle scat-
tering rate −2�2��� �dashed� with its optical
counterpart �op

−1��� �solid� for impurity scattering
with ��=0.1, 0.075, 0.05, 0.025, and 0.01 from
top to bottom. �b� Comparison of the real part
�1��� of the self-energy �dashed� with −��op���
�solid� for the same values of a.
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of Knigavko, Carbotte, and Marsiglio,12 the finite band cutoff
reduces the total optical spectral weight below its infinite
band value �1/2 in the units �e2 / �2Dm��. Here this differ-
ence is 2% which is small. If we had stopped at �edge instead
of 2�edge we would have a 5% decrease so that the difference
in spectral weight between �edge and twice �edge is 3%. This
is considerably smaller than for a pure Drude model which
would be 5.4%.

IV. PHONON SCATTERING: EINSTEIN OSCILLATOR
MODEL

A. The equations

In this subsection we model the phonons with Einstein
oscillators of frequency � in order to gain a qualitative un-
derstanding of the band edge phenomena in the case of in-
teraction with scatterers that have their own dynamics.
Therefore we take �2F���=a���−�� where a=�� /2 with �
the mass enhancement parameter, central to the electron-
phonon problem.

First, we need Eqs. �9�–�11�, with the Einstein spectrum
inserted, on the imaginary axis, i.e., for z= i�n with �n
=2�t�n−1/2� ,n�Z being Matsubara frequencies and t tem-
perature in units W /2. They take the form

�im�i�n� = 8a�t�n�
m=1

+

�m�im�i�m�

��2 + �n
2 + �m

2 �2 − �2�n�m�2 ,

�32�

�im�i�n� = 2 tan−1 1

�im�i�n� − �n
. �33�

Note that both �im�i�n� and �im�i�m� are pure imaginary in
the case of half-filling that we consider in this paper. We
used the symmetries of the function ��i�n� to reduce the
range of summation over m.

Next, we set z=� in Eqs. �9�–�11� and obtain the real axis
part of the mixed axis representation of the finite band
Eliashberg equations:

�1��� = 8a�t��
m=1

+

�m�im�i�m�

��2 + �m
2 − �2�2 + �2��m�2

+ a
�1�� −���n��� + f�� − ���

+ �1�� +���n��� + f�� + ���� , �34�

�2��� = a
�2�� −���n��� + f�� − ���

+ �2�� +���n��� + f�� + ���� , �35�

�1��� =
1

2
ln

�� − �1��� + 1�2 + ��2����2

�� − �1��� − 1�2 + ��2����2 , �36�

�2��� = tan−1 � − �1��� + 1

− �2���
− tan−1 � − �1��� − 1

− �2���
.

�37�

We solve the system of Eqs. �32�–�37� numerically, and the
results are discussed in the next subsection.

It is interesting to consider the behavior of the renormal-
ized DOS at large �. Remember that for interactions with
impurities, the renormalized band edge was sharp with
N���=0 for ���edge �see Fig. 1, where −�2��� is propor-
tional to N����. In the present case of interaction with Ein-
stein phonons N��� decays exponentially as �→
.

For a proof we first accept this behavior as an assumption
and then verify it from solution of a differential equation in
the asymptotic region ��1. First, we transform Eq. �34�
from the mixed axis form to the real axis form which reads

�1��� = a�
−





d��P�n��� + f�− ���
� −� − ��

+
n��� + f����
� +� − ��


��−

1

�
�2���� , �38�

This equation is convenient to obtain the asymptotic form of
the real part of the self-energy:

FIG. 3. The real part of the conductivity
�1��� for impurity parameter �=0.1/��0.0318
and zero temperature �t=0�. The circles are for a
finite band while the continuous curve applies to
an infinite band. The inset gives the difference in
optical conductivity for infinite and finite band
cases as a function of �.
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�1��� � 2a„2n��� + 1…/� . �39�

Next, algebraically manipulating Eqs. �36� and �37� we ob-
tain the following relation

tan �2��� = −
2�2���

1 − �� − �1����2 − �2
2���

. �40�

On the left-hand side of this equation we substitute
tan �2�����2���, and on the right-hand side Eq. �39� indi-
cates that the � dominates for high frequencies. Therefore,

�2��� �
1

2
�2�2��� . �41�

Finally, the necessary differential equation is obtained by
expanding Eq. �35� for ��� ,1 and substituting Eq. �41� for
�2��� on the left-hand side. We arrive at

2a�
d�2

d�
� − �2�2, �42�

which has the solution

N���
N0

= −
�2���
�

� const exp�− �3

6a�
 . �43�

The fact that interaction with bosons formally extends a
finite electronic band to infinity can be understood as a quan-
tum effect where virtual bosons can be excited even at zero
temperature. Such a phenomenon is not present for interac-
tion with impurities that lack any dynamics.

B. Discussion of characteristic features

In Fig. 4 we show results for coupling to a single Einstein
mode and compare infinite and finite band cases. The
electron-phonon interaction parameter used is a=0.1 and the
frequency of the Einstein oscillator �=0.1. The reduced
temperature is t=0.0001 which is indistinguishable from
zero for any practical purposes, for the finite band calcula-
tions, while t=0 for the infinite band. Solid curves are used
for self-energies while dashed curves represent memory
functions. In the main frames of Fig. 4�a� �imaginary parts�
and Fig. 4�b� �real parts� we demonstrate the overall behavior

FIG. 4. Comparison of quasi-
particle self-energy �solid� and
corresponding memory function
�dashed� for an Einstein spectrum
with a=0.1 and �=0.1 ��=2�.
Heavy lines are for finite band
while thin lines are for infinite
band at zero temperature. �a�
−2�2��� and �op

−1���; �b� �1���
and −��op���. Insets are a
blowup of the low � region.
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of all the quantities under consideration with frequency
range extending well beyond the band edge �four times the
bare width�. Complimentary to this, the insets present a mag-
nification of the low frequency region �� �0,0.5� which is
the region of most interest in infrared spectroscopy.

Thin curves correspond to the infinite band. Analytic ex-
pressions are available in this case35,44 and are given by

�1��� = a log�� −�

� +�
� , �44�

�2��� = − �a	���� −�� , �45�

− ��op��� = 2a�log�� −�

� +�
� −

�

�
log�1 −

�2

�2�	 , �46�

�op
−1��� = 2�a�1 −

�

�
		���� −�� . �47�

The thin solid line in Fig. 4�a� is −2�2��� given by Eq.
�45� and in Fig. 4�b� is �1��� of Eq. �44�. Similarly, the thin
dashed line in Fig. 4�a� gives 1/�op��� of Eq. �47� and in Fig.
4�b� gives −��op��� of Eq. �46�. The heavy solid line of Fig.
4�a� for −2�2��� in a finite band shows that profound devia-
tions from the thin solid curve start to occur above ��0.2
�twice the Einstein frequency�, where it drops sharply only to
recover slightly at �=0.3. This is a multiphonon effect com-
pletely absent in the thin solid curve �see also Ref. 3�. Over
the larger frequency range a renormalized band edge appears
around ��1.5 and is somewhat smeared. Interaction with
phonons has increased the width of the interacting band as
compared to its noninteracting counterpart. In direct analogy
to what was the case for impurity scattering, 1 /�op��� �heavy
dashed curve� remains large over a larger frequency range
than does the quasiparticle scattering rate, extending beyond
��3. Also its drop towards zero is less abrupt.

We stress that 1 /�op��� �heavy dashed curve� also shows
sharp structures in the region which corresponds to that seen
in the heavy solid curve for the self-energy although they are
not as pronounced. Mathematically, this arises because the
optical conductivity involves an integration over the self-
energy. The prominent phonon structure just described is ab-
sent in the infinite band approximation. The thin solid curve
for −2�2���, which rises discontinuously at �=�, is com-
pletely flat beyond this frequency while the thin dashed
curve for 1 /�op��� rises from zero at �=� gradually and
smoothly towards its saturated value at �→
.

Considering next the lower frequency region shown in the
inset of Fig. 4�a� �up to �=0.5 only� we see more clearly the
modifications that a finite bandwidth introduces into optical
quantities in the infrared region. Besides the drop in the
imaginary part of the self-energy at �=0.2 �twice the Ein-
stein frequency� and the structure at �=0.3 we see that even
at �=0.5 the quasiparticle scattering rate still remains de-
pressed, by approximately 20% as compared with the infinite
band case �thin solid curve�. This depression in quasiparticle
scattering is reflected in the optical scattering rate, when
compared with the thin dashed curve. Note the shallow mini-

mum in the heavy dashed curve in the region between �
=0.2 and �=0.3. This is directly related to the corresponding
multiple phonon structures in the imaginary part of the self-
energy which is, as we have already said, sharper than in the
optical case.

Figure 4�b� is similar to Fig. 4�a� but now it is the real
part of the self-energy �1��� which is compared with
−��op���. At zero temperature the well known logarithmic
singularity at �=� for the infinite band self-energy35 �see
thin solid curve� remains a feature of the finite band self-
energy as well3 �see heavy solid curve�. The thin dashed
curve for −��op��� shows only a weaker singularity in slope
�at �=�� which is followed by a broad peak centered at
�2�, as discussed in Ref. 44. For an infinite band both op-
tical and self-energy renormalizations remain negative and
smoothly drop to zero as �→
 with the former much larger
than the latter. By contrast, for a finite band, there are addi-
tional multiphonon structures and, perhaps more signifi-
cantly, both quantities go through zero and become positive
and large as � increases. This qualitative difference has im-
portant implications for quasiparticle renormalization effects
in finite bands, both from ARPES29,45–47 and optical conduc-
tivity measurements, as well as for the comparison between
the two, as done recently by Hwang et al.48 and by Schach-
inger et al.49 For example, as noted by Cappelluti and
Pietronero,2 the slope of the renormalized dispersion can be-
come considerably steeper than its bare band value at large
energy, while for an infinite band the two should be seen to
merge. Turning to the inset in Fig. 4�b�, which shows an
expanded version of the small � region, note that the self-
energy �1��� �heavy solid line� drops towards zero after
reaching its peak at �=� much more sharply than does
−��op��� �heavy dashed line�. This qualitative behavior is
seen in the data presented in Fig. 2 of Ref. 48 where a com-
parison between optical and ARPES measurements is pre-
sented. A significant test of the theory presented here would
be to see the predicted region of positive renormalizations at
high � in both self-energy and memory function.

In Fig. 5�a� we compare the real part of the optical con-
ductivity obtained for the model of Fig. 4 with its infinite
band value. Since we have not included impurity scattering
there is a coherent quasiparticle delta function contribution at
�=0 in both cases �shown as the vertical line at �=0 in the
figure�. The optical spectral weight in this contribution is
about 10% bigger in the finite band case, so that, just as we
found for the impurity case, the dc conductivity is increased
as is the optical spectral weight at small �. Besides the delta
function contribution, we see beyond the phonon energy �
=�, the incoherent boson assisted Holstein processes. The
thin curve applies to an infinite and the heavy to a finite
band. Once again we see, in this region of frequency, a
buildup of optical spectral weight at the smaller � and a drop
for ��1.4 where the heavy curve decays much more sub-
stantially than does the thin curve. We can get additional
insight into the question of spectral weight redistribution,
brought about by finite band effects, from consideration of
the partial spectral weight given by Eq. �22�. Results are
shown in Fig. 5�b�. The temperature t=0 and the phonon
parameters are a=0.1 and �=0.1, as before. The thin solid

EFFECTS OF FINITE BANDWIDTH ON… PHYSICAL REVIEW B 72, 035125 �2005�

035125-9



curve applies to an infinite bandwidth: Sp��� remains con-
stant at a value of 0.163 until �=� �only the delta function
contribution� and then begins to rise as the incoherent back-
ground starts contributing. The heavy solid curve starts at a
higher value of 0.185 and increases beyond �=� faster than
the thin curve. They cross around ��4.8 at which point the
solid curve has pretty well saturated to its asymptotic �
→
 limit which is 0.460. By contrast, the thin solid curve is
still increasing and will reach 0.5 asymptotically at �→
.
The heavy dashed curve is for comparison with the previous
two and is obtained for impurity scattering with aimp=0.032.
It starts at zero when �=0 but then rises very rapidly to
become higher than either of the phonon curves. The satura-
tion value at high frequencies for this curve is 0.484. The
inset in Fig. 5�b� gives an expanded plot of the small �
behavior which shows more clearly the flat region below �
=� for both solid curves and the rapid rise of the dashed
curve in contrast.

Next we consider temperature variation of various spec-
troscopic quantities. In Fig. 6 we show the self-energy ����,
that is, minus the imaginary part in frame �a� and the real

part in frame �b�, over a wide frequency range extending
beyond the renormalized band edge for a=0.1 and �=0.1.
Different curves correspond to different temperatures from
the following list: t=0.0001,0.00025,0.0005,
0.00075,0.001,0.0025,0.005,0.0075,0.01,0.02,0.03,0.05,
0.1. As one would expect, sharper curves correspond to
lower temperatures. At the lowest temperature used, t
=0.0001, the results are indistinguishable from zero tempera-
ture results on the scale of the figure. In this case there is a
logarithmic singularity in �1��� at �=� while �2���=0 for
0����. As the temperature gradually rises the sharp fea-
tures in the curves corresponding to both �1��� and �2���
become smeared. Consider the low frequency part of �2���
in the whole temperature range available. Even though there
is a smearing, the characteristic gap in −�2��� stays effec-
tively intact until some crossover temperature tcros, after
which it starts to fill in. Simultaneously with the filling of the
low temperature gap at t� tcros there appear changes at high
frequencies, which correspond to the broadening of the
renormalized band and increase of the band edge.

FIG. 5. �a� The real part of the
optical conductivity �1��� for an
Einstein spectrum with a=0.1 and
�=0.1 ��=2� at zero temperature.
Heavy curve is for finite band
while thin curve is for infinite
band. Both have a delta function
contribution at �=0. �b� The par-
tial optical spectral weight Sp���
of Eq. �22� for conductivities of
frame �a� for finite �heavy solid�
and infinite �thin solid� band. The
values at �=0 correspond to the
weight of delta function in frame
�a�. An equivalent impurity model
�heavy dashed curve� for finite
band is shown for comparison. In-
set: blowup of the low � region.
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These changes are also clearly visible in �1��� of Fig.
6�b�. The real part of the self-energy starts to lose its nega-
tive region at low � and begins to look very much like the
impurity case. This is physically reasonable since at high
temperature fluctuations off equilibrium positions of the at-
oms due to temperature become larger and larger. These real
displacements of the atoms appear to scatter electrons much
like a static, temperature dependent impurity distribution. In
fact, as shown in Ref. 4, at sufficiently high temperatures it
may be difficult to classify atomic displacements in terms of
phonons with well defined quasi-wave-vector quantum num-
bers. It should be noted that in the theoretical formalism of
this paper it is implicitly assumed that, similarly to the Hol-
stein Hamiltonian, the electron-phonon coupling is linear in
atomic displacements.

The numerical value of the crossover temperature is esti-
mated from Fig. 6 as tcros�0.01, or

tcros � 0.1� . �48�

This is much smaller than the Einstein frequency �, meaning
that tcros lies well within the temperature range of applicabil-
ity of our theory. As discussed by Allen,19 quadratic and
higher order terms in atomic displacements can become im-
portant as the temperature rises. In addition, the phonon will
become anharmonic so that the sharp phonon modes will

shift in frequency and broaden. These are all effects that go
beyond the scope of this work.

What happens at t� tcros can perhaps be understood better
if we study the renormalized �quasiparticle� density of states
N��� of Eq. �3�. It is shown in Fig. 7�a� for the same tem-
peratures used for Fig. 6. We see that band broadening cor-
responds to a redistribution of the quasiparticle density of
states, as the total number of states in the band stays con-
stant, independent of temperature. A characteristic feature of
energy dependence of N��� is the low energy ����=0.1�
elevated “plateau” structure where the density of states is
noticeably enhanced as compared to its value in the higher
energy relatively flat region. After this there is a faster drop
to the band edge. The plateau is followed by more structures
centered at multiples of �. All these multiphonon structures
are sharp at low temperatures and as t increases they gradu-
ally smear out, but the low frequency plateau structure re-
mains very much distinguishable all the way to tcros. After
this temperature the electronic states in the plateau move
gradually to the top of the band and at t� tcros the value of
N�0� decreases while the band width increases.

Note that in Fig. 7�a�, corresponding to �=0.1, the “flat”
region, say 0.35���0.9, can only be defined approxi-
mately. Such a region becomes much more pronounced for
lower � �see Fig. 14 below and the corresponding discus-
sion�. On the other hand, at higher � such a drastic renor-

FIG. 6. Evolution of the self-energy vs fre-
quency dependence with temperature for the Ein-
stein spectrum with a=0.1 and �=0.1 ��=2�.
Frame �a� is for the minus imaginary part,
−�2���, while frame �b� is for the real part,
�1���. In each frame different curves correspond
to t=0.1,0.05,0.03,0.02,0.01,0.0075,0.005,
0.0025,0.001,0.00075,0.0005,0.00025, 0.0001
from top to bottom at �=0.09 in frame �a� and at
�=0.9 in frame �b�.
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malization of the bare band occurs that the above subdivision
of the renormalized band into regions, as well as any attempt
to single out characteristic features, becomes meaningless.
We avoid discussing such extreme cases in this paper.

We would like to repeat and emphasize that in the present
model of electron-phonon interaction, there is a definite
crossover temperature which divides regimes of qualitatively
different behavior of the electronic self-energy, renormalized
density of states and optical quantities �see Fig. 8 below�. In
Sec. V we provide further discussion of tcros for more general
shapes of �2F��� and various values of parameters of the
model that confirms that Eq. �48� gives the correct relation
between the crossover temperature and the phonon energy
scale.

Studying Fig. 7�a� one could conjecture that the renormal-
ized band edge, �edge, can be reasonably defined in spite of
the presence of high frequency tails in N���. This is indeed
the case because N��� decreases quite fast at high �. Re-
member that for interactions with impurities, the renormal-
ized band edge was sharp with N���=0 for ���edge given
by Eq. �27� in that case �see also Fig. 1, where −�2��� is
proportional to N����. In the present case of interaction with
Einstein phonons N��� decays exponentially as �→
, as
shown in subsection A above �see Eq. �43��. Therefore we

choose to define the band edge �edge by a cutoff procedure
using the relation

N��edge� = 0.05. �49�

Of course, this 5% cutoff is somewhat arbitrary and using a
different percentage would give slightly different results for
�edge. To grasp the main dependence of �edge on temperature
we note that, at high frequencies, the Einstein frequency �
can be neglected in Eqs. �35� and �38�. In this case they
become identical to the self-energy equations for impurity
scattering with modified interaction strength

�ef f�t� = a„2n��� + 1… = a/tanh��/2t� . �50�

To evaluate the band edge position we now can use Eq. �27�
obtained previously in Sec. III. In Fig. 7�b� we show the
temperature variation of �edge found using the definition of
Eq. �49� along with the dependence given by Eqs. �27� and
�50� for a=0.1, �=0.1 �triangles, solid curve� and a=0.02,
�=0.04 �squares, dashed curve�. Both definitions give very
similar qualitative temperature dependence for the renormal-
ized band edge. The absolute values of �edge from the two
definitions differ the most at low temperatures, by about 6%
and 4%, respectively, for the above sets of parameters, and
become closer to each other at higher t.

FIG. 7. �a� Evolution of the renormalized den-
sity of states vs frequency dependence with tem-
perature for the Einstein spectrum with a=0.1
and �=0.1 ��=2�. Different curves correspond
to t=0.1,0.05,0.03,0.02,0.01,0.0075,0.005,
0.0025,0.001,0.00075,0.0005,0.00025, 0.0001
from bottom to top at �=0.09. Horizontal line
N=0.05 illustrates the band edge definition of Eq.
�49�. �b� Temperature dependence of �edge de-
fined by Eq. �49� �symbols� and Eqs. �27� and
�50� �heavy curves�. Shown are results for a
=0.1 and �=0.1 �triangles, heavy solid curve�
and a=0.02 and �=0.04 �squares, heavy dashed
curve�. Thin lines simply connect the symbols.
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Finally, for completeness, the temperature dependence of
the optical characteristics, �op

−1��� �frame �a�� and −��op���
�frame �b��, is presented in Fig. 8. Here we used the same
parameters a=0.1, �=0.1 as for the self-energies in Fig. 6.
Temperatures used are t=0.001,0.0025,0.005,0.02,
0.03,0.05,0.1. Note the filling of the low energy gap in
�op

−1��� at t�0.02 analogous to the situation for �2��� dis-
cussed above. Also as t increases the low frequency negative
peak in −��op��� of Fig. 8�b� is gradually reduced and dis-
appears completely at the highest temperature shown.

C. Other models for electronic dispersion and generic features
due to finite bandwidth

Before we proceed to discuss more general forms of the
electron-phonon spectral function �2F��� let us make a di-
gression and consider some other choices for the electron
dispersion.

1. Electron group velocity model for tight binding dispersion in
2D

In all calculations of the optical conductivity up to this
point we have assumed that the averaged square of the group
velocity, Eq. �6�, is defined by the free electron dispersion

�see Eq. �7��. Here we consider another model for V�
2 in order

to see what type of change might arise. In the general for-
mulas for �1��� in Eq. �16�, we insert the expression

V�
2 =

W

D

2

2mb
�1 − � �

W/2
	2 , �51�

which is appropriate for an approximate treatment of a near-
est neighbor tight binding band in two spatial dimensions.50

In this equation mb is the band mass of electron. Note that
now to make the optical conductivity dimensionless we nor-
malize it by �e2 / �4Dmb�W /2��, as opposed to
�e2 / �2Dm�W /2�� used in the case of quadratic dispersion.
The results for �op

−1��� and −��op��� are presented in Fig.
9�a� for a=0.1, �=0.1 and t=0.0001 by heavy lines, solid
and dashed, respectively. Previous results for these quantities
with the same parameters for quadratic dispersion are also
shown by thin lines for comparison. We see no qualitative
difference between these two sets of curves. Only small
quantitative changes are found. Note, in particular, that the
phonon structure at low � is pretty well unaltered.

2. Semielliptic bare DOS model

Our model for the bare band DOS, Eq. �2�, may seem
somewhat unrealistic in that it has a sharp band edge, where

FIG. 8. Evolution of the memory function vs
frequency dependence with temperature for the
Einstein spectrum with a=0.1 and �=0.1 ��
=2�. Frame �a� is for the real part, �op

−1���, while
frame �b� is for the imaginary part, −��op���. In
each frame different curves correspond to t
=0.1,0.05,0.03,0.02,0.005,0.0025,0.001 from
top to bottom at �=0.09 in frame �a� and at �
=0.9 in frame �b�.
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N0��� drops discontinuously. This is a reasonable choice for
compounds whose electronic system is effectively 2D,50 but
for a 3D electronic system the nature of the van Hove sin-
gularity at the band edge is different; N0��� vanishes continu-
ously, but dN0��� /d� is infinite. Therefore, we now switch to
the semielliptic bare DOS,

N0��� = N0�1 − � �

W/2
	2

, �52�

in order to understand to what extent the finite bandwidth
features of the spectroscopic characteristics that we dis-
cussed in the previous two sections are the consequences of
the sharp band edge assumption. To maintain the total num-
ber of states in the band equal to 1, as in Eq. �2� we choose
N0=4/ ��W� and this value is used as the unit for both bare
and renormalized density of states below, until the end of this
subsection. The energy unit W /2 does not change. Using Eq.
�52� to calculate the ��z� function of Eq. �11� we obtain

��z� = �u�z��1 − �1 − 1/u�z�2� , �53�

where u�z�=z−��z�. On the imaginary axis, this becomes

�im�i�n� = �i„�n + i�im�i�n�…

��1 +�1 −
1

„�n + i�im�i�n�…2 , �54�

where both �im�i�n� and �im�i�n� are pure imaginary. Just
above the real axis, Eq. �53� applies with z→�+ i� and the
principal branch is taken in the square root �Re��. . .��0�.
Using � as a shorthand for �+ i0+, we obtain

�1��� = ��� − �1��� − R+���R−���cos  ���� , �55�

�2��� = − ���2��� + R+���R−���sin  ���� , �56�

R±��� = �4 �� − �1��� ± 1�2 + ��2����2, �57�

 ��� =
1

2
�tan−1 − �2���

� − �1��� − 1
+ tan−1 − �2���

� − �1��� + 1


+
�

2
�	„�1��� − � + 1… +	„�1��� − � − 1…� . �58�

The results for the renormalized density of states based on
the bare DOS of Eq. �52� are shown in Fig. 9�b� for a=0.1,
�=0.1 and for various temperatures. Comparing this figure

FIG. 9. �a� Comparison of optical quantities
for quadratic �thin curves� and tight binding
�heavy curves� models of the electronic disper-
sion with sharp bare band edges. Solid curves are
for scattering rate �op

−1��� while dashed curves are
for −��op���. �b� Evolution of the renormalized
density of states vs frequency dependence with
temperature for semielliptic bare band of Eq.
�52�. This should be compared with Fig. 7�a�.
Different curves correspond to t=0.1,0.05,0.03,
0.02,0.01,0.0075,0.005,0.0025,0.001,0.00075,
0.0005,0.00025,0.0001 from bottom to top at �
=0.09. The �2F��� used in both frames is the
Einstein mode with a=0.1 and �=0.1 ��=2�.
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with Fig. 7�a�, where the renormalized density of state is
presented for the same parameters but for the sharp cutoff
bare DOS of Eq. �2�, we see that our main conclusion about
the effect of the finite bandwidth on the quasiparticles DOS
is not changed qualitatively. In Fig. 9�b� there is still a low
energy plateau structure of enhanced DOS, and there is a
strong band broadening and density of states redistribution
starting above the same crossover temperature tcros=0.01 as
that for Fig. 7�a�.

V. PHONON SCATTERING: PHONON ENERGY SCALE
AND ELECTRON-PHONON INTERACTION

STRENGTH DEPENDENCIES

In the previous section we discussed in detail finite band-
width effects within the single Einstein mode model for the
electron-phonon interaction and for a representative set of
parameters: �=0.1 and a=0.1 corresponding to �=2. In this
section we want to sweep the parameter space in order to see
where and when those effects are the biggest.

We also include in our considerations more general forms
of the Eliashberg function �2F���. Both mass enhancement
parameter � and the interaction strength a are given in terms
of integrals involving the Eliashberg function as follows:

� = 2�
0




�−1�2F���d� , �59�

a = �
0




�2F���d� . �60�

Additionally, a convenient parameter to quantify the phonon
energy scale, which is routinely used in the literature, is the
logarithmic frequency51 defined by

�ln � exp� 2

�
�

0




�−1 ln����2F���d� . �61�

Naturally, for an Einstein model �ln=�. To discuss the elec-
tron phonon interactions in the present section we use �ln, �
and a parameters. Remember, that � is dimensionless ac-
cording to its definition, Eq. �59�. Both �ln and a have the
dimension of energy and are normalized to W /2, half the
bare bandwidth, in the units we use.

One model of �2F��� we used is a truncated Lorentzian
centered at �=�:

�2F��� =
R���
2�

� �

�� −��2 + �2 −
�

�2 + �2	�� − �� −��� ,

�62�

where parameter � controls the half-width of the peak and
the full width of �2F��� is equal to 2�. The rescaling factor
R��� is inserted to guarantee a chosen value of �. Such spec-
trum is often used in the literature to introduce a smearing of
the simple Einstein mode spectrum.3,17 For our numerical
work we used �=0.06� and �=� /4, while the value of �
was varied. To compare with the results for the Einstein
model in previous sections we used �=2.

Another model of �2F��� that we employed to simulate a
distributed spectrum is a three frequency model:

�2F��� = ��
i=1

3
�ili

2
��� − �i� , �63�

with �i=1
3 l1=1. Motivated by the electron-phonon interaction

in the fulleride compound K3C60 we set �=0.71 with l1
=0.3, l2=0.2, l3=0.5 and �1 :�2 :�3=0.04:0.09:0.19.16 Then
the value of �ln was varied.

First we consider the crossover temperature tcros intro-
duced in Eq. �48� by considering the case of Einstein
electron-phonon spectral function with a=0.1 and �=0.1.
Now we use a more general truncated Lorentzian model of
�2F��� with various values of �ln and a. As mentioned ear-
lier, tcros can be defined using various features of the self-
energy ����, both at low and high energies. We choose to
analyze the quantity −d�1��=0� /d�, for which an analytic
expression is available in the case of an infinite band �see for
example Ref. 52�. For the Einstein model, with �=�ln and
a=��ln /2, it has a simple form:

−
d�1�0�

d�
= −

�

�
Im !��1

2
+

i

�
	, � = 2�

t

�ln
�64�

where !�z� is the logarithmic derivative of the gamma func-
tion. In Fig. 10 we show the numerically calculated �1��0� for
�ln=0.1 �diamonds�, 0.01 �squares�, and 0.001 �triangles�
with a=0.1, 0.01 and 0.001, respectively, all corresponding
to ��2. Thin lines are given to guide the eyes. Note the
logarithmic scale on the horizontal axis, which is required to
make our low temperature data more clearly visible. We ob-
serve that there is a noticeable dependence on a in the three
sets of data presented. In particular, the limiting value of
−�1��0� as t→0 and the temperature at which �1��0�=0 de-
pends on a quite strongly. However, the position of maxima
in the −�1��0� vs t dependence is almost the same, for all
three a values. It is also very close to tmax�0.485�ln which
is the position of the maximum in the heavy solid curve
corresponding to Eq. �64�. According to this equation the
ratio tmax/�ln is a universal number, i.e., it is not influenced
by a or �. It is then useful to define the crossover tempera-
ture tcros relative to tmax. For all the above sets of parameters
for the electron-phonon interaction we have performed an
analysis of the self-energy data, similar to those presented in
Figs. 6 and 7. Our conclusion is that tcros can be approxi-
mately associated with temperature where the curves −�1��0�
vs ln�t /�ln� start to increase significantly after being flat at
low t, which corresponds ln�tcros /�ln��−2.25 or

tcros = 0.1�ln. �65�

These considerations extend our previous particular result,
Eq. �48�. We conclude that the crossover temperature de-
pends mostly on the phonon energy scale, and not on the
characteristics of the interaction.

Next, we turn to consider the two important effects of a
finite bandwidth in the renormalized density of states de-
scribed in the previous section: the magnitude �Nplateau of the
elevated plateau feature at low energies, ���ln, which is
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best defined at t� tcros, and a temperature driven increase of
the renormalized band edge, which starts to occur at t
� tcros. We use various models for �2F��� and find that both
effects depend mostly on the interaction strength a, Eq. �60�,
while they are much less sensitive to the mass enhancement
parameter �, Eq. �59�.

In Fig. 11�a� we show N��� vs � /�ln in the low frequency
region. Dashed curves are results for the Einstein model of
�2F��� with �a ,��= �0.001,2�, �0.01,2�, and �0.1,2� �from
top to the bottom�, solid curves are for the truncated Lorent-
zian �2F��� with �a ,��= �0.02,1�, �0.05,1�, and �0.1,2�
�from top to the bottom�, while dotted curves are for the
three frequency model of �2F��� with �a ,��= �0.018,0.71�
and �0.036,0.71� �from top to the bottom�. All the results
shown are for a finite temperature, a little different in units of
�ln in different cases, but always well below tcros of Eq. �65�.

We define the magnitude of the elevated plateau feature
by the relation

�Nplateau � N�0� − N�4�ln� . �66�

The value 4�ln was chosen such that almost all of the curves
presented in Fig. 11�a� are flat in the region ��4�ln. The
multiphonon features clearly visible at lower energies are
damped sufficiently strongly this far from the Fermi level so
that the DOS is nearly flat except for the lowest three curves
in Fig. 11�a�. These correspond to rather large values of �ln
in the units of the half bandwidth, W /2. In this situation the
definition of the finite band effects we have discussed starts
to become less sharp. Nevertheless, it is possible to pick the
value of 4�ln for the purpose of our argument.

The magnitude of the plateau determined from Fig. 11�a�
is plotted vs the strength of the interaction a in Fig. 11�b�.
Squares are for the Einstein model of �2F���, triangles are
for the truncated Lorentzian, and diamonds are for the three
frequency model. All the data, except those for the largest
a=0.1, fall very close on the straight line �Nplateau�a�=2a

which is also shown in the figure. On the other hand, we
observe no dependence on �.

The two lowest curves in Fig. 11�a�, which are nearly
overlapping, correspond to the same parameters a=0.1 and
�=2, but with different choice of �2F���: the sharper curve
is for the Einstein model while the more rounded curve is for
the truncated Lorentzian model. The shape of �2F���, thus,
is not essential for the analysis of the overall behavior of
N��� and for �Nplateau in particular. The other thing to notice
is that the infinite band result for N���, which is completely
flat, is gradually recovered as �ln decreases. The top solid
curve in Fig. 11�a� corresponds to �ln=0.001 and no features
can be distinguished on scale of the figure, although they are
actually present and, in particular, �Nplateau=0.2% in this
case.

The renormalized band edge is another quantity that de-
pends on the parameters specifying the electron-phonon in-
teraction. The consideration of the Einstein spectrum in Sec.
IV has shown that at high temperatures �edge behaves ac-
cording to Eq. �50� while at low t it is almost temperature
independent �see Fig. 7�b��. Here we perform an analysis of
the renormalized band edge at t=0 using the definition given
in Eq. �49�. For the case of �edge, as opposed to the previ-
ously studied case of �Nplateau, we do not expect the quality
of its numerical definition to deteriorate as a increases. The
results for �edge vs a at t=0 are plotted in Fig. 11�c� for the
same �2F��� model and parameters used in Figs. 11�a� and
11�b�. We again tried to fit the data with a single analytical
dependence and found that the relation �edge�a�=1+2.5a0.68

works reasonably well. The deviation of the symbols from
the solid curve in Fig. 1�c� can be attributed to some � de-
pendence, which is weak but apparently present in the case
of �edge.

To conclude this section, in Fig. 12 we return to the fea-
tures induced by a finite bandwidth in the optical character-
istics of Eqs. �20� and �21�. Dotted curves are for the Ein-
stein model of �2F��� with a=0.1 while dashed curves are
for the truncated Lorentzian model of �2F��� with a=0.01.

FIG. 10. The temperature de-
pendence of the minus first de-
rivative of the real part of the self-
energy at the Fermi level, namely
−d�1��=0� /d�. All numerical re-
sults are for the truncated Lorent-
zian �2F��� of Eq. �62� with �ln

=0.1 �diamonds�, 0.01 �squares�,
and 0.001 �triangles�. The heavy
solid curve shows the infinite
band result of Eq. �64�; thin solid
lines simply join numerical points.
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In both cases �=2 and t /�ln=0.001, i.e., practically zero. For
comparison we also present the infinite band results �solid
curves� for an Einstein model with a=0.1 at zero tempera-
ture �see Eqs. �47� and �46��. The scale of the overall mag-
nitude of both the optical scattering rate �op

−1��� in Fig. 12�a�
and the optical mass renormalization −��op��� in Fig. 12�b�
is given by a. All the results are scaled by 2�a so that the
infinite band curves would approach 1 as �→
. Note that

this scale is a consequence of the presence of the electron-
phonon interaction itself rather than the presence of a finite
band. The finite band effects manifest themselves in the de-
viations of dashed and dotted curves from the solid one;
these deviations are much bigger for the dotted curve. This
demonstrates that our conclusions about a strong dependence
of finite band effects on the a parameter hold true for the
optical characteristics. It also shows that the additional boson
structures, seen very clearly in the dotted curve at �=2� and
3� and hardly seen in the long dashed curve, are completely
absent from the solid curve which is smooth. The Einstein
boson manifests itself in this curve, corresponding to the
infinite band, only in its rise out of zero at �=�.

This rise is slightly modified in the dotted curve and
smeared slightly below �=� in the long dashed curve be-
cause of the extended Lorentzian spectrum that was used
instead of the delta function.

VI. APPLYING INFINITE BAND FORMULAS TO
ANALYSIS OF THE FINITE BAND RESULTS

We have seen that as � or �ln decreases relative to the
bare bandwidth �note that our unit of energy is W /2, so that
� has to be compared to the energy scale of unity� finite
band effects become less prominent, even though they are
not washed out completely. In the case ��1 the various
formulas derived for the infinite band should become appli-
cable. In this section we consider two examples in order to
gain an understanding of the limitations of analysis based on
these “standard” expressions.

A. The large � region for �1„�…

Recently, Karakozov, Maksimov, and Dolgov53 have con-
sidered the large � limit of the optical conductivity �1��� for
an infinite band. For �� 
�ln ,�ph�, where �ph is a measure
of damping due to phonons, they derived

�1��� �
�pl

2

4�

�asympt�T�
�2 , �67�

where the scattering rate

�asympt�T� = 2��
0




d� �2F���coth
�

2T
�68�

depends only on temperature. For a finite band such a rela-
tionship can no longer hold at large � where the finite band
nature of the problem profoundly changes the frequency and
temperature dependence of �1�� ,T� as we have seen. Nev-
ertheless, it is of considerable interest to consider when � is
small �i.e., small phonon energy as compared to half band-
width� but still finite, if there exists some � regime where
Eqs. �67� and �68� still hold approximately. That such a re-
gime does indeed remain is illustrated in the inset of Fig. 13.
For the figure we have used a=0.001 and �=0.001 and the
solid curve in the inset is for t /�=0.05, i.e., low temperature
as compared with �. We plot the quantity �2�1���, normal-
ized by its maximum value, as a function of � which is seen
to rise rapidly towards a value 1 in our normalization, and

FIG. 11. �a� Frequency dependence of the renormalized density
of states N��� in the region of phonon frequencies for a variety of
�2F��� models, which are specified in frame �b�. See text for a
complete explanation. �b� Relative height of the plateau feature in
N��� at ���ln as a function of the coupling strength a for a variety
of �2F��� models �symbols�. Line shows the best polynomial fit
�Nplateau�a�=2a. �c� Dependence of �edge defined by Eq. �49� on the
coupling strength a for the same models �symbols�. Line shows the
best polynomial fit �edge�a�=1+2.5a0.68.
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retains this same value from ��0.1 up to the renormalized
band edge. At this point it drops quite sharply and, in this
large � region, �1��� becomes small much faster than the
�−2 law of the Drude model. The dashed curve is for a model

with larger �=0.01 and a=0.01. Now the frequency region
where �1��� obeys a �−2 law is greatly reduced but it is still
identifiable. In the main frame of Fig. 13 we show results
obtained for the constant ��t� vs t in the flat region of

FIG. 12. Frequency dependence of the
memory function normalized by 2�a. Frame �a�
is for the real part, �op

−1���, while frame �b� is for
the minus imaginary part, −��op���. Dashed
curves are for the truncated Lorentzian �2F���
with �ln=0.01 while dotted curves are for the
Einstein mode �2F��� with �=0.1. Temperature
t=0.0001 in both cases. Solid curves give the in-
finite band results at t=0 for comparison.

FIG. 13. The region of Drude
behavior for optical conductivity
in a finite band can be defined as
�2�1����const which is demon-
strated in the inset for a
=0.001,�=0.001 �solid curve�
and a=0.01,�=0.01 �dashed
curve�, with temperature set to
0.05� in each case. The main
frame shows our numerical results
for the temperature dependence of
the scattering rate defined by Eq.
�67� in this region �solid circles�
along with the infinite band results
of Eq. �68� �solid curve�.
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�2�1�� , t� for a=0.001 and �=0.001. The solid circles are
the results of our calculations while the continuous curve
was obtained from Eq. �68�. This curve agrees very well with
the solid circles. Thus we are able to identify a range for
which Eq. �67� holds with ��t� given by Eq. �68� but the
frequency regime over which this holds becomes small for
�=0.01 �see dashed curve in the inset of Fig. 13�. At higher
frequencies, finite band effects dominate the conductivity
and concepts based on an infinite band cease to be valid.

B. The “double derivative” formula for �2F„�…

Perhaps a more stringent test of the approach of our finite
band results, to the infinite band case as � is reduced, is
provided in Fig. 14. In a previous paper, Marsiglio, Start-
seva, and Carbotte54 have shown, through numerical calcu-
lations of the optical conductivity for the electron-phonon
spectral density �2F��� of Pb, that the function

W��� =
1

2�

d2

d�2 ���op
−1���� , �69�

with �op
−1��� given by Eq. �20� in the infinite band case at zero

temperature, has a profile very reminiscent to the profile of
the input �2F���, provided that negative tails present in
W��� beyond the cutoff in �2F��� are ignored. Not only
does W��� have the same shape as �2F���, but it has nearly
the same area, which is a dimensionless measure of the in-
teraction strength. Below we want to check if this “inver-
sion” procedure remains effective in the finite band case.

In Fig. 14 we show the second derivative of ��op
−1���

�solid curve� which defines W���. �The curve is not smooth
at higher � due to our numerical second derivative.� This
result was obtained with an �2F��� given as the truncated
Lorentzian centered at �=0.01, which is also shown for
comparison as the dashed curve. We see that W��� is broader
than the input �2F��� and shifted to higher energies. More
importantly, the area under the first peak in W���, up to the
frequency where it first becomes negative, is about 46%

larger than that under �2F���. However, this effect is not due
to finite bandwidth, but rather the consequence of the par-
ticular form of the input �2F��� we used here. It turns out
that the inversion procedure of Eq. �69� becomes less accu-
rate for a relatively narrow peaked spectrum, while it is quite
precise for an extended broad spectrum as was found in Ref.
54. The finite band effects, appearing on top of the spectrum
shape effects, are small. We found that for �=0.01 the area
under W��� is smaller than its infinite band value by just 2%.

On the other hand, the dotted curve, which was obtained
from a first derivative of �2��� over �, i.e., from the corre-
sponding quasiparticle scattering rate, overlaps almost per-
fectly with the input �2F��� �dashed�. In this instance the
spectrum shape effects are absent and to a good approxima-
tion we recover the known infinite band results that
�2F���=−�−1d�2��� /d� at t=0. The finite band effects
here are negligible.

Recently, there have been a number of attempts to “in-
vert” spectroscopic experimental data on high-Tc cuprates in
order to extract the underlying electron-boson spectral
function.49,55–57 They include both simpler approaches based
on derivative formulas like Eq. �69� and more sophisticated
ones that deal with integral equations. We want to comment
that if the electron-phonon spectral density �2F��� has a
narrow peak then inversion of photoemission data should
produce accurate results while inversion of optical data could
possibly be hindered by shifts in positions of peaks in
�2F��� and an overestimate of the overall coupling strength.

VII. CONCLUSIONS

Much of the literature on the effect of impurities or cou-
pling to phonons in metals has assumed infinite electronic
bands. This assumption is believed to be appropriate if one is
interested in properties that probe mainly what happens to
electrons near the Fermi surface on an energy scale much
less than the bandwidth W. Here we considered the effects of
a finite bare band on renormalization due to interactions with

FIG. 14. The frequency depen-
dences of the inversion function
W��� of Eq. �69� �solid curve� and
of −�−1d�2��� /d��dotted curve�
obtained in our numerical calcula-
tions. The input �2F��� �dashed
curve� is the truncated Lorentzian
of Eq. �62� centered at �=0.01.
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impurities as well as with phonons. Free electrons as well as
tight binding bands are employed in an approximation where
a sharp cutoff is applied on the bare band density of states at
±W /2 with constant density in between. A semielliptic bare
DOS is also considered but no qualitative differences are
found.

The interaction of electrons with impurities or with
phonons through the electron-phonon coupling changes their
self energy and leads to quasiparticle mass renormalization
and damping. The band edge is also modified, becoming
rounded and smeared by the interactions. Spectral weight is
shifted from low energies to energies above the bare band
edge �W /2�. For coupling to impurities a sharp cutoff per-
sists for the renormalized bands. For coupling to phonons a
cutoff can still be defined although it is not strictly sharp as
small tails extend exponentially to high energies. The width
of the renormalized bands increases with increasing strength
of the coupling to both impurities and phonons as well as
with increasing temperature �for phonons�. For impurity
scattering the real part of the electron self-energy is always
positive exhibiting a characteristic sharp peak at the renor-
malized band edge before dropping rapidly at first and then
more slowly �with upward curvature�. It remains significant
in value even at four times the bare half bandwidth. This is to
be contrasted with the infinite bandwidth case for which the
real part of the self-energy is zero. On the other hand, the
imaginary part, which is proportional to the renormalized
density of states N���, drops precipitously at the renormal-
ized band edge. In the infinite bandwidth case it would be
constant for any value of � however large.

Optical properties were computed and compared with the
self-energy. The optical mass renormalization, −��op���,
was found to follow the behavior of �1��� with several dif-
ferences. At �→0 both are linear in � but the optical quan-
tity is larger. At the bare band edge there are no sharp peaks
in −��op���. Rather there is a much broader peak centered at
somewhat higher energy. In this region �high �� it remains
considerably above �1���. There is also optical spectral
weight redistribution in the real part of the conductivity
�1���. The dc conductivity is enhanced and at high frequen-
cies, �1��� falls below its infinite band Drude form.

For phonons several models were considered for the
electron-phonon spectral density, �2F���, including the Ein-
stein oscillator, the three frequency model of Eq. �63�, as
well as the truncated Lorentzian model of Eq. �62�. An im-
portant characteristic of the low energy renormalized density
of states N��� is that, while constant and equal to its bare
value up to �E for the Einstein case, beyond this energy it
shows a drop as well as additional phonon induced struc-
tures. These structures are not present in the infinite band.
Their amplitude is approximately proportional to the area
under the �2F��� curve, denoted by a in this paper. The
missing low energy spectral weight is transferred to higher
energies much as in the impurity case. The band broadens

and the sharp cutoff of the bare band becomes smeared.
However, a renormalized band edge is still definable. The
plateau structure in N��� at low energy, due entirely to the
finite band cutoff, is reflected in the imaginary part of � and
also in the optical scattering rate. This boson structure
smears out as temperature is increased and additional spec-
tral weight is transferred to higher energies. Beyond the
renormalized band edge, the optical scattering rate drops but
remains finite until approximately twice this frequency
where it is still not zero but becomes negligible. In contrast
to the infinite band, where the real part of the self-energy,
�1��� �or −��op����, is negative for all frequencies, for a
finite band they both go through zero on the scale of the
phonon energy involved, and become positive followed by a
slow decay with increasing �. The low energy structure is
sharper and narrower for �1��� than it is for −��op���. This
low energy negative renormalization is progressively re-
duced with increasing temperatures. At high temperatures
both �1��� and −��op��� begin to behave qualitatively like
in the impurity case indicating that the thermally induced
real displacements of the atoms off equilibrium simulate im-
purity scattering.

For very small values of the phonon energy scale relative
to the bandwidth, denoted by �ln, we find a regime where
�1��� shows the expected infinite band asymptotic behavior,
i.e., it decreases as 1/�2 with the proportionality constant
equal to the frequency independent scattering rate ��T�,
which also takes on its infinite band temperature dependence.
At still higher energies this correspondence ceases to exist
and the finite band cutoff dominates the behavior of the real
part of the conductivity where �1��� begins to drop towards
zero much faster than for the Drude from.

In the process of inverting optical data in a finite band we
have discovered a new regime which was not covered in Ref.
54. In their infinite band work Marsiglio, Startseva, and
Carbotte54 found a close correspondence between the func-
tion W��� of Eq. �69� and the underlying �2F��� in the
phonon region of �. In particular, both functions, which are
dimensionless, have peaks at the same frequencies and the
area under both curves is approximately the same. However,
this expectation needs to be modified when the spectrum is
peaked and not wide. The peak in �2F��� is shifted to some-
what higher energies in W��� and becomes broader, and also
the area under W��� is now larger than the area under
�2F���. This will need to be kept in mind when considering
narrow structures in the electron-phonon spectral density.
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