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We present an analytical treatment of a two-dimensional �2D� magnetophotonic crystal �MPC� with a square
lattice constructed from two infinite arrays of magnetoactive dielectric sheets at right angles, in the limit of
very small sheet thickness and very high dielectric constant. Alteration of band structure by an external
magnetic field is studied. Two different geometries are examined: the Faraday geometry—magnetic field
parallel to the plane of 2D MPC—and the Voigt �Cotton-Mutton� geometry—magnetic field orthogonal to the
plane of 2D MPC. In the case of Faraday geometry, we show that the optical activity reduces the symmetry of
the system and removes degeneracy in the photonic band structure. Also, despite the weakness of magneto-
optic activity, the dispersion ��k� near band edges is strongly sensitive to external magnetic influence. In the
vicinity of degeneracy, electromagnetic modes exhibit bistable behavior and discontinuously change their
dispersion ��k� when external magnetic field is applied. In the Voigt geometry s and p polarizations remain
independent of each other, and only the band structure for s-polarized light is insignificantly altered.
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I. INTRODUCTION

The past decade has witnessed a great deal of interest in
photonic crystals �PC’s� in which the dielectric constituents
are periodically arranged.1,2 These crystals have many inter-
esting properties as far as basic physics is concerned but also
in relation to technological applications. The possibility of
tuning the properties of PC’s such as band structure or dis-
persion by some external influences may considerably en-
hance the significance of PC’s for applications.

To the best of the authors’ knowledge, the tunability of the
photonic crystals was originally proposed in Refs. 3 and 4 in
which the utilization of external static magnetic or electric
fields was suggested for tuning band structure in PC’s com-
posed from materials that possess natural magneto-optic ac-
tivity or tunable anisotropy. Recently the theoretical study of
two-dimensional �2D� PC’s infiltrated by liquid crystals has
also demonstrated the possibility of tuning refraction by ro-
tating the director of liquid crystals.5 The disappearance of
the uncoupled modes6,7 and splitting of the degenerate
branches of the photonic band structure8 due to symmetry
breaking of PC’s has also recently been demonstrated. As
will be shown below, similar phenomena appear in magne-
tophotonic crystals �MPC’s�—PC’s that have at least one
constituent material possessing magneto-optic activity.

Further investigation of MPC’s has revealed new interest-
ing features and phenomena. For example, in one-
dimensional structures, which allow exact analytical treat-
ment by the transfer matrix method, a huge enhancement of
the magneto-optic effects was found at the band edges of
PC’s.9 In the case of a PC with the introduced magneto-optic
defect, the same effect was demonstrated for frequencies cor-
responding to the eigenmodes localized at the defect.9

Recently, using general group-theoretical methods, Figo-
tin and Vitebskiy demonstrated some unusual and interesting
behavior of the electromagnetic waves in MPC’s.10,11 They

showed that by proper spatial arrangement of magnetic and
dielectric components, an MPC with strong spectral asym-
metry or nonreciprocity could be constructed. Such MPC’s
demonstrate unidirectionality—i.e., transparency for electro-
magnetic modes of the fixed frequency in the specific
direction—while modes of the same frequency propagating
in the opposite direction have zero group velocity and are
completely “frozen.”

Work devoted to the theoretical study of two-dimensional
MPC’s has been presented recently.12 Using perturbation
theory in the vicinity of high-symmetry points of the Bril-
louin zone, the authors demonstrated enhancement of the
Faraday rotation at the band edges and alteration of the band
structure.

In the present work we study a MPC model that allows
exact analytical study without the aid of perturbative meth-
ods. We analyze the behavior of electromagnetic waves in-
side an artificial 2D MPC formed from magneto-optic dielec-
tric sheets and examine the influence of external magnetic
field on photonic band structure.

We develop a generalization of the model originally pro-
posed by Shepherd and co-workers for investigation band
structure in 2D PC formed from optically inactive �isotropic�
sheets.13 Recently, a 3D generalization of this model has also
been developed and analyzed with aid of analytic perturba-
tion theory.14 In order to generalize this model to the case of
the MPC we rederive it with a dynamical �transfer� matrix
approach that allows us to include the influence of magneto-
optic activity.

Some may claim that no need exists for artificial and ab-
stract models because we already have powerful numerical
methods developed for band structure calculations that allow
investigate any properties of PC’s. Nevertheless, numerical
calculations often serve only to obscure the basic physics,
which can be quite simple. Moreover, the electronic Kronig-
Penney counterpart of the soluble model developed in Ref.
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13 was very useful in investigation of band structure of
solids15 and localization of electronic wave functions.16

Therefore we argue that considering artificial and abstract
models is worthy for acquiring insight and physical meaning.

The optical properties of single magnetoactive dielectric
sheet, from which the two-dimensional structure is formed,
are treated in Sec. II. A one-dimensional lattice of these
sheets is considered in Sec. III. The band structure calcula-
tions of a two-dimensional MPC and its analysis are pre-
sented in Sec. IV. Finally, conclusions are summarized in
Sec. V.

II. MAGNETOACTIVE DIELECTRIC SHEET

The elemental block of our artificial model is magnetoac-
tive dielectric sheet of thickness d and relative permittivity
�L and �R for left- and right-polarized light, respectively,
taken in the limit

d → 0, �L → �, and �R → � such that �Ld

� mL = const and �Rd � mR = const. �2.1�

For brevity of successive expressions we introduce the addi-
tional parameters

� =
�L + �R

2
, �2.2�

����L−�R�d=const, and

m� ��L+�R�� 2d=�d=const.

Parameters m and � defined in this way have the dimen-
sions of length: the first defines the averaged optical proper-
ties of a single sheet, and the second describes its magneti-
cally induced anisotropy.17 In the present section, we
consider a 4�4 matrix approach18 in the limit �2.1� to find
the transfer matrix of the infinitesimal magnetoactive sheet.

Figure 1 shows the arrangement of a dielectric slab, which
was initially assumed to have nonzero thickness d and finite

relative permittivity for the left �L and right �R polarized
light. The slab is assumed to have vacuum on either side, but
generalization to an arbitrary isotropic background medium
with permittivity �B by substitutions m→m /�B and �
→� /�B can be achieved.

First, we consider the processes of reflection and refrac-
tion at the surface of semi-infinite dielectric medium. Re-
gardless of the magneto-optic activity of the medium, bound-
ary conditions require continuity of tangential components of
electric and magnetic field on the boundary. It is well known
that simplification of expressions can be achieved by intro-
ducing the 4�4 matrix approach according to which two

matrixes D̂1 and D̂2 match the amplitudes of electric fields at
two opposite sides of the boundary:

D̂1�
Es

+

Es
−

Ep
+

Ep
−
�

1

= D̂2�
Es

+

Es
−

Ep
+

Ep
−
�

2

, �2.3�

where the superscript � ��� corresponds to the amplitude of
wave propagation in the positive �negative� x-axis direction,
the subscript s �p� denotes components of a linear polarized
electromagnetic wave, and indices 1 and 2 refer to media at
opposite sides of the boundary. The dynamical matrix, which
matches electric field amplitudes from the left side of the
boundary to the right side, can be expressed in terms of
Fresnel refraction �t� and reflection �r� coefficients:18

D̂12 = D̂2
−1 � D̂1 = �

1/t12
s r12

s /t12
s 0 0

r12
s /t12

s 1/t12
s 0 0

0 0 1/t12
p 1/t12

p

0 0 r12
p /t12

p 1/t12
p
� ,

�2.4�

where indexes “12” at Fresnel coefficients means propaga-
tion through the boundary from media with index 1 to media
with index 2 and s �p� as before denotes polarization. For
completeness we give expressions for Fresnel coefficients
here:

t12
s =

2k1x

k1x + k2x
, r12

s =
k1x − k2x

k1x + k2x
,

t12
p =

2n1n2k1x

n2
2k1x + n1

2k2x

, r12
p =

n2
2k1x − n1

2k2x

n2
2k1x + n1

2k2x

, �2.5�

where ni=��i is the refractive index of the medium indexed
by i and kix is the projection of the wave vector on the x axis
in this medium.

FIG. 1. Geometrical arrangement of a single dielectric slab
showing the coordinate axes.
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Now we return our attention to the slab of the finite thick-
ness. To allow for the slab’s magneto-optic activity, we in-
troduce different propagation velocities for right- and left-
polarized light inside of the slab’s medium.17 Consequently,
the left- and right-circular-polarized light will gain different
phase during propagation through the slab. This effect in the
matrix approach can be considered by introducing a propa-
gation matrix that connects the amplitudes of the electric
field at different points of the same medium.18 This matrix in
magnetoactive media is diagonal in circular polarization rep-
resentation and has the following form

P̂circ = �
eikLd 0 0 0

0 e−ikLd 0 0

0 0 eikRd 0

0 0 0 e−ikRd
� , �2.6�

where kL�R�= �� /c�nL�R�= �� /c���L�R� is the absolute value of
wave vector in the magnetoactive medium, c is the velocity
of light in vacuum, and � is its frequency.

The final step in studying the magnetoactive infinitesimal
dielectric sheet is to construct its transfer matrix in the limit
�2.1�. Notice that expression �2.6� is given in circular polar-
ization representation, whereas the dynamical matrix �2.4� is
given in linear polarization representation. To convert the
propagation matrix �2.6�, note that from Snell’s law sin�	2�
= ���2 /��1�sin�	1� when the slab permittivity tends to infin-
ity, the angle of refraction always tends to zero, and so re-
fracted wave propagates along the normal to the slab’s sur-
face and consequently 	kL�R�	=kL�R�=kL�R�x

. Thereby
magneto-optic activity is only manifest in polar geometry,
and to convert the propagation matrix �2.6� to the linear po-
larization representation we can use expression

P̂ = ÛP̂circÛ−1, �2.7�

where Û is the transformation matrix from circular polariza-
tion representation to linear polarization representation:18

Û = �
1 0 1 0

0 1 0 1

i 0 − i 0

0 i 0 − i
� . �2.8�

The final expression for transfer matrix of the magnetoactive
slab is

D̂ = D̂12 � Û � P̂2
circ � Û−1 � D̂12

−1. �2.9�

Additional simplification in the limit �2.1� can be achieved
by expanding exponents in the resulting transfer matrix into
series by value kL�R�d and terminating the resulting series
after second term. Such an approximation in the optics of
thin films is also known as the ultrathin-film
approximation.17 Using this approximation, after tedious

but straightforward calculations, we obtain the final expres-
sion for the transfer matrix of a single magnetoactive layer of
infinitesimal thickness:

D̂ = �
1 + i

m

2

k2

kx
i
m

2

k2

kx
�

k

4
�

k

4

− i
m

2

k2

kx
1 − i

m

2

k2

kx
− �

k

4
− �

k

4

− �
k

4
− �

k

4
1 + i

m

2
kx i

m

2
kx

�
k

4
�

k

4
− i

m

2
kx 1 − i

m

2
kx

� ,

�2.10�

where values k and kx are defined in the optically inactive
medium, since components of wave vector and its modulus
related to the magneto-optic medium were excluded using
relation k1n1=k2n2, and the redundant index was omitted.

From Eq. �2.10� we see that if the parameter of magneto-

optic activity � is equal to zero, then the transfer matrix D̂
block diagonalizes to two �2�2� matrixes for s and p polar-
izations separately and coincides with the transfer matrix
given in Ref. 13. If � is not equal to zero, then the mixing of
s and p polarizations appears during propagation through
sheet, and simple separation of polarizations becomes impos-
sible. Such coupling of the s- and p-polarized modes in some
sense is very similar to those found in PC’s infiltrated by
liquid crystals in Refs. 6 and 7 and similarly originates from
anisotropy that breaks the mirror symmetry of 2D PC. How-
ever, the nature of magnetoinduced anisotropy differs from
the nature of ordinary anisotropy, resulting in difference of
the s-p coupled eigenstates in MPC’s and in PC’s infiltrated
by liquid crystals.

III. ONE-DIMENSIONAL MAGNETOACTIVE LATTICE

In this section we consider an infinite one-dimensional
array of infinitesimal magnetoactive dielectric sheets de-
scribed in the previous section. The array of sheets with pe-
riod a is shown in Fig. 2. The electric field in the primitive
cell region defined in the free space between the sheets la-
beled n−1 and n can be written as

FIG. 2. Geometrical arrangement of a one-dimensional array of
infinitesimal magnetoactive sheets.
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�
Es

+�r�
Es

−�r�
Ep

+�r�
Ep

−�r�
� = eikyy�

eikxx 0 0 0

0 e−ikxx 0 0

0 0 eikxx 0

0 0 0 e−ikxx
�

��
Es

+

Es
−

Ep
+

Ep
−
�

n

for �n − 1�a 
 x 
 na , �3.1�

where the time dependence e−i�t is understood in all fields.

The lattice is isotropic in the yz plane, and we have again
taken kz=0. Vacuum wave-vector components kx and ky,
which are perpendicular and parallel to sheets, are related by

kx
2 + ky

2 = k2 = �2/c2. �3.2�

The relations between the fields in adjacent primitive cells

can be obtained with a transfer matrix D̂. The resulting rela-
tion between the electric-field amplitudes in cells n and n
+1 can be written as

�
Es

+

Es
−

Ep
+

Ep
−
�

n+1

= �
exp�− inkxa� 0 0 0

0 exp�inkxa� 0 0

0 0 exp�− inkxa� 0

0 0 0 exp�inkxa�
�

��
1 + i

m

2

k2

kx
i
m

2

k2

kx
�

k

4
�

k

4

− i
m

2

k2

kx
1 − i

m

2

k2

kx
− �

k

4
− �

k

4

− �
k

4
− �

k

4
1 + i

m

2
kx i

m

2
kx

�
k

4
�

k

4
− i

m

2
kx 1 − i

m

2
kx

�
��

exp�inkxa� 0 0 0

0 exp�− inkxa� 0 0

0 0 exp�inkxa� 0

0 0 0 exp�− inkxa�
� � �

Es
+

Es
−

Ep
+

Ep
−
�

n

. �3.3�

The relation between the electric-field amplitudes given in Eq. �3.3� is entirely derived from the properties of the electro-
magnetic field and the dielectric sheets, but these same field amplitudes are independently related by Bloch’s theorem, which
applies generally to all forms of excitation in a periodic structure. For the present system, Bloch’s theorem takes the form

�
Es

+�r + x̂a�
Es

−�r + x̂a�
Ep

+�r + x̂a�
Ep

−�r + x̂a�
�

n+1

= exp�i�xa��
Es

+�r�
Es

−�r�
Ep

+�r�
Ep

−�r�
�

n

, �3.4�

where �x is the one-dimensional Bloch wave vector and the primitive-cell electric-field amplitudes are defined in Eq. �3.1�.
The amplitudes in primitive cell n+1 are easily eliminated from Eqs. �3.3� and �3.4�, and the resulting equation for the

amplitudes in primitive cell n is written as
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�

1 + i

m

2

k2

kx
�eikxa − ei�xa i

m

2

k2

kx
e−i�2n−1�kxa �

k

4
eikxa �

k

4
e−i�2n−1�kxa

− i
m

2

k2

kx
ei�2n−1�kxa 
1 − i

m

2

k2

kx
�e−ikxa − ei�xa − �

k

4
ei�2n−1�kxa − �

k

4
e−ikxa

− �
k

4
eikxa − �

k

4
e−i�2n−1�kxa 
1 + i

m

2
kx�eikxa − ei�xa i

m

2
kxe

−i�2n−1�kxa

�
k

4
ei�2n−1�kxa �

k

4
e−ikxa − i

m

2
kxe

i�2n−1�kxa 
1 − i
m

2
kx�e−ikxa − ei�xa

� � �
Es

+

Es
−

Ep
+

Ep
−
� = 0.

�3.5�

The determinant of the 4�4 matrix essentially identifies the
Bloch exponent exp�i�xa� as an eigenvalue of the transfer
matrix, and the multiplied-out determinant can be written as


cos��xa� − cos�kxa� +
m

2

k2

kx
sin�kxa��
cos��xa� − cos�kxa�

+
m

2
kx sin�kxa�� − �2k2

8
sin�kxa� = 0. �3.6�

This expression determines the dispersion relation—that is,
the dependence of the frequency on the Bloch wave vector
�x for a given value of the transfer wave-vector component
ky—for the propagation of electromagnetic waves through
the one-dimensional array of magnetoactive dielectric sheets.

Solving Eq. �3.6� as a quadratic equation for cos��xa� we
obtain the dispersion relations

cos��xa� = cos�kxa� −�m

4

 k

2

kx

+ kx�
±�
m

4

 k

2

kx

− kx��2

+ 
�
k

4
�2�sin�kxa� ,

�3.7�

where these expressions yield the two dispersion relations
for s and p polarizations obtained in Ref. 5 if we assume the
parameter of the magneto-optic activity � to be equal to
zero:

cos��xa� = cos�kxa� −
m

2

k2

kx
sin�kxa� ,

cos��xa� = cos�kxa� −
m

2
kx sin�kxa� . �3.8�

Consequently, because of the small natural values of the
magneto-optic parameter �, a direct correspondence between
branches of spectra for electromagnetic modes in magnetic
and nonmagnetic lattices can be ascertained, whereas their
polarization states can be far different. Therefore we use the
notation quasi-s and quasi-p to designate the polarization

state of solutions with the upper and lower signs in the sec-
ond term of the right-hand side of Eq. �3.7�.

IV. TWO-DIMENSIONAL MAGNETOACTIVE LATTICE

In this section we consider MPC’s formed from infinite
lattices of two identical arrays of infinitesimal magnetoactive
dielectric sheets at right angles. The x and y axes are taken as
normals to the sheets, which have indefinite extents in the z
axis direction �Fig. 3�. The photonic band structure in MPC’s
formed in this way is studied and alteration of spectra is
analyzed.

The calculations presented here assume propagation par-
allel to the xy plane with wave vector k= �kx ,ky� whose com-
ponents satisfy Eq. �3.2�. The corresponding wave-vector
space is thus two dimensional. The Bloch wave vector is
denoted as �= ��x ,�y�, and the associated two-dimensional
Brillouin zone of the lattice covers the range

− �/a 
 �x, �y 
 �/a . �4.1�

One quadrant of the Brillouin zone with conventional nota-
tion for its high-symmetry points is shown in Fig. 4.

In a two-dimensional lattice, the procedure introduced for
a one-dimensional lattice can be applied separately to adja-
cent cells in the x and y directions. Since the field in each
cell is described by eight-component vectors of field ampli-
tudes, they must correspond to quasi-s- and quasi-
p-polarized waves propagating in the positive and negative
directions of the x and y axes, respectively. However, the
four components that describe propagation in the x direction

FIG. 3. Cross section of a two-dimensional MPC composed
from sheets of infinitesimal thickness in the xy plane.
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do not couple to the four components that describe propaga-
tion in the y direction. As a result, the associated 8�8 trans-
fer matrix block diagonalizes to two 4�4 matrices of the
form shown in Eq. �3.3�; the connections are the same as
found for the one-dimensional lattice. Bloch’s theorem also
separates into two relations equivalent to Eq. �3.4�. There-
fore, the two-dimensional calculation results in a pair of re-
lations similar to Eq. �3.7�:

cos��xa� = cos�kxa� −�m

4

 k

2

kx

+ kx�
±�
m

4

 k

2

kx

− kx��2

+ 
�x

k

4
�2�sin�kxa� ,

cos��ya� = cos�kya� −�m

4

 k

2

ky

+ ky�
±�
m

4

 k

2

ky

− ky��2

+ 
�y

k

4
�2�sin�kya� .

�4.2�

Here, the upper sign corresponds to the quasi-s polarization,
the lower one to the quasi-p polarization, and �x and �y are
parameters of a magnetic activity for arrays of sheets ar-
ranged along the x and y axes, respectively. Because the
wave inside the dielectric sheet with infinite permittivity al-
ways propagates along the normal to its surface, we conclude
that values �x and �y can be represented as

�x = � cos 
, �y = � sin 
 , �4.3�

where 
 is the angle between the directions of the magneti-
zation M and the x axis �Fig. 3�.

System �4.2� represents the exact dispersion relations for
two-dimensional MPC’s. However, since it cannot be solved
analytically because of its transcendental structure, we used
numerical methods to solve it.

Consider the case when external field is applied to the x
direction—i.e., �x=� and �y =0. To distinguish the disper-
sion curves in the figures, in our numerical calculations we
used a rather large value of magneto-optic parameter �

=0.1m, whereas the parameter m was taken to be equal to
double lattice constant �m=2a�. The dispersion curves for
the quasi-p-polarized wave for magnetic and nonmagnetic
cases are plotted in Fig. 5. To show the difference between
these two cases, the vicinities of � and M points for the
second and third branches of the spectrum are plotted in
Figs. 6 and 7. It can be seen that because of the influence of
external magnetic fields, which reduces symmetry of the
structure under investigation, splitting of “energy” levels in
the �M ��� direction appears. This effect is the optical coun-
terpart of the Zeeman effect, when an external magnetic field
causes electron energy level splitting.

Because of symmetry breaking, the irreducible zone be-
comes twice as large in the magnetized MPC, and we must
study additional paths in the Brillouin zone, which are ob-
tained by reflection of the �→X��� and X→M�Z� paths
about the �M��� direction �Fig. 4�. However, it is obvious
that such additional information can be obtained by investi-
gation of the same paths for the external magnetic field ap-
plied to the y direction.

It is illustrative to display the contour diagrams to present
the behavior of electromagnetic wave modes inside of the
allowed bands. Several are presented in Figs. 8–10 for the
first, second, and third branches of the spectrum, respec-
tively. It is worthy to note that the modes of the third band

FIG. 4. Brillouin zone of a square two-dimensional lattice show-
ing the notation of symmetry points and directions.

FIG. 5. Dispersion relation � vs the Bloch wave vector � for
p-polarized modes. Solid gray lines show the nonmagnetic case;
black dotted lines show the magnetic case �magnetic field applied to
the x direction�.

FIG. 6. Dispersion relation � vs the Bloch wave vector � for
p-polarized modes in vicinity of the � point. Solid gray lines show
the nonmagnetic case; black dotted lines show the magnetic case
�magnetic field applied to the x direction�.
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are altered by magnetization in a considerably different way
than the modes of the first and second bands. Indeed, equal-
frequency contours for the third band change their structure
mainly in the �y direction, whereas the modes of the first and
second bands change their structure mainly in the �x direc-
tion. Such behavior shows that some modes “feel” influence
of the optical activity in the direction orthogonal to external
magnetic field.

One can also note that an external magnetic field affects
modes closest to the band edges more intensively. It reflects
the well-known fact of the abnormally slow group velocity
of electromagnetic waves at the band edges of the spectrum.
This increases the interaction time of the electromagnetic
waves with the structure under investigation and, as a con-
sequence, causes enhancement of all physical phenomena.

If an external magnetic field is applied to the MPC in the
xy direction �
=� /4�, then it does not break the symmetry
of the crystal and the band structure maintains the same
view, as in the nonmagnetic case. However, the second and
third branches simultaneously shift in the high-frequency re-
gion. The contour diagrams again show the strongest sensi-
tivity of dispersion near band edges.

By analogy, the band structure for quasi-s polarization can
be studied, but because it changes in a manner similar to
quasi-p polarization we do not consider it here.

Eigenstates of MPC’s, in general, differ from eigenstates
of isotropic photonic crystals. It is well known that eigen-
states of a one-dimensional MPC for normal incidence are
circularly polarized Bloch waves.17 For the structure under
investigation, this feature remains valid for the �X direction.
This can be proven by transformation of the transfer matrix
�2.10� into circular polarization representation:

D̂circ = Û−1D̂Û . �4.4�

In this representation, the transfer matrix takes a block-
diagonal form for the �X direction, which reflects the exis-
tence of two independent left- and right-circularly polarized
modes with the Bloch wave vector oriented in the same �X
direction. It shows that the quasi-s- and quasi-p-polarized

FIG. 7. Dispersion relation � vs the Bloch wave vector � for
p-polarized modes in vicinity of the M point. Solid gray lines show
the nonmagnetic case; black dotted lines show the magnetic case
�magnetic field applied to the x direction�.

FIG. 8. Constant-frequency contours ��a /c
=0,0.1,0.2, . . . ,1.8� for the first band of p-polarized modes. Solid
gray lines show the nonmagnetic case; black dotted lines show the
magnetic case �magnetic field applied to the x direction�.

FIG. 9. Constant-frequency contours ��a /c
=3.0,3.1,3.2, . . . ,3.6� for the second band of p-polarized modes.
Solid gray lines show the nonmagnetic case; black dotted lines
show the magnetic case �magnetic field applied to the x direction�.

FIG. 10. Constant-frequency contours ��a /c=3.7,3.8,3.9� for
the third band of p-polarized modes. Solid gray lines show the
nonmagnetic case; black dotted lines show the magnetic case �mag-
netic field applied to the x direction�.
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eigenmodes of MPC’s can be far different from linearly po-
larized eigenmodes of the nonmagnetic PC’s. Similar to re-
sults for the uniform magneto-optic material, for the �X di-
rection in the MPC under study, magnetization removes the
degeneracy between the left- and right-polarized modes,
changing the absolute values of their Block wave vectors. In
such a case the effective Faraday rotatory power of a MPC
can be evaluated as the difference of the modulus of Bloch
wave vectors for the left- and right-polarized modes.12

For directions different from the �X direction, the transfer
matrix �2.10� cannot be brought to block-diagonal form by
transformation to the circular representation. The latter fact
shows that MPC eigenstates for these directions are not
purely circularly polarized modes. Their polarization state
can be represented as linear combinations of linear s and p
polarizations, which for the �X direction yields left- and
right-circular polarizations and partially circularly polariza-
tion for other directions. Since directions of Bloch wave vec-
tors for such quasi-s- and quasi-p-polarized states of the
same frequency do not coincide, it causes an effect analo-
gous to the linear magnetic birefringence.12

The theoretical model under investigation predicts another
unusual behavior in the vicinity of degeneracy at the � point.
Modes of a certain frequency range near the degeneracy,
because of splitting of the degenerate energy surfaces in the
external magnetic field, exhibit profound alteration of disper-
sion. An example of such behavior for a frequency near de-
generacy is shown in Fig. 11. It can be seen that the mode of
the third branch of the spectrum changes its dispersion to the
dispersions peculiar to the second branch. Moreover, alter-
ation of the dispersion exhibits discontinuous dependence on
the parameter of magneto-optic activity � and does not de-
pend on its absolute value. The latter circumscribes only a
frequency range where this effect appears �Fig. 12�. That is,
for any small absolute value of the parameter �, one can find
a frequency range in the vicinity of degeneracy where such
bistable behavior occurs.

It is obvious that alteration of dispersion will simulta-
neously cause a discontinuous change of the propagation di-

rection of the electromagnetic wave, since the latter is com-
pletely defined by constant-frequency contours.19 As can be
seen from analysis of contours in Fig. 11, for certain Bloch
wave vectors within Brillouin zone, the deflection angle of
the wave propagation direction can reach 90°. At the same
time, because of proximity to the � point �or the �X direc-
tion�, polarization of the propagating electromagnetic wave
will be changed from linear to circular.

We now consider generalization of the theory presented
here to the case of Voigt �Cotton-Mouton� geometry—i.e.,
when the external magnetic field applied to the direction nor-
mal to the plane of 2D MPC. As seen in Fig. 3, this direction
coincides with the direction of the z axis. Since the direction
of the external magnetic field is orthogonal to the wave vec-
tor k, the influence of the Faraday effect disappears and the
Cotton-Mouton effect assumes the main role. It is well
known that the Cotton-Mouton effect leads to the appearance
of uniaxial anisotropy.20 Because of the coincidence of the
axis of anisotropy and direction the z axis, only s polariza-
tion is affected by an external magnetic field. Moreover, be-
cause of the absence of mixing between s and p polariza-
tions, the dispersion relation for s polarization can be easily
obtained by substitution in the first expression of Eq. �3.8�:

m → m� = ��d = n�
2d , �4.5�

where � denotes value of the parameter in the direction or-
thogonal to the plane of the MPC �xy plane�. The dispersion
relation for p polarization remains unchanged because the
external magnetic field does not affect the permittivity for
directions parallel to the MPC plane. Finally, considering the
weakness of the Cotton-Mouton effect, we conclude that in
the Voigt �Cotton-Mouton� geometry, the band structure for s
polarization only changes insignificantly, whereas the band
structure for p polarization remains unchanged.

V. CONCLUSION

We investigated the optical properties of a 2D MPC which
represents a square lattice of magnetoactive dielectric sheets
in the limit where the sheet thickness tends to zero as its
relative permittivity tends to infinity. Dispersion relations for
this structure were obtained in exact form.

The band structure of the model 2D MPC was analyzed
for two geometries: Faraday and Voigt. It was shown that for

FIG. 11. Constant-frequency contours for the electromagnetic
mode ��a /c=3.69� that exhibits bistable behavior. Solid gray lines
show the nonmagnetic case; black dotted lines show the magnetic
case �magnetic field applied to the x direction�.

FIG. 12. Dependence of the frequency range, where electromag-
netic modes exhibit bistable behavior, vs the parameter of magneto-
optic activity.
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the Faraday geometry, magneto-optic activity of the sheets,
reduces crystal symmetry resulting in the splitting of degen-
erate energy levels in the presence of an external magnetic
field. For the Voigt geometry magneto-optic activity does not
affect the band structure for p polarization, whereas changes
in band structure for s polarization are negligible.

For Faraday geometry, despite the weakness of magneto-
optic activity, a strong sensitivity of the dispersion of elec-
tromagnetic modes was found in the vicinity of the band
edges, reflecting an enhancement of the interaction of elec-
tromagnetic waves with a medium that constituted a MPC.

It is also shown that in the vicinity of degeneracy, elec-
tromagnetic eigenmodes of MPC exhibit bistable behavior
and discontinuously change their dispersion, causing a dis-

continuous alteration of the refraction angle in the MPC up
to 90° when an external magnetic field is applied. At the
same time, the polarization of the eigenmodes changes from
linear to circular which causes the selective transmittance or
reflectance of circularly polarized subcomponents of the in-
cident light. This effect increases the importance of MPC’s
for applications because of the possibility of ultrafast optical
tuning of refraction and/or polarization state of electromag-
netic waves by magnetization. It is especially expected to be
important for such promising and challenging structures as
superlenses and superprisms, which have PC’s in their basis
and offer the possibility of propagation control and, in the
case of MPC’s, control of the polarization state of electro-
magnetic waves as well.

*Permanent address: A.F. Ioffe Physico-Technical Institute, 194021
St. Petersburg, Russia.
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