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We analyze a mean-field model of electrons with pure forward scattering interactions on a square lattice
which exhibits spontaneous Fermi surface symmetry breaking with a d-wave order parameter, the surface
expands along the kx axis and shrinks along the ky axis �or vice versa�. The symmetry-broken phase is
stabilized below a dome-shaped transition line Tc���, with a maximal Tc near van Hove filling. The phase
transition is usually first order at the edges of the transition line, and always second order around its center. The
d-wave compressibility of the Fermi surface is however strongly enhanced even near the first order transition
down to zero temperature. In the weak coupling limit the phase diagram is fully determined by a single
nonuniversal energy scale, and hence dimensionless ratios of different characteristic quantities are universal.
Adding a uniform repulsion to the forward scattering interaction, the two tricritical points at the ends of the
second order transition line are shifted to lower temperatures. For a particularly favorable choice of hopping
and interaction parameters one of the first order edges is replaced completely by a second order transition line,
leading to a quantum critical point.
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I. INTRODUCTION

The low energy properties of an interacting electron sys-
tem are strongly influenced by the shape of its Fermi surface.
Residual interactions between quasiparticles near the Fermi
surface can give rise to charge- or spin-density waves, super-
conductivity, or other low energy instabilities. Usually the
Fermi surface respects the point-group symmetry of the un-
derlying lattice structure. In principle, however, electron-
electron interactions can drive a Fermi surface deformation
that breaks the orientational symmetry of the system.

Recently, the possibility of symmetry-breaking Fermi
surface deformations with a d-wave order parameter, where
the surface expands along the kx axis and shrinks along the
ky axis �or vice versa�, was discussed for various two-
dimensional electron models on a square lattice, t-J,1

Hubbard,2–4 and extended Hubbard5 model. The instability
is driven by interactions in the forward scattering channel,
mainly between electrons close to the van Hove points in
the two-dimensional Brillouin zone. Referring to
Pomeranchuk’s6 stability condition for isotropic Fermi liq-
uids it has been termed “Pomeranchuk instability” by some
authors. Only a discrete lattice symmetry is broken by the
d-wave deformation on the square lattice, in constrast to
spontaneous Fermi surface symmetry breaking in isotropic
Fermi liquids, where Goldstone modes play an important
role.7 The d-wave Fermi surface deformation leads to a state
with the same reduced symmetry as the “nematic” electron
liquid defined by Kivelson et al.8 in a discussion of analogies
between doped Mott insulators with charge stripe correla-
tions and liquid crystal phases. Possible experimental signa-
tures of nematic and other charge order in cuprate supercon-
ductors are reviewed in Ref. 9.

Spontaneous Fermi surface symmetry breaking competes
with other instabilities. In the slave-boson mean-field theory
of the t-J model the d-wave Fermi surface deformation is
overwhelmed by d-wave singlet pairing, but strongly en-

hanced correlations in the d-wave forward scattering channel
and a corresponding large response to external anisotropic
perturbations remain.1,10 The latter can be related to distinc-
tive properties of magnetic excitations in different cuprate
superconductors.1,11 In the Hubbard model near van Hove
filling coexistence of superconductivity and d-wave Fermi
surface symmetry breaking has been found in a renormalized
weak coupling perturbation expansion.4 In the following we
focus however on Fermi surface symmetry breaking in an
otherwise normal state.

Quantum critical fluctuations of the “soft” Fermi surface
near a continuous zero temperature phase transition with
Fermi surface symmetry breaking provide a route to non-
Fermi liquid behavior.12 Anomalously large and anisotropic
quasiparticle decay rates have been derived for a phenom-
enological model, where electrons moving on a square lattice
interact only via almost forward scattering interactions, that
is only very small momentum transfers are allowed.12 We
refer to this model as the “f-model” in the following. Re-
cently it was shown that the putative quantum critical point
in the f-model is actually preempted by a first order transi-
tion, at least within mean-field theory and for various con-
crete choices of the model parameters.13 The transition re-
mains first order at low finite temperatures but turns to
second order at temperatures above a tricriticial point.14

This paper is dedicated to a comprehensive mean-field
analysis of spontaneous Fermi surface symmetry breaking in
the f-model on a square lattice. We present results for the
phase diagram, order parameter, and Fermi surface as ob-
tained from a numerical solution of the mean-field equations
for various typical choices of parameters. The weak coupling
limit is analyzed analytically. We also compute the coeffi-
cients of the Landau expansion of the grand canonical poten-
tial up to quartic order in the order parameter and show that
the first order transition at low temperature is a rather robust
consequence of the van Hove singularity in the density of
states. Besides confirming the conclusions by Kee et al.13
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and Khavkine et al.14 and providing additional numerical
data especially at finite temperatures, we present several new
results and insights. In particular, we show that in the weak
coupling limit Fermi surface symmetry breaking is charac-
terized by a single energy scale, which leads to universal
behavior in terms of suitably rescaled parameters. Further-
more, we show that the tricritical points can be suppressed to
lower temperatures by a uniform repulsion added to the
original f-model, which, for a particularly favorable but not
unphysical choice of hopping and interaction parameters, can
even lead to a quantum critical point. Finally, we find that the
d-wave compressibility of the Fermi surface is usually
strongly enhanced along the transition line down to zero tem-
perature even if the transition is first order, which implies
that the Fermi surface is already very soft at the transition
and fluctuations should be important.

The paper is structured as follows. In Sec. II we define the
f-model and outline the mean-field theory of spontaneous
Fermi surface symmetry breaking. Results from a numerical
solution of the mean-field equations are presented in Sec. III.
The numerical results are complemented by an analysis of
the Landau free energy expansion in Sec. IV and an analytic
derivation of universal properties of the phase transition at
weak coupling in Sec. V. We finally conclude in Sec. VI.

II. MODEL AND MEAN-FIELD THEORY

We analyze the f-model on a square lattice with pure for-
ward scattering interactions. The Hamiltonian reads

H = �
k

�k
0nk +

1

2L
�
k,k�

fkk�nknk� �1�

in standard second quantized notation, where nk=��nk�

counts the spin-summed number of electrons with momen-
tum k, and L is the number of lattice sites. For hopping
amplitudes t, t�, and t� between nearest, next-nearest, and
third-nearest neighbors on the square lattice, respectively, the
bare dispersion relation is given by

�k
0 = − 2�t�cos kx + cos ky� + 2t� cos kx cos ky

+ t��cos 2kx + cos 2ky�� . �2�

The forward scattering interaction has the form

fkk� = u − gdkdk�, �3�

with coupling constants u�0 and g�0, and a function dk
with dx2−y2-wave symmetry such as dk=cos kx−cos ky. This
ansatz mimics the structure of the effective interaction in the
forward scattering channel as obtained for the t-J,1

Hubbard,2 and extended Hubbard5 model. The uniform term
originates directly from the repulsion between electrons and
suppresses the �uniform� electronic compressibility of the
system. The d-wave term enhances the d-wave compressibil-
ity of the Fermi surface and drives spontaneous Fermi sur-
face symmetry breaking. In the Hubbard model it is gener-
ated by �one-loop� fluctuations, while in the t-J and extended
Hubbard model the nearest neighbor interaction contributes
directly to a d-wave attraction in the forward scattering chan-

nel. A nearest neighbor interaction also generates other con-
tributions in the forward scattering channel, such as an ex-
tended s-wave attraction. The latter leads however merely to
a renormalization of the hopping amplitude t, and other
terms are small near the van Hove points. For u=0, the
above model is the pure forward scattering limit of the
f-model with small momentum transfers introduced in Ref.
12. Within mean-field theory, it is also equivalent to the
model analyzed in Refs. 13 and 14, since the off-diagonal
components of the quadrupole density introduced there do
not affect the results. Note that interactions with large mo-
mentum transfers, which might generate superconducting or
antiferromagnetic instabilities, are excluded from the
f-model.

Inserting nk= �nk�+�nk into the interacting part of the
model and neglecting terms of order ��nk�2, we obtain the
mean-field Hamiltonian

HMF = �
k

�knk −
1

2�
k

��k�nk� , �4�

where �k=�k
0 +��k is a renormalized dispersion relation,

which is shifted with respect to the bare dispersion by

��k =
1

L
�
k�

fkk��nk�� = un + �dk. �5�

Here n=L−1�k�nk� is the average particle density, and

� = −
g

L
�
k

dk�nk� �6�

is our order parameter, which parametrizes the amount of
symmetry breaking. Note that � is real and has the dimen-
sion of energy. It vanishes as long as the momentum distri-
bution function �nk� respects the symmetry of the square
lattice. The grand canonical potential per lattice site 	
=L−1
 is obtained from the mean-field Hamiltonian as

	 =
�2

2g
−

u

2
n2 −

2T

L
�
k

log�1 + e−��k−��/T� . �7�

The stationarity conditions �	 /��=0 and �	 /�n=0 �at fixed
�� yield the self-consistency equation for the order param-
eter

� = −
2g

L
�
k

dkf��k − �� �8�

and the equation determining the density

n =
2

L
�
k

f��k − �� , �9�

respectively, where f���= �e�/T+1�−1 is the Fermi function.
These equations follow also directly from the relation �nk�
=2f��k−��. Note that the Eqs. �8� and �9� are coupled for
u�0, since n enters the self-consistency equation for � via
�k.

In the thermodynamic limit the mean-field theory solves
the reduced version �no momentum transfers� of the f-model
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exactly. One simple way to see this is by considering the
Feynman diagrams representing the perturbation expansion
of the system. All self-energy diagrams except the Hartree
term involve integrals over momentum transfers and are thus
suppressed at least by a factor L−1.

III. NUMERICAL RESULTS

We first take band parameters t� / t=−1/6 and t�=0, and
solve the self-consistency equations �8� and �9� numerically.
For this choice of hopping amplitudes the bare dispersion
relation has saddle points at �� ,0� and �0,��, leading to a
van Hove singularity in the bare density of states at �vH

0

=4t�=−2t /3. Typical features of spontaneous Fermi surface
symmetry breaking are captured with these parameters and
are presented in the first three sections. In the last section we
investigate another set of hopping parameters, for which the
saddle points are slightly shifted from �� ,0� and �0,��, and
a quantum critical point can be realized for suitable choices
of the interaction parameters.

A. Typical phase diagram

We first focus on the d-wave term in Eq. �3� and set u
=0. A �-T phase diagram is shown in Fig. 1�a�. The solid
line denotes a second order phase transition, which turns to a
first order transition at low T �open circles�. The end points
of the second order transition are tricritical points �solid
circles�, where the quadratic and quartic coefficients of the
Landau energy expansion �see Sec. IV� vanish simulta-
neously. The dashed line denotes the fictitious second order
transition that is preempted by the first order transition. The
complete transition line, Tc���, has a dome shape. Since the
Fermi surface symmetry breaking is driven by forward scat-
tering of electrons mainly on the �original� Fermi surface
close to the van Hove points,1,2 the maximal Tc��� appears
for � around the van Hove energy �vH

0 =−2t /3; a slight de-
viation from �vH

0 is due to finite T effects. The transition line
is almost symmetric with respect to the �=�vH

0 axis. This
symmetry becomes exact when t� is set to zero because of
particle-hole symmetry. Below Tc the Fermi surface expands
along the kx direction and shrinks along the ky direction or
vice versa. We show results for the Fermi surface at low T in
Figs. 1�b� and 1�c� together with the corresponding bare
Fermi surface �g=0� for comparison. The Fermi surface has
typically open topology in the symmetry-broken phase, ex-
cept close to the second order transition.

In Fig. 1�d�, we plot the order parameter ��� as a function
of � at T=0.01t and 0.15t. While we see a continuous tran-
sition at T=0.15t, ��� exhibits a jump at T=0.01t, character-
istic of a first order transition. The temperature dependence
of ��� is shown for three choices of � in Fig. 1�e�. Close to
the second order transition line the temperature dependence
has the typical square-root behavior expected for a mean-
field model. In Fig. 1�f�, the density n is plotted as a function
of � at T=0.01t and 0.15t together with that for g=0. The
density increases monotonuously with �. This behavior is
due to the stability condition of the system that the grand
canonical potential must be a concave function as a function

of �, which yields an inequality, −�2	 /�2��0, or �n /��
�0. The density changes discontinuously at the first order
transitions. The directions of the density jumps are generic
features required by the concavity of the grand canonical
potential.

In Fig. 1�g� the phase diagram is plotted in the n-T plane.
The second order transition line at high T terminates at two
tricritical points, below which phase separated regions,
shown by shades, appear; dashed lines correspond to the fic-
ticious second order transition shown already in Fig. 1�a�.
Each shaded region has two phases, with different densities
n1 and n2 ��n1�. The difference between n1 and n2 corre-
sponds to the magnitude of the density jump at the first order
transition point �see Fig. 1�f��. For n1nn2 the volume
fraction of the low density phase and the high density phase
is �n2−n� / �n2−n1� and �n−n1� / �n2−n1�, respectively. The
former has a symmetric �symmetry-broken� Fermi surface
and the latter a symmetry-broken �symmetric� Fermi surface
in the left �right� phase separated region.

B. Effects of uniform repulsion

Now we switch on the uniform term in the interaction, Eq.
�3�. The n-T phase diagrams are shown in Figs. 2�a�–2�c� for
several choices of u at g=0.5t. Note that typical features of
the phase diagrams are the same as in Fig. 1 although we
take smaller g and finite u here. The second order transition
line is not affected by u in the n-T phase diagram, while it
would be affected if plotted in the �-T plane, because the
chemical potential corresponding to a given density varies
with u. The tricritical points, that is the end points of the
second order transition, extend to lower T with u in favor of
a second order transition, which is accompanied by a pro-
nounced suppression of the width of the phase separated re-
gions, since n2−n1 is strongly reduced by the uniform term
in the interaction. However, we see that the suppression of
Ttri saturates at large u, as shown in Fig. 2�d�, and is not
strong enough to establish a quantum critical point.

C. d-wave compressibility near the first order transition

When the symmetry-broken phase is realized through a
first order transition at low T, order parameter fluctuations
are not critical at the transition. However, we now show that
the anisotropic compressibility with a d-wave form factor is
strongly enhanced by interactions at the transition line, such
that fluctuations can be expected to be important in spite of
the first order character of the transition.

The d-wave compressibility

�d =
dnd

d�d
�10�

describes the linear response of the expectation value nd
=L−1�kdk�nk� to the symmetry-breaking perturbation Hd

=−�d�kdknk, which could be realized by exposing the sys-
tem to anisotropic strain. The perturbation Hd induces a
d-wave shaped deformation of the Fermi surface. Note that
the order parameter � is directly proportional to nd, namely
�=−gnd. Without the form factors dk the above expressions
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would yield the conventional compressibility �=dn /d�. For
our mean field model, the d-wave compressibility is given
exactly by the RPA expression

�d =
N2

1 − gN2
, �11�

where N2 is a weighted density of states with dk
2 as a weight

factor �see Eq. �16� in Sec. IV�. The denominator

S−1 = 1 − gN2 �12�

is the inverse “Stoner factor,” which is a dimensionless mea-
sure for the enhancement of the d-wave compressibility by
interactions, and hence for the enhancement of order param-
eter fluctuations.

We calculate S−1 along one of the two first order transition
lines as sketched in the inset of Fig. 3; similar results are
obtained along the other side of the first order transition. The
main panel of Fig. 3 shows that S−1 tends to zero at the
tricritical temperature, that is the compressibility �d diverges

as expected, indicating truly critical fluctuations. At lower
temperatures, S−1 is finite on the transition line. However, its
value is still much smaller than one, especially for a smaller
g; the introduction of u reinforces this tendency. The d-wave
compressibility is thus strongly enhanced by interactions at
the first order transition line down to the lowest tempera-
tures, for example, by a factor of about 25 for g=0.5t and
u=10t. Hence, Fermi surface and thus order parameter fluc-
tuations can be expected to be important even near the first
order transition at low T. In the weak coupling analysis pre-
sented in Sec. V we will show that S−1 can be arbitrarily
small for small g near the first order transition.

D. Quantum critical point

The above results for our choice of hopping parameters,
t� / t=−1/6 and t� / t=0, are probably rather generic in the
sense that other choices lead to qualitatively the same phase
diagrams, as long as the bare kinetic energy has saddle points

FIG. 1. �Color online� The mean-field solution for t� / t=−1/6, t� / t=0, g / t=1, and u=0. �a� �-T phase diagram; the total transition line,
Tc���, contains a second order transition line, Tc

2nd, at high temperatures and two first order lines, Tc
1st, at low temperatures; the solid circles

are tricritical points; the dashed line, Tc
2nd, denotes a fictitious second order transition that is preempted by the first order transition; the dotted

line indicates the van Hove energy, �=�vH
0 =−2t /3. �b� and �c� Fermi surface in the symmetry-broken phase near the first order transition;

the Fermi surface for g=0 is also shown by a gray line. �d� � dependence of ��� at T=0.01t and 0.15t. �e� Temperature dependence of ���
for three choices of �. �f� � dependence of n at T=0.01t and 0.15t; the results for g=0 are plotted also. �g� n-T phase diagram; Tc

2nd is a
second order transition temperature and solid circles are tricritical points. In the shaded regions, which are surrounded by T c

PS, the system
undergoes phase separation.
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at �� ,0� and �0,��. Another interesting set of parameters is
t� / t=−1/6 and t� / t=1/5. For t��

1
4 �t+2t�� the bare kinetic

energy has saddle points at ��±cos−1 � ,0� and
�0,�±cos−1 �� with �= �t+2t�� /4t�, and local minima at
�� ,0� and �0,��. The energy at the saddle points is given by
�vH

0 =−2�t−2�2t��. For t� / t=−1/6 and t� / t=1/5 one has �

= 5
6 and �vH

0 =− 13
9 t.

A sequence of phase diagrams for t� / t=−1/6 and t� / t
=1/5 is plotted in Fig. 4; the coupling g is 0.5t in all cases.
The transition line Tc��� for u=0 in Fig. 4�a� has a dome
shape similar to that in Fig. 1�a�, with a second order transi-
tion at high T and a first order transition at low T. Although
the Fermi surface symmetry breaking is mainly due to elec-
trons close to the Fermi surface near the van Hove points, the

maximum of Tc��� largely deviates from the van Hove en-
ergy and the dome shows a pronounced asymmetry. This is
related to a large asymmetry of the density of states �see Sec.
IV�. A striking feature of the present parameters is a drastic
suppression of one of the tricritical points by a moderate
uniform repulsion in the interaction, which leads to a quan-
tum critical point for sufficiently large u. We show �-T phase
diagrams for u / t=1 and 2 in Figs. 4�b� and 4�c�, respectively.
The tricritical point at higher � is only slightly suppressed by
u and the suppression saturates at large u as in the case of
Fig. 2. However, the first order line at lower � is suppressed
rapidly with increasing u and disappears completely in favor
of a continuous phase transition down to the lowest tempera-
tures beyond u / t	2, that is a quantum critical point is real-
ized. Why the choice of hopping parameters with saddle
points deviating from �� ,0� and �0,�� is favorable for a
continuous phase transition at low temperatures will be dis-
cussed in connection with the Landau expansion in Sec. IV.

In Figs. 4�d�–4�f�, we replot the �-T phase diagrams as a
function of n. The first order transitions at low T lead to
phase separated regions as already seen in Fig. 1. However,
on the lower density side of the n-T phase diagram in Fig.
4�e� the phase separated region opens discontinuously at the
critical temperature Ttri, where the second order line termi-
nates. In that case the end point of the second order line is
not a tricritical point �and Ttri thus actually a misnomer�. The
quartic term of the Landau energy is positive there, but a first
order transition nevertheless sets in due to a local minimum
at finite � in the Landau energy becoming a global one be-
low Ttri.

In Fig. 5 we show the � dependence of the order param-
eter � for hopping parameters and coupling g as in Fig. 4, at

FIG. 2. �Color online� n-T phase diagram for t� / t=−1/6, t� / t=0, and g / t=0.5 with �a� u=0, �b� u / t=1.0, and �c� u / t=10. �d� u
dependence of Ttri at higher n �solid line� and at lower n �dotted line�.

FIG. 3. The inverse of the Stoner enhancement factor for several
choices of g and u along a first order transition line as sketched in
the inset with the arrow; temperature is scaled by the tricritical
temperature.
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a very low temperature �T / t=0.001� and two different
choices for u. This plot reveals that for u / t=2 there is a first
order transition within the symmetry-broken phase in addi-
tion and very close to the quantum critical point shown in
Fig. 4�c�. The corresponding Landau energy �Fig. 5�b�� has
two minima at finite ���; the minimum at lower ��� has the
lowest energy only for � between the second and first order
transition point. For larger u the first order transition in the
symmetry-broken phase moves further away from the second
order transition until it disappears completely. We show in
Fig. 5�c� that the order parameter for u / t=10 is continuous
everywhere except at the first order transition at the large �
boundary of the symmetry-broken phase. The Landau energy
for � close to the second order transition has only one mini-
mum as a function of ��� in this case �Fig. 5�d��.

No quantum critical point appears for t� / t=−1/6 and
t� / t=1/5 if the coupling constant g is too small or too large.
In Fig. 6 we plot Ttri as a function of u for g / t=1.0. Although
Ttri at lower � is suppressed much stronger than that at
higher �, the suppression saturates at a finite temperature
even for large u. Remarkably the Stoner factor S is again
generally strongly enhanced for the present hopping param-
eters near the transition at higher �, while S is not large at
low T near the transition at lower � for u=0, although Ttri is
lower there. Obviously a low Ttri does not imply a large
Stoner factor.

IV. LANDAU EXPANSION

To gain a broader understanding of the symmetry-
breaking phase transitions and their dependence on model

parameters we consider the Landau expansion of the grand
canonical potential in powers of the order parameter

	��� − 	�0� =
1

2
a2�2 +

1

4!
a4�4 + ¯ �13�

up to quartic order. The function 	��� is given by Eq. �7�,
with the density n��� determined by Eq. �9�. Note that only
even powers appear due to the symmetry 	�−��=	���. Ex-
panding 	��� by taking �-derivatives �see Appendix� one
obtains the coefficients

a2 = g−1 − N2��̄,T� , �14�

a4 = − N4���̄,T� +
3u

1 + uN0��̄,T�
�N2���̄,T��2, �15�

where �̄=�−un�0� and

Np��̄,T� = −
2

L
�
k

dk
p f���k

0 − �̄� �16�

is a weighted density of states averaged over an energy in-
terval of order T around �̄, and Np�, Np� are first and second
derivatives with respect to �̄. Note that a2 depends only via
�̄ on u, which explains the u independence of the second
order transition lines in the �n ,T� phase diagrams in Figs. 2
and 4. The quartic coefficient a4 does not depend on g. In
Fig. 7 we plot N0��̄ ,T�, N2���̄ ,T�, and N4���̄ ,T� for T=0 and
T=0.01t, for the choice of hoppings underlying the results in
Secs. III A–III C. At zero temperature Np��̄ ,T� diverges
logarithmically for �̄→�vH

0 , which leads to N2���̄ ,T��−��̄

FIG. 4. �Color online� �-T phase diagrams for several choices of u for t� / t=−1/6, t� / t=1/5, and g / t=0.5: u / t=0 �a�, 1.0 �b�, and 2.0
�c�. The dotted lines indicate the van Hove energy. The lines of Tc

1st and Tc
2nd at lower � in �b� are too close to be distinguished. The �-T

phase diagrams are replotted as a function of n in �d�–�f�.
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−�vH
0 �−1 and N4���̄ ,T�� ��̄−�vH

0 �−2 near �vH
0 . These singulari-

ties are cut off for ��̄−�vH
0 ��T at finite temperature.

The critical manifold in the space spanned by g, �̄, and T,
on which a continuous phase transition may occur, is given
by the condition a2=0, that is gN2��̄ ,T�=1. However, the
continuous transition can be realized only if the quartic co-
efficient a4 is positive. Otherwise it will be preempted by a
first order transition. For u=0, one has simply a4
=−N4���̄ ,T�, which is obviously negative near the van Hove
singularity at temperatures T� ��̄−�vH

0 �, and positive at any
T�0 for �̄=�vH

0 . Hence, the transition is first order at tem-
peratures T� ��̄−�vH

0 �, but it can be expected to be continu-
ous near the maximum of Tc around van Hove filling, as is
indeed the case in all numerical results. For u�0 there is an
additional positive contribution to a4, which partially com-
pensates the negative main term. However, the positive term
is bounded by 3�N2���̄ ,T��2 /N0��̄ ,T� even for arbitrarily
large u. For �̄ near �vH

0 it is of order 1 / log��̄−�vH
0 � smaller

than N4���̄ ,T�.
At moderate distance from van Hove filling a numerical

evaluation reveals that for hopping parameters t� / t=−1/6

and t�=0 the positive u term can compensate a substantial
amount of the negative term, −N4���̄ ,T�, but a4 never turns
positive. We thus confirm that a finite u shifts the tricritical
points in the phase diagrams to lower temperatures, but does
not produce a continuous phase transition at T=0 for that
choice of hopping.

The situation is very different for our second choice,
t� / t=−1/6 and t� / t=1/5. In that case Np��̄ ,T� has a steplike
increase at the lower � side of the van Hove energy at low T,
which is generated by the local minima in the dispersion at
�� ,0� and �0,��. This is illustrated for N0 in Fig. 8; N2 and
N4 behave similarly. For �̄ in the step region N2���̄ ,T� be-
comes very large at low T, while N0��̄ ,T� remains bounded.
In the presence of a u term it is thus possible to get a positive
a4 at arbitrarily low temperatures. A sizeable u helps not only
to increase a4, but also to push local minima at finite � in
	��� to higher energies, such that a continuous transition can
be obtained before such a minimum becomes global.

V. WEAK COUPLING LIMIT

At weak coupling spontaneous Fermi surface symmetry
breaking occurs only for densities near van Hove filling, and
the transition is dominated by states with momenta near the
saddle points of �k

0. In this limit the mean-field equations can
be treated to a certain extent analytically, and the phase tran-
sition is universal in the sense that it is fully characterized by
a single energy scale. Several ratios of physical quantities are
universal dimensionless numbers in the weak coupling limit.

We focus on the case u=0 and assume that �k
0 has only

two degenerate saddle points in kA= �� ,0� and kB= �0,��.
However, the following analysis can be easily extended to
energy bands with saddle points in other positions. Shifting
energies such that �kA,B

0 =0 and choosing suitable relative mo-

FIG. 5. Left panels, order parameter ��� as a function of � for hopping parameters and g as in Fig. 4, temperature T / t=0.001, and two
different uniform couplings, u / t=2 �top� and u / t=10 �bottom�. Right panels, Landau energy 	��� near the phase transitions at the lower �
side of the corresponding order parameter plots on the left.

FIG. 6. u dependence of Ttri at higher � �solid line� and at lower
� �dotted line� for t� / t=−1/6, t� / t=1/5, and g / t=1.0.
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mentum variables k+ and k−, one can write �k
0 near the saddle

points as a quadratic form

�k
0 =

1

2m
k+k−, �17�

where m�0 is a constant which can be related to the hop-
ping amplitudes t, t�, and t�. The variables k+ and k− are
defined such that the quadratic form has no k+

2 and k−
2 terms

and that the integration measure is �2��−2 as usual. Note that
the corresponding coordinate axes are generally not orthogo-
nal. The momenta are restricted to a finite region around the
saddle points by a cutoff �, that is �k±��.

If the form factor dk is smooth near the van Hove point it
can be taken as a constant with alternating sign near kA and
kB, respectively, such as

dk = 
 1 for k � kA,

− 1 for k � kB.
� �18�

Any other constant ��1� could be absorbed in the coupling
g. The self-consistency condition Eq. �8� becomes simply

� = g�nB − nA� , �19�

where

nA,B = 2
A,B

d2k

�2��2 f��k
0 ± � − �� �20�

is the contribution of the momentum space region around kA
and kB �limited by �� to the density.

A. Ground state

At T=0 the integral over the Fermi function is simply the
volume of occupied states. An elementary integration yields

nA,B =
�2

�2 +
2m

�2 �� � ���1 + log
�2

2m
− log�� � ��� .

�21�

The self-consistency equation can thus be written as

� = ḡ��� − ��log�� − �� − �� + ��log�� + ��

+ 2��1 + log ���� �22�

with the dimensionless coupling ḡ= �2m /�2�g and the cutoff
energy ��=�2 /2m. Integrating �	 /��=g−1�− �nB−nA� over
� one obtains the � dependence of the grand canonical po-
tential

	��� =
2m

�2 �� 1

2ḡ
−

1

2
− �1 + log �����2 +

1

2
�� + ��2 log��

+ �� +
1

2
�� − ��2 log�� − ��� + const, �23�

where the constant does not depend on � and can be chosen
such that 	�0�=0.

For �=0, where the bare Fermi surface touches the van
Hove points, the self-consistency equation for � becomes
simply

FIG. 7. The functions N0��̄ ,T�, N2���̄ ,T�, and N4���̄ ,T� around the van Hove energy at T=0 ��a�–�c�� and T=0.01t ��d�–�f�� for hopping
parameters t� / t=−1/6 and t�=0; the energy unit is t.
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� = − 2ḡ� log��� + 2ḡ� log�e��� . �24�

Besides the trivial solution �=0 this equation has the two
degenerate solutions

�0 = ± e��e−1/�2ḡ�. �25�

It is easy to see that the solution �=0 corresponds to a maxi-
mum of 	��� and is thus unstable. The total density remains
unaffected by the symmetry breaking, since �nB=−�nA for
�=0. This is also true to high accuracy for the density at van
Hove filling for the numerical result shown in Fig. 1�f�. Note
that at van Hove filling symmetry breaking occurs for arbi-
trarily small g, which is due to the logarithmic divergence of
the density of states.

For ��0 we introduce a rescaled order parameter �̃
=� /�. The self-consistency condition for � can be written in
terms of �̃ as

�̃

g̃
= �1 − �̃�log�1 − �̃� − �1 + �̃�log�1 + �̃� �26�

with a renormalized coupling constant given by

1

g̃
=

1

ḡ
+ 2 log��� − 2�1 + log ��� . �27�

The grand canonical potential can be written as 	���
= �2m /�2��2	̃��̃�, where

	̃��̃� = � 1

2g̃
−

1

2
��̃2 +

1

2
�1 + �̃�2 log�1 + �̃�

+
1

2
�1 − �̃�2 log�1 − �̃� . �28�

Note that � and the cutoff have been completely absorbed in
the renormalized coupling g̃. The rescaled self-consistency
equation and 	̃��̃� are universal in the sense that they depend
only via g̃ on all input parameters.

Minimizing 	̃��̃� one finds that a first order transition
occurs at the universal critical coupling g̃1�−0.692 with a
universal jump of the dimensionless order parameter

��̃1� =
��1�
��1�

� 1.720. �29�

The Fermi surface thus opens immediately at the transition.
Inverting the relation between ḡ and g̃ one obtains the �
dependence of ḡ1 as

ḡ1��� =
g̃1

1 + 2g̃1�log
��

���
+ 1� ——→

�→0 1

2 log
��

���

. �30�

Note that ḡ1�0 for ������ although g̃1�0. For fixed g, on
the other hand, the critical value of � at which the first order
transition occurs is

��1� = e1+1/�2g̃1���e−1/�2ḡ�. �31�

The curvature of 	̃��̃� at �̃=0 becomes negative only for g̃
� g̃2=−0.5. At fixed � this requires couplings g�g2���
�g1���. For given g, the critical value of � for a continuous
transition is

��2� = ��e−1/�2ḡ�, �32�

which is smaller than ��1�. Hence, the critical point for a
continuous transition is not reached, but preempted by a first
order transition. The ratio ��1� / ��2�=e1+1/�2g̃1��1.320 is a
universal number.

In the symmetric state, the interaction induced enhance-
ment of the d-wave compressibility of the Fermi surface is
given by the “Stoner factor” S= �1−gN2����−1, which is re-
lated to the quadratic coefficient of the Landau expansion by
S= �ga2�−1, see Eq. �14�. Since a2 vanishes for g=g2, one has
a2=g−1−g2

−1. At the first order transition in the ground state,
a2 is given by

�a2�1 = g1
−1 − g2

−1 =
2m

�2 �g̃1
−1 − g̃2

−1� � 0.555
2m

�2 , �33�

where we have used Eq. �27� in the second step. The d-wave
compressibility is thus enhanced by a factor

S1 =
1

0.555ḡ
�34�

at the first order transition. For a weak coupling ḡ�1, this
enhancement is very large.

B. Finite temperature

We now compute two characteric temperature scales in
the weak coupling limit, namely the transition temperature at
van Hove filling, T0, and the tricritical temperature, Ttri. To
this end we write the functions Np�� ,T� in the form

FIG. 8. N0��̄ ,T� around the
van Hove energy at T=5�10−4t
�a� and T=0.01t �b� for hopping
parameters t� / t=−1/6 and t�
=1/5; the energy unit is t.
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Np��,T� = − d�Np���f��� − �� , �35�

where Np���=Np�� ,0�, which, for the quadratic dispersion in
Eq. �17� with a cutoff �, is given by

Np��� =
4m

�2 log
��

���
�36�

with �����. Note that �̄=� for u=0.
The transition temperature at van Hove filling is obtained

by setting the quadratic coefficient in the Landau expansion
a2 to zero at �=0, that is by solving the equation
gN2�0,T0�=1. Using


−��

��

d� log
���
��

f���� ——→
��/T→�

log
��

T
− log

�

2
+ � , �37�

where ��0.577 is the Euler constant, one obtains

T0 =
2e�

�
��e−1/�2ḡ�. �38�

Note that the numerical prefactor coincides precisely with
the one in the BCS formula for the critical temperature of a
weak coupling superconductor.

At the tricritical point a2 and a4 both vanish. The tricriti-
cal temperature Ttri and the corresponding chemical potential
�tri are thus determined by the two equations gN2��tri ,Ttri�
=1 and N4���tri ,Ttri�=0. Using Eqs. �35� and �36� one obtains

gN2��,T� ——→
��/T→�

2ḡ�log
��

T
+ a��̃�� , �39�

where �̃=� /T and the dimensionless function a��̃� is de-
fined as

a��̃� = 
−�

�

dx log�x + �̃�
�

�x

1

ex + 1
. �40�

Furthermore

N4���,T� ——→
��/T→� 4m

��T�2b��̃� �41�

with

b��̃� = 
−�

�

dx log�x + �̃�
�3

�x3

1

ex + 1
. �42�

The latter function vanishes for �̃= ± �̃tri with �̃tri�1.911.
Setting the right-hand side of Eq. �39� equal to 1 and solving
for T then yields

Ttri = e−���e−1/�2ḡ�, �43�

where �=a��̃tri��0.4515. Hence, the tricritical temperature
and the critical temperature at van Hove filling form the uni-
versal ratio

Ttri

T0
=

�e−�

2e� � 0.5615. �44�

C. Comparison with numerical results

Above we have computed several physical quantities
characterizing the phase transition, which are all proportional
to the same energy scale ��e−1/�2ḡ�, with universal prefactors
in the weak coupling limit. Hence ratios of these quantities
are universal numbers.

We have checked universal ratios against results from the
numerical solution of the mean-field equations for hopping
parameters t� / t=−1/6, t�=0 and coupling u=0. At zero tem-
perature we have checked ratios involving the order param-
eter �0 at van Hove filling, the order parameter jump �1 at
the first order transition, and the distances of �1 and �2 from
�vH

0 . For a comparison of the order parameter one must take
into account a factor of 2 due to the different size of dk near
the van Hove points, which is ±2 in the numerical calcula-
tion with dk=cos kx−cos ky, but ±1 in the weak coupling
model. At finite temperature we have compared the transition
temperature T0 at van Hove filling and the tricritical point.
For g / t=0.5 all ratios agree within 1% error with the pre-
dicted universal numbers. For the stronger coupling g / t=1
the deviation increases to 2% or 3% at zero temperature and
up to around 5% at finite temperature.

VI. CONCLUSION

In summary, we have analyzed a mean-field model for
Fermi surface symmetry breaking with a d-wave order pa-
rameter on a square lattice. We have confirmed the qualita-
tive properties of the phase diagram reported already by Kee
et al.13 and Khavkine et al.14 We have provided further nu-
merical evidence and analytic arguments showing that the
phase transition is typically first order at low temperatures.
This implies that a stability analysis of microscopic models,
for example, by renormalization group methods, should not
focus on diverging susceptibilities only. At weak coupling
the transition is fully characterized by a single energy scale
and can thus be described by universal dimensionless func-
tions of suitably rescaled parameters, which leads to various
universal ratios of different quantities. The tricritical points
separating first and second order behavior are shifted to
lower temperatures by adding a repulsive constant contribu-
tion to the forward scattering interaction, which, for a favor-
able choice of hopping and interaction parameters, can even
lead to a quantum critical point. Although the phase transi-
tion is usually first order at low T, we have found that the
d-wave compressibility at the transition can be enhanced sig-
nificantly by interactions, which implies that Fermi surface
fluctuations induced by interactions with a small finite mo-
mentum transfer are expected to be important even near the
first order transition. The role of fluctuations, in particular
their influence on the phase transition, and the interplay with
other interactions driving competing instabilities remains an
interesting subject for future studies.
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APPENDIX: DERIVATION OF LANDAU EXPANSION

Here we derive the expressions Eqs. �14� and �15� for the
coefficients of the Landau expansion of 	���, by taking de-
rivatives with respect to � at fixed � and with n��� deter-
mined by Eq. �9�. The first derivative is

d	

d�
=

�	

��
+

�	

�n

dn

d�
=

�

g
+

2

L
�
k

dk f��k − �� , �A1�

where we have used the stationarity condition �	 /�n=0. The
second derivative is

d2	

d�2 = g−1 +
2

L
�
k
�dk

2 + dku
dn

d�
� f���k − �� . �A2�

Exploiting the symmetry n���=n�−��, which implies that
odd derivatives of n��� vanish at �=0, one obtains

a2 = �d2	

d�2�
�=0

= g−1 +
2

L
�
k

dk
2 f���k

0 + un�0� − ��

= g−1 − N2��̄,T� �A3�

with �̄=�−un�0�.
Differentiating twice more and setting �=0, one obtains

a4 = �d4	

d�4�
�=0

= − N4���̄,T� + 3uN2���̄,T�� d2n

d�2�
�=0

.

�A4�

Applying two � derivatives to n��� as given by Eq. �9� we
get

� d2n

d�2�
�=0

= N2���̄,T� − uN0��̄,T�� d2n

d�2�
�=0

. �A5�

Solving for n��0� and inserting into Eq. �A4� we obtain Eq.
�15�.
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