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Excitation spectrum of doped two-leg ladders: A field theory analysis
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We apply quantum field theory to study the excitation spectrum of doped two-leg ladders. It follows from
our analysis that throughout most of the phase diagram the spectrum consists of degenerate quartets of kinks
and antikinks and a multiplet of vector particles split according to the symmetry of the problem as 3+2+1.
This basic picture experiences corrections when one moves through the phase diagram. In some regions the
splitting may become very small and in others it is so large that some multiplets are pushed in the continuum
and become unstable. At second-order transition lines masses of certain particles vanish. Very close to the
first-order transition line additional generations of particles emerge. Strong interactions in some sectors may
generate additional bound states (like breathers) in the asymmetric charge sector. We briefly describe the
properties of various correlation functions in different phases.
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I. INTRODUCTION

The problem of ladderlike materials has attracted a lot of
attention since the original paper by Dagotto and Rice.! Im-
portant experimental realizations of two-leg ladder systems
include, for example, the famous “telephone number” com-
pound Sr,_,Ca, Cu,,0O,; which has a spin gap and exhibits a
transition from charge density wave (CDW) to superconduct-
ing (SC) state under the increase of Ca concentration.””® Be-
sides the experimental relevance the study of this problem
gives rise to many questions of rather general character. Even
if ladder systems represent only the first step from a purely
one-dimensional world into higher dimensions, this step in-
troduces a lot of new interesting physics. In addition, the
problem of doped spin ladders is just a particular case of a
more general problem of multiorbital quasi-one-dimensional
models'® and an increase in the number of orbitals dramati-
cally increases the complexity of the lattice Hamiltonian,
raising legitimate questions about universality.

In this paper we focus on the problem of doped two-leg
ladders. Assuming that the spectral gaps are much smaller
than the bandwidth (the applicability of these assumption to
real systems is discussed at the end of the paper), we study
the low-energy physics using the field theory approach. The
intensive theoretical research conducted on this subject at the
last eight years has established the following facts.

(A) Strong-weak tunneling duality. The form of the effec-
tive action describing the low-energy behavior of the system
is independent (up to a simple operator transformation) on
whether one takes into account the interchain tunneling or
considers just the interchain interactions. One arrives at this
conclusion comparing effective actions derived in the limit
of strong tunneling (see, for example, Refs. 11-14) with the
theories derived in the limit of weak tunneling.!>!® The
strong-weak tunneling duality may be a boon for numerical
calculations, allowing one to extract information about the
excitation spectrum in the one-parameter range by perform-
ing actual calculations in the other.

(B) Superconductivity-CDW duality. The phase diagram
includes the Tomonaga-Luttinger- (TL-) type phase as well

1098-0121/2005/72(3)/035110(21)/$23.00

035110-1

PACS number(s): 71.10.Pm, 11.10.Kk, 72.80.Sk

as phases with spectral gaps. The only stable TL phase is the
one where all modes are gapless. As soon as an attractive
interaction appears in one channel it induces an attraction in
all other ones, generating spectral gaps for all modes except
the symmetric charge mode. The strong-coupling phases are
characterized by power-law correlations for particular opera-
tors (order parameters). These phases are classified either as
SC or CDW. For the two-chain model there are two SC
phases (s and d) and two CDW phases (also s and d, the
latter phase also being known as Orbital Antiferromagnet
(OAF)!7 or staggered flux'® phase). Such classification is
valid only for a weak repulsion when the Luttinger parameter
K., characterizing the gapless charge mode, is close to 1. At
K.<1/2 the Wigner crystal phase with 4k density correla-
tions competes with the SC phases.'”?® The low-energy
Hamiltonians in different sectors differ by the sign of certain
coupling constants and transform into each other by canoni-
cal transformations of the fields. These transformations real-
ize the authomorphisms of the O(6) group.!®

(C) Emergent attractive interactions. As follows both
from the numerical?>?* and analytic calculations based on a
renormalization group (RG) analysis,'>13:16:2124.25 the system
at low energies may enter into a strong-coupling regime even
if all bare couplings are repulsive. In that case the system
passes through an intermediate weak-coupling regime. If E*
is the energy at which the weak coupling is reached, then it
can be shown that the strong-coupling regime is achieved at
energies of the order of E*2/A, where A is the bare ultravio-
let cutoff. It is probably safe to say that the emergent attrac-
tion leads to small gaps.

It was first suggested in Ref. 12 that if the bare couplings
are not very large, the low-energy sector of a two-leg ladder
is described by a universal Hamiltonian with a symmetry
larger than the symmetry of the lattice model. This corre-
sponds to the O(6) X U(1) symmetry in the doped case and
the O(8) symmetry at half filling. The original suggestion
was based on the observation that the RG flows of different
coupling constants converge in the strong-coupling limit to
the same asymptotics corresponding to a higher symmetry.
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Convergence of RG flows has also been found to occur in
other systems? and is frequently associated with dynamical
symmetry enlargement (DSE). A careful discussion of DSE
for some specific models can be found in Ref. 26. This prob-
lem is addressed also here matching the RG analysis, valid at
weak coupling, with methods valid at strong coupling. The
conclusion is that in models where the number of particle
flavors is not large, there are conditions when one may in-
deed expect a small splitting of particle multiplets. Such con-
ditions exist in systems with weak backscattering, like car-
bon nanotubes.

The goal of this paper is to use a quantum field theory
approach to describe the phase diagram and excitation spec-
trum of a doped two-leg Hubbard-type model. We combine
the RG methods with methods suitable to study the strong-
coupling limit, like the 1/N expansion,?’ exact solutions, and
perturbation theory around specific integrable points in the
parameter space of the effective field theory.”® We also dis-
cuss the conditions of validity of the field theory description.
As said above, this description is valid when the correlation
length is much larger than the ultraviolet (UV) cutoff. This
regime is known as the scaling limit.

The paper is organized as follows. In the next section we
introduce the effective low-energy description of doped two-
leg ladders, the so-called generalized O(6) Gross-Neveu
(GN) model, and briefly analyze the RG equations. In Sec.
III we discuss the possible strong-coupling phases of the
model, and in Sec. IV we describe its symmetries and iden-
tify the phase boundaries. The spectrum of generalized
Gross-Neveu models is discussed in Sec. V using the large-N
approximation. Some specific points of the phase diagram
are described by integrable models with the O(6) GN model
being the most prominent. These integrable points are iden-
tified in Sec. VI. In the vicinity of these points we study the
spectrum using a specific strong-coupling perturbation
theory described in Sec. VII. The spectrum close to the phase
boundaries is summarized in Sec. VIII. Section IX is devoted
to the study of a simplified [O(3) X O(3)]-symmetric model
where the RG equations can be integrated explicitly. In Sec.
X we briefly consider the structure of some correlation func-
tions. We summarize the main results and discuss the experi-
mental relevance in the last section. The paper has several
appendixes.

II. MODEL

The model in its original formulation includes electron
creation and annihilation operators Cil,o’ Ci1o labeled by
chain indices, /[=1,2, and spin indices, o=+1, for spin up
(1) and o=-1 for spin down (). For instance, the extended

Hubbard model has the standard form

H=- tHE (Cz‘,l,(rci+1,l,(7'+ HC) + UE n[’[,ﬂ’li’[’l

i il
-1, (¢i1.6Cin0+He)+ Vi n i+ Vo 2 mng,
il

il,o il
(1

where, as usual, the parameters #; and 7, are the hopping
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matrix elements along and between the chains, U is the on-
site repulsion, and V| and V| are the next-nearest-neighbor
interactions, with ni,l,o'zcj'.,l,oci,l,tf and n;;=n;;+n;; . The
lattice Hamiltonian (1) has a U(1) X SU(2) X 7, symmetry. If
necessary, one can include also exchange interactions.

A. Low-energy field theory

As we have mentioned in the Introduction, the effective
field theory, describing the low-energy behavior of the
Hamiltonian (1), is largely independent of whether one con-
siders strong interactions and weak interchain tunneling, as
was done, for example, in Refs. 15 and 16, or diagonalizes
the interchain hopping first and treats the bare interactions as
weak, as has been done in the majority of other papers. To be
precise, there are two differences: (i) in one case the fields
are labeled by chain indices and in the other by transverse
wave vectors ¢=0, 77, and (ii) the Hamiltonians of both sec-
tors are related to each other by the particle-hole transforma-
tion.

As far as the analysis of the phase diagram and the spec-
trum are concerned, it is more advantageous to have a low-
energy description in the Majorana fermion representation.
The Majorana formulation is derived by bosonization and
subsequent refermionization of the original Hamiltonian (the
procedure was introduced in Ref. 29; see also Ref. 30) and,
for the specific model (1), can be found, for instance, in Refs.
14 and 19. Away from half-filling, the resulting low-energy
field theory consists of two parts: one contains a decoupled
symmetric charge mode <DE,+) and the other contains all other
fields. The latter can be written in terms of six Majorana
fermions as

H=Hy,+V, (2a)
where H,) is the free part,
.3 .3
Hy== 3 3 0, (XadoXh = Xi000) = 5 2 0, €k~ E10.E).

a=1 a=1

(2b)

and V describes the interaction between the right- and left-
moving Majorana fermions x; and & :

V=g, (XX - g, [(&E]) + (&EDT
—2(Xa XD 8o (E2E) + 8ol (ERED) + (GED T
— 28, (GG (ERED) + (£28D)] (2¢)

(summation over repeated indices is assumed). The symme-
try of the continuum Hamiltonian is U(1) X U(1) X SU(2)
X Z,, being somewhat higher than the symmetry of the lat-
tice model. As we have already mentioned, one U(1) field
(the total charge mode (I)E,+>) is decoupled and is not shown in
the above Hamiltonian, while the second U(1) symmetry
emerges only asymptotically at lower energies. The mode
<I)£_+) is responsible for high conductivity along the ladders
observed in Sry,_,Ca,Cuy,Oy4,.% The SU(2) triplet x* and the
fermion & are made of bosonic fields of the spin sector. They
reflect the SU(2) X 7, symmetry of the spin sector and also
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appear in the low-energy description of the two-leg Heisen-
berg ladder.?” The situation here differs from the Heisenberg
ladder since no explicit mass term is present in the Hamil-
tonian and the masses are generated dynamically. The fermi-
onic doublet &, describes the asymmetric charge mode,
which we will denote i_).

The original observables are nonlocal in terms of the Ma-
jorana fermions (vector particles). The latter particles, if they
remain stable, represent collective excitations of the system.
We emphasize that the vector multiplet in Egs. (2) is natu-
rally split into submultiplets as 3+ 1+2. The model (2) can
also be represented as six critical Ising models coupled to-
gether by products of the energy density operators. This rep-
resentation is convenient because the original fermionic bi-
linears are local in terms of the Ising model order and
disorder parameter fields. To clarify the symmetries and the
structure of the model, we can rewrite it as

H=Hp;3)[X:80+]+ Ho(z)[®£_) 18p_) + Higing €]
+ 21 (XX i o (E3E)) + Bogy cOS[ SO T}
+12g, (&&)cos[ BO]. 3)

Here Hq;,, is the Hamiltonian of the critical Ising (CI) model
and Hoy, represents the O(N) GN model,?' which can be
described in terms of N Majorana fermions %, (a
=1,...,N) as

Ho[:n) == Son(Wid = Vi) = ax(Whh).
@

The spectrum of Hyy is massive for gy<<0, provided N
>2, while Hy) is always massless and is equivalent to the
Gaussian model.

Though the form of the Hamiltonians (2) and (3) is fixed
by the symmetry, estimates of the coupling constants are
available only for weak interactions. The backscattering in-
teractions are weak in such systems as carbon nanotubes
which have the same symmetry as two-leg ladders, but not in
two-leg ladders themselves. Therefore our philosophy will be
the same as in the particle physics: we will express every-
thing in terms of low-energy parameters (mass gaps) and
assume these gaps to be much smaller than the ultraviolet
cutoff (whatever this cutoff is). As an additional simplifica-
tion we will ignore the difference between the velocities,
setting v,=v,=1.

B. Preliminary RG analysis

The first step in our analysis is to establish the conditions
under which the system scales to strong coupling. To do it
we use the single loop RG equations as obtained in Refs. 11,
12, 16, and 21:

gp— == 3g§,st - gg,m’ (53.)
gc,ss == gp—gc,ss - 3g0’—gc,xt7 (Sb)
go’— == 2go’+g0'— - zgc,xtgc,ss’ (SC)
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gc,st == (gp— + 2go+)gc,st —80-8css> (Sd)

Sor == 8or— 8o — 2801 (Se)

Here the overdot corresponds to a derivative in RG time ¢
=(4mv)~" In(A/e€). Thus small energies in our notations cor-
respond to large ¢.

Further in the text we will study the RG equations close to
the O(6)-symmetric point and, in more detail, for a simplified
[O(3) X O(3)]-symmetric model (cf. Sec. IX). In the latter
case Egs. (5) can be solved analytically.

It is possible to show that there are two areas of stability.

(i) The weak-coupling area, where the repulsion domi-
nates. All couplings scale to zero. The resulting phase is the
O(6) X U(1) TL liquid perturbed by marginally irrelevant
perturbations. We found the exact boundaries of this area for
the O(3) X O(3) model, but qualitatively one can say that the
TL liquid appears as a fixed point when the diagonal inter-
actions are repulsive and exceed the off-diagonal terms:
8o~ 8- |80-||8c.ssl s 8ot

(ii) The strong-coupling area. In the RG sense this area is
the basin of attraction of the O(6)-symmetric point —g,.,
=—8,-=805-|=|8c.s|=gc./ > 0. In order to get to strong cou-
pling it is enough to have just one attractive diagonal inter-
action. Moreover and very intriguingly, one may even start
from all interactions being repulsive. The system will scale
to strong coupling anyway provided the off-diagonal interac-
tions are sufficiently strong (this would correspond to the
emergent attraction described in Introduction). This follows
from the stability analysis of the unstable symmetric line
go+=gp,—: |go—| = |gc,ss| = |gc,st| > 0

The RG equations determine an overall scale at which the
strong coupling is achieved:

[l b}

MZAf[ga(O)]ZA}:(gl(O),C], ’CQ—I) (6)

Each set of initial conditions sets the system on a particular
RG trajectory defined by its invariants C; (i=1,...,0-1),
where Q is the number of coupling constants. For a given set
of C;’s the scaling limit exists if for an arbitrary large A one
can choose a starting point on the trajectory such that M
remains constant. It turns out that for trajectories with an
emergent attraction this is not possible. Therefore the space
of C;’s where the scaling limit is defined is a subspace of
(Q-1)-dimensional space (scaling subspace). Inside of this
space the masses may depend on C;’s and this dependence is
not determined perturbatively. In view of this it is clear that
the existence of a “strong-coupling point” or DSE requires
independence (or at least weak dependence) of the mass
spectrum on RG invariants. Otherwise, strongly correlated
phases are not points, but have their own geography with the
excitation spectrum changing throughout the phase. We will
continue this discussion in Secs. VII C and IX where we
consider mass variations related to small deviations from the
0O(6) and O(3) X O(3) symmetries, respectively.
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III. STRONG-COUPLING PHASES AND ORDER
PARAMETERS

To explore the possible phases of the model it is more
convenient to use the mixed representation (2). Here the
Hamiltonian is expressed in terms of bosonic fields @Ei) as-
sociated with the charge modes and Ising fields o, (w,) with
a=0,...,3 associated with the spin modes §3 and x“, respec-
tively. The phases of the system are in one-to-one correspon-
dence with the field vacua. These vacua are determined by
the signs of the renormalized couplings (g, .,8c.s»8c.ss) IN
the strong-coupling regime (recall that these signs may have
nothing to do with signs of the bare coupling constants). The
analysis of the phase diagram has already been conducted,
and here we repeat many results obtained in Refs. 13, 14, 16,
and 20. To keep contact with these works we use a strong-
tunneling approach, introducing bonding (p=1) and anti-
bonding (p=-1) operators

[ + pc
C(n)p’g'= nl,o \Ep n2,0 (7)

associated with transverse wave vectors ¢=0,, respec-
tively. The bosonization notations are given in Appendix A,
and the relationship with the weak-tunneling approach is dis-
cussed at the end of the section.

When the forward scattering in the symmetric charge
channel is not strong, there are four possible phases: super-
conducting s (SCs) and d wave (SCd), CDW, and what is
now frequently called d-wave CDW (CDWd). Its order pa-
rameter is of orbital antiferromagnet!” and staggered flux'®
type. In terms of the lattice operators the order parameters of
the four phases have the form

ASC.s(n) = 2 C(n)p,zrc(n)p,—(r = E [Rp,ILp,l + Lp,TRp,LL

p==1 p==
(8a)
Ascdn) = 2 sin(mp/2)C(n), ,C(n), _y
p==1
= E PIR, 1L, +L, iR, ], (8b)
p==

ACDW(n)= E CT(n)p,(TC(n)_p,g-CZkFina(): E R;,gL—p,U"

p==l,0 p==xl,0
(8¢)
Acpwan) = 2 sin(mp/2)C"(n),, ,C(n)_, ;"%
p==l,0
- 21 PR, oL op.o (8d)
p==l,0

Here we introduced the right- and left-moving components
of the lattice fermion operators:
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2 (p) (p)
C,o(n)= e ik R, o(x) + elkr L, o(x) (x=nag), (9)

where k}p) are Fermi vectors of the different bands and k
= (K +k) /2= (1= 8)/2aq, with & being the doping and a,
the lattice constant.
The SCd phase is found in the region (+,+,+) and is
characterized by
09=0, (o6)#0 (a=0,1,2,3) (10a)

or

07 =\m2, (u)#0 (a=0,1,2,3), (10b)

where (---)=(0|--+|0) is the vacuum expectation value
(VEV). This phase has power-law correlations (quasi-long-
range order) in the d-wave Cooper channel (8b). The order
parameter in the continuum limit is

o™ _
ASCd ~ elmTOC {COS[V:T@E‘ )]0'10'20'30'0
— i sin[\ 7Oy popa o} (11)
For (—,+,—) one finds the CDWd phase, characterized by
07=0, (0)#0 (a=123), m#0 (12a)
or

O =\m2, (u)#0 (a=1.23), 0y#0.

(12b)

One gets to this phase from the first one through a Z, QCP. In
the continuum Eq. (8d) becomes

Simd® e o (-
Acpwa~ € N7 sinfy 775- >]M1,U~2,U«30'0
(=
- cos|Nm® oy 03 )} (13)

From the CDWd going through a U(1) QCP one reaches
the CDW phase characterized by (—,—,+) and
0 =\m2, (6)#0 (a=1.23), pu#0
(14a)
or
07'=0, (u)#0 (a=123),

oo # 0. (14b)

The order parameter in the continuum limit takes the form
) IrNE
Acpw ~ e ™ {eos[\mO Ty paps 0
ot T
—sin[ v 77@5, )]0'1 00340} - (15)

Finally, the SCs phase is dominant in the region (+,—,—)
and is characterized by
0 =\m2, (o)#0 (a=0,1,23)  (16a)
or
() 70 (a=0,1,2,3).

0 =o, (16b)

Its order parameter in the continuum limit is
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Ising sCd u()

OAF SCs

CDW
U Ising
FIG. 1. The two-dimensional projection of the phase diagram
for K.>1/2. The thick lines represent first-order phase transitions.
At K.<1/2 the SC phases are replaced by the Wigner crystal.

P G (=
Ages ~ eV sin[\ 77(95. )]0'10'20'30'0

—
+ cos[\ 7O Ty o o} (17)

This last phase can be reached both from the SCd phase
through a U(1) QCP or from the CDW phase through a 7,
critical point. All possible phase transitions are schematically
shown in Fig. 1 and can be summarized as follows: Z, QCP
between SCd and CDWd, SCs and CDW; U(1) QCP between
SCd and SCs, CDW and CDWd; and first-order transition
between SCs and CDWd, and between SCd and CDW. More
details about the phase boundaries are provided in the next
section.

The scaling dimension of both CDWs phases is dcpw
=K_./4, while the one of SC phases is dg-=1/4K,.. The ob-
tained bosonized expressions for the CDW order parameters
differ from the ones obtained in Refs. 14 and 20. In our
treatment of the order parameters we used Ising model nota-
tions. This is done because Ising model order and disorder
parameters o and u go naturally with Majorana fermions.

The density operator also contains a 4kF=2(k;+)+k;_)) 0s-
cillatory piece

p(4kp;q) =i expliVam® A, (Xaxs) + B,Exér], (18)

where ¢=0, 7 is the transverse momentum. Notice that the
quasi-long-range order occurs only at the wave vector corre-
sponding to the overall particle density. Correlations with
4k§:) ,4k§;) turn out to be exponentially suppressed. The am-
plitudes A, and B, vanish for the noninteracting system, and
for weak interactions they are of the order of U/eg. The
importance of the 4k correlations was pointed out in Refs.
19 and 20. Notice that since the Majorana bilinears always
have nonzero expectation values as soon as the spectrum is
gapful, the amplitude of the 4k, wave is finite except in the
Tomonaga-Luttinger phase and therefore critical 4ky density
fluctuations are always present. As a consequence the 4k
order parameter, having the scaling dimension d,=K,., com-
petes with the SC ones. At K.<<1/2 the scaling dimension of
Eq. (18) becomes smaller than the scaling dimension of the
SC order parameters and SC phases on the phase diagram are
replaced by the 4k CDW which we call Wigner crystal.>? It
is possible that this mechanism is responsible for charge or-
dering in the telephone number compound observed in Refs.
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7, 6, and 9. As far as the CDW phases are concerned, the 2kp
oscillations are always more relevant. However, an establish-
ment of a true long-range 2k CDW order in a three-
dimensional array of ladders will also lead to condensation
of the 4k, oscillations. At special value of 4kp=27 (the
1/4-filled band) operator (18) couples to the lattice. At this
point the charge field <I>£,+) couples to the other fields and the
corresponding sector acquires a gap. As follows from nu-
merical calculations done in Ref. 33, in two-leg ladders this
may occur in a broad range of parameters.

As far as the higher harmonics of the electron density
with the wave vectors 2nky are concerned, their scaling di-
mensions grow as n°K,./4 and they quickly become irrel-
evant. For this reason x-ray scattering from such a Wigner
crystal shows sinusoidal oscillations of the electron density.
This picture holds when the dominant interactions are
smaller than the one-dimensional bandwidth so that the con-
tinuous description can be used.

The order parameters in the model with weak interchain
tunneling (smaller than the gaps) can be obtained from the
above order parameters by the chiral particle-hole transfor-
mation

Rl,o'_) O-RZ—G" (19)

Recall that in the transformed theory / becomes a chain num-
ber and ® and O fields in the charge sector interchange.

IV. DISCRETE SYMMETRIES AND PHASE
BOUNDARIES

Apart from the continuous symmetries mentioned above,
the Hamiltonian (2) possesses a set of discrete symmetries.
These symmetries establish a one-to-one correspondence be-
tween excitation spectra of the different phases and represent
authomorphisms of the O(6) group.'® To see this we rewrite
the interaction (2¢) in terms of SO,(6) Kac-Moody currents

J,= Y™ and J,= i, 74, where g 1, represent all six Ma-
jorana fermions and 7 are generators of the O(6) symmetry

group
V=Gl Jy (20)

The discrete transformations which leave the Hamiltonian
invariant correspond to a change of sign of some chiral cur-
rents and the corresponding coupling constants, leaving the
currents of opposite chirality unchanged:

Jo—=dp Jy— g (21)

Since the transformations (21) must preserve the commuta-
tion relations of the currents, they correspond to authomor-
phisms of the corresponding group [the O(6) one in the given
case]. The above authomorphisms do not affect the spectrum,
but change the order parameters (recall that the latter ones
are nonlocal in the Majoranas) and therefore establish a du-
ality between different phases. In terms of Majorana fermi-
ons the authomorphisms correspond to a sign change of
some Majorana fermions in one chiral sector. Therefore as
far as the spectrum is concerned, one can get a complete
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picture by studying it in a given phase—for instance, in SCd.
All other phases can be obtained using the duality transfor-
mations. In the given case we have three dualities

(1) g?L,"_éz? 8a,-18css 7 "80,->"8c,ss0

(11) XZ_)_XZ’ é]j‘_)_gz’ 8e,str8c,ss ™ ~8ec,sto"8c,ss50

(111) XZ_> _Xza 8o,-28cst™ "8o->"8cst

Let us now consider in more details the boundaries be-
tween the different phases. Since the spectra of different
phases are the same, we can take SCd phase as an example.

The boundary corresponding to a 7, QCP separating SCd
phase from OAF is a surface in the coupling constant space
on which the Majorana fermion & decouples from the rest
and becomes massless. This surface is determined by the
condition

8o (XX + 8es([(EED + (&EDD=0.  (22)

The criticality is not violated by fluctuations around Eq. (22)
since they cannot generate any relevant operators.

Analogously, if (x4x%) and (&3¢ take expectation values
and

Sesl XD + gl (E2E)) =0, (23)

the Majoranas &', & decouple. This is the U(1) QCP between
SCd and SCs. The fluctuations generate a perturbation
cos[\r’m,[}@(c_)] which may become relevant if B><1/4.
This, however, corresponds to a very strong g,_. Then this
critical line may become a first-order transition.

Finally, if

8o ((GED) + g ll(ERED) + (&EDD =0,  (24)

with (&¢&7) different from zero, the Majorana triplet x“ is
decoupled from ¢ fermions. At g, . <0 both models are mas-
sive, which means that this is a first-order transition. The
fluctuations shift g, , further to the negative side. If the ef-
fective coupling is positive, however, this becomes a SU(2),
quantum critical point. The first-order line separates SC and
CDW phases with different point-group symmetries (for in-
stance, SCd and CDW).

For the analysis of the spectrum it is convenient to gen-
eralize the model (2) to N species of fermions and rewrite the
interaction (2c) as

1 Y .

V:—EX“ya,,X, X =iyl (25)

The vicinity of the symmetric line of the phase diagram is
described by a weakly anisotropic O(N) GN model

1
Vab = X,(go +08wp)>  O8apl80<1. (26)

In an analogous way, at the phase boundaries the N X N ma-
trix 7 is split into two N; X N; and N, X N, blocks y' and 7,
respectively,

1
v 0
7’0=( >’ 7’5,b=g1, 7’2,b=82, (27)

0 ¥

and the vicinity of the phase boundaries is characterized by
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Yab=Yap+ Basr  O%aplg12<1. (28)
For the case at hand we have N=6, and
N1=5, N2= 1, for Zz, (29)
N, =4, N,=2, forU(l), (30)
N;=3, N,=3, for the first-order (31)

boundaries, respectively.

V. SEMICLASSICAL ANALYSIS

In this section we provide some general arguments con-
cerning the spectra of generalized O(N) GN models
(25)—(28) based on a semiclassical analysis valid in the limit
of large N.*” A more intuitive analysis valid in the same
approximation but for even N, M is discussed in Appendix B.

A. Effect of small anisotropy on the vector particles

Let us consider first the generalization (26) of the GN
model with a total number of fermion species, N, large. If the
quadratic form (25) is negatively defined, then it is possible
to perform the Hubbard-Stratonovich transformation intro-
ducing an auxiliary field A%,

1
V= DAYy DaA” - A (32)

where A is related to X by the equation of motion

A=y, X (33)

Integrating out the fermions one finds the effective potential
for A¢,

1 N A?
VdAl= —AY(y™! Ab+—A2<1 ——1), 34
eff[ ] 2 (7 )a,b 8 nA2 ( )
which has minima at A’=#+m, given by the saddle point
equation

1
mg= 2_2 Yary IN(A/|my)). (35)
Ty

From Egs. (33) and (34) it follows that the fermion bilinears
acquire vacuum expectation values.

Besides the trivial zero-energy solution, the classical
static equation of motion for the field A in the potential (34)
also has finite-energy, kinklike solutions A (x) interpolating
between different minima (35). When quantizing the
theory3!?> one finds that it possesses fermionic excitations
with masses m,,, associated with the ordinary vacuum sector,
and kink excitations, associated with configurations A (x). In
fact, as was shown by Jakiw and Rebbi,*® fermions interact-
ing with topological kinks like in Eq. (32) possess a single
normalizable zero-energy mode ¢, in addition to the finite-
energy solutions ¢,. The crucial point is that, while finite-
energy solutions are complex, the zero-energy one is real and
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nondegenerate. The semiclassical expansion is then given
by36:37

P D) = Yy + 2 [a,0i (e Fr s He],  (36)

where ¢ is the zero-energy solution of the Dirac equation
and, assuming that A (+%) >0, it has the form

o] _ ' a
=0 0 )P déAL(d) |, (37)
0

with Q2 being the normalization factor. Since i, are Ma-
jorana fermions, the operators ¥, compose a Clifford algebra
{¥a» ¥p}= 06, Therefore these matrices realize spinor repre-
sentations of the O(N) group. It is important to stress that the
zero-mode solutions exist for any configuration A(x) which
has asymptotics of different sign (a kink). The effect of small
anisotropy on the kink masses is difficult to study in the
semiclassical limit; this problem will be discussed in Sec.
VII C using other methods. We now consider in detail the
effect on fermions.

The fermion masses are given by the saddle point equa-
tions (35). The solutions of these equations depend on the
bare couplings; for dg,,=0 one recovers the usual form for
the large-N-limit GN mass: namely, m,=M,=Ae 2%, If
dg . is nonvanishing but |8g,,|/ gy <1, the solution is

oy =g61[12 5gab1 +g62[$2 > 5gcb}. (38)

My Npza ¢ b#c

From this analysis it is clear that the vector multiplet is split,
the splitting being proportional to the splitting of the bare
coupling constants, and survives in the limit 1/N—0 pro-
vided N°'S 8g,,, # 0.

Let us now imagine that some of the eigenvalues of 7y are
zero. The limiting case is when the matrix 7 is proportional
to the projector:

1

Yab = 8€4€p>

2_
" %ea—N. (39)

Then Eq. (35) can be solved explicitly. The Hubbard-
Stratonovich transformation yields

£:£A2+ (iaﬂyﬁaﬂw—ieamﬁﬂ, (40)
2g 2

and the masses of the vector particles are given by
m, = e, (A), (41)

where
2 1 ’
(A)=Aexpl—-—+A|, A=N Eej In(1/]e;]).
8 J
The N— oo limit is defined as follows:

Ea = Nf dep(e), J dee’p(e) =1,
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A:fdep(e)e2 In(1/e|).

So N—1 components of vector e are RG invariants.

B. Kink confinement

Let us now consider the opposite limit, when two O(N,)
and O(N,) GN models (N, ,>2) are weakly coupled as in
Egs. (25) and (28). We discuss here only the evolution of the
kink excitations since the analysis for the fermions is similar
to the one carried out in the previous section.

In the absence of coupling, g,,=0, each GN model has its
own kinks, associated with two classical solutions A ,(x)
and interpolating between the minima +m; , and *m, ,, re-
spectively. The effect of the interaction is to lift the degen-
eracy between the minima, introducing a confining potential
between the kinks. As a consequence the original kink solu-
tions of the decoupled theories become unstable and disap-
pear from the spectrum.

To see this let us consider, for instance, the effect of the
interaction on a kink-antikink configuration, where both par-
ticles belong to the same GN theory, while the other theory is
at the minimum—for example, A,(x)=m,. The kink-antikink
configuration is such that A(x) takes the value —m; from
minus spatial infinity to a point x;(¢f) where it switches to
+m; it keeps this value until x,(¢) where it switches back to
—m;. In the presence of the perturbation, the kink-antikink
state acquires an additional energy

U(x1,X3) = 68 plx1 = Xo|mymy. (42)

This results in a confining potential for the two O(N,;) kinks
(this universal form of the confining potential is valid only
when the confining radius is much greater than the size of the
lightest kink). For N;>4 this potential exists on top of the
attractive potential already present in the O(N,) GN model.
Therefore the lowest bound states have the same symmetry
as in the O(N,) model; i.e., they transform according to the
vector representation of the group. Of course, if the confine-
ment radius is much greater than the inverse kink’s mass, the
confinement potential contains many other bound states (we
refer the reader to Sec. VII D for a more detailed analysis).
These states do not exist in the O(N;+N,) GN model. Their
masses are grouped around the mass of the O(N;) vector
particle m,; or, if Ny <4, around 2M |, where M is the kink’s
mass in the O(N;) GN model. Repeating the same argument
for a kink-antikink configuration belonging to the O(N,) GM
model one obtains the states grouped around the mass of the
O(N,) vector particle n,,.

The same confining phenomenon happens also between
two kinks that belong to different GN models; in this case
the lowest multiplet of the confined states transforms accord-
ing to the spinor representation of O(N,+N,). This follows
from the fact that such states correspond to a simultaneous
change of sign of A,(x) and A,(x); therefore they are kinks
of the O(N,+N,) GN model. Since the only interaction be-
tween kinks of the different models is proportional to &g,
the masses of these particles group around the sum of the
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kinks masses M;+M,. The details of the structure of the
excitations induced by the confining potential is discussed in
Sec. VII. One should keep in mind that some multiple kink
representations may survive (see Appendix B).

C. Coupling massless and massive GN models

The above analysis fails if the matrix y in Eq. (25) has
negative eigenvalues. If all eigenvalues are negative, the
analysis of the RG equations shows that all interactions scale
to zero, leaving the theory massless. The situation when the
form has no definite sign (at least, this is the criterion in the
large-N limit) corresponds to the area of the emergent attrac-
tion. The large-N analysis is still applicable here, but in a
modified form. Let us consider the O(N;) X O(N,) model
with N;/N, finite in a situation such that the interaction
among the first Ny particles is attractive and the interaction
among the other particles is repulsive. We take a simple form
of the interaction to keep the analysis more clear. Then we
can do the Hubbard-Stratonovich transformation in the at-
tractive sector, so that after some algebraic manipulations we
obtain (g,,g_>0)

- Igv-:(igaga)z + 2%(1511511)(1)@)(/7) + ]%(1)_(/;)(/7)2

N —
— A%+ iA(gafa - Q)?bXb)
2g. 8+
g
X .
+M‘(— +g_)(1xbxb)2. (43)
8+
Replacing A with a constant My~ m,/ g, where m, is a mass
of & fermions, we obtain the following Lagrangian for y
fermions:

i
L= EXa‘)//.Lﬁ,u.Xa + iMO)?aXa - geff()?aXa)zv (44)
where g,;=N| (¢x/g,+g_). Summing the diagrams with a
maximal number of loops, we obtain the following expres-
sion for the mass ratio:
-1
L P ey T A (45)
mg 8+ Ny
Thus also in this case the vector multiplet remains split.
Let us now consider kinks. When one of the GN models is
massless the potential (42) can no longer be used. Like
above, we can do the Hubbard-Stratonovich transformation
in the massive sector [cf. Eq. (43)] and study the problem of
the two types of fermions in a background bosonic field. For
both fermionic modes the solution is again described by Eqgs.
(36) and (37). As was discussed in Sec. V A, the entire kink
is a bound state of the scalar field A(x) and the fermions. The
fermionic zero modes now realize spinor representations of
the O(N,+N,) group and then in principle can be seen as
bound states of massive kinks of the O(N;) model and mass-
less one of the O(N,).
The summary of these semiclassical arguments is the fol-
lowing. Weak interactions between GN models generate (i)
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degenerate kink multiplets transforming according to spinor
representations of the O(N;+N,) groups and (ii) vector par-
ticles with different masses transforming according to the
vector representations of the O(N;) and O(N,) groups. On
top of it there may be many other multiplets with masses
lying between (M;+M,), m,;, m,,, and 2(M,+M,). These
multiplets cross into the continuum and become progres-
sively unstable once the coupling between two models in-
creases.

VI. INTEGRABLE POINTS

At some specific points in the parameter space the Hamil-
tonian (2) is integrable. One can identify the following inte-
grable models, which describe either the most symmetric
points or the phase boundaries.

O(6) GN model. As already noticed, if all coupling con-
stants are equal, Eq. (2) has an extended O(6) symmetry and
becomes the O(6)-symmetric GN model (4). The O(N) GN
model is integrable for any N.**383% For even N the scatter-
ing theory is relatively simple,*® while for N odd there are
significant complications (see Ref. 41). For g<0 and N>2
the spectrum is massive and consists of kinks and antikinks,
which transform according to the irreducible spinor represen-
tations of the O(N) group. For N even kinks and antikinks
correspond to different representations; for N odd there is
just one representation. The two-loop RG gives the following
expression for the mass:

M = Ag" ™2 exp[-2m/(N - 2)g]. (46)

For N>4, there are also fermion particles and their bound
states. These fermions correspond to the original Majorana
fermions and transform according to the vector representa-
tion of the group. The masses of the fermions and their
bound states are given by

Ta ) . <N—
, a=1,...,int
N-2

For N even, the total number of kinks is 2/? [reflecting the
fact that there are two 2V>~!-dimensional irreducible spinor
representations of the algebra SO(N) (Ref. 37)]. For N odd,
the total number of kinks is 2¥*12 although there are major
subtleties associated with multiparticle states.*! The number
of fermions is always N. In particular, for N=6 the spectrum
consists of two spinor multiplets of mass M and one sixfold-
degenerate vector multiplet with mass 2M. No fermion
bound states are present. An intuitive picture of the two types
of excitations is provided in Appendix B for N even. It is also
good to remember that the spinor representations of O(6) are
isomorphic to fundamental representations of the SU(4)
group; their quantum numbers correspond to spin o==+1/2
and transverse momentum p=0, 7 (or chain index for theo-
ries with weak interchain tunneling).

O(3) X[U(1) X Z,] model. For g,_=g.,=0 two groups of
Majoranas decouple from each other; one is described by the
O(3) GN model, the other one by the anisotropic O(3) GN
[U(1) X Z, symmetric]. Both models are integrable (see Refs.
45 and 46), and the excitation spectrum contains only Kinks.

M,=2M sin( 3). (47)
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(3+1) model. At the U(1) QCP, described earlier in Sec.
III, two Majorana fermions &, decouple and remain mass-
less. The remaining massive theory with the O(3) X Z, sym-
metry is related to an integrable model solved by Tsvelik*?
and Andrei and Jerez.*> (Some correlation functions for this
model were calculated in Ref. 44.) The spectrum of this in-
tegrable model contains an SU(2) kink doublet with mass M
and a light Majorana fermion of mass m,~ M(X—\"). There
are no stable vector particles except for this singlet fermion,
which is, however, not a bound state of kinks (see the dis-
cussion at the end of the next paragraph). The S-matrix can
be found in Appendix C.

(5+1) model. At the Ising QCP one Majorana decouples.
For g,.=g,-=8. the massive model is O(5) symmetric
and integrable. Outside of the QCP, provided the O(5) sym-
metry is maintained (g.=g,_), it is possible to construct a
factorized scattering (integrable) theory with the same sym-
metry, O(5) X Z,, and UV central charge. The exact solution
is described in Appendix C; the spectrum consists of two
vector particles (quintet and singlet of Majorana fermions)
with different masses my and V3M and a quartet of kinks
= antikinks with mass M realizing the spinor representation
of the O(5) group. This theory certainly deserves further
analysis. There are two serious qualitative differences be-
tween the scattering theories for the (5+1) model and the
O(6) GN model [similar differences are found between the
(3—1) model above and the O(4)]. First, as follows from
group theory, in the former case the kinks and antikinks are
the same particles and in the latter case they belong to dif-
ferent representations. Second, in the (5+1) theory the sin-
glet fermion does not appear as a bound state of kinks as all
vector particles do in the O(6) GN model. As a consequence
the singlet mass is not related to the kink’s mass. One would
imagine, however, that with an increase of the coupling be-
tween the Majorana singlet and the other ones the model
approaches the O(6) GN model. At present we do not have a
complete picture of reconciliation of these two models. The
most likely solution to this puzzle is that the two theories are
equivalent only in the region where the singlet mass is small.

VII. PERTURBING AROUND INTEGRABLE POINTS

In this section we discuss how to calculate the spectrum
using perturbation theory around integrable points. Since in-
tegrable points describe the phase boundaries and highly
symmetric points, we will be able to obtain some additional
information about the excitations of the model in these re-
gions.

A. Form-factor perturbation theory

Let us first recall some essential features of integrable
models that we need in order to construct perturbation
theory. Massive integrable models are characterized by a
simplified on-shell dynamics which is encoded into a set of
elastic and factorized scattering amplitudes of their massive
particles. A convenient formalism for the description of a
dilute gas of particles with factorized scattering can be con-
structed in terms of the creation and annihilation operators
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AZ(G) and A,(6), which satisfy the Zamolodchikov-Faddeev
(ZF) algebra. (For an introduction to these concepts see, for
instance, Refs. 30 and 38 or the introductory chapters of
Smirnov’s book in Ref. 47.) Here the rapidity 6 parametrizes
the relativistic dispersion relation

e, (0)=M,cosh 6, p,(6)=M,sinh 6 (48)

and a is an isotopic index. The ZF operators are the logical
extension of the algebra of free fermions or bosons to the
case of interacting particles with factorizable scattering,
where the interaction is completely characterized by the two-
particle S-matrix Sa’b(ﬁij)}s As usual, multiparticle states are
obtained acting with strings of creating operators on the
vacuum:

|01’ e 0n>u1,...,an = Azl(al) T Aln(an)|0> (49)

The single-particle states can be thought as generated by an
operator ¢,(x) such that (0|¢,|0),# 0. For the O(N) GN
model ZF operators include fermion, Af[_ (and their bound
states), and kink, Aki’ operators. Though for the O(N) GN
model the S-matrix is not diagonal, this will not be essential
for what follows, so we prefer to describe the methods for
diagonal S-matrices since the notations are less cumbersome.

In what follows we will need a definition of nonlocality.
Recall that two operators O and O, are said to be mutually
nonlocal if the Euclidean correlator {- - -O,(x)D,(0)- - -) is not
a single-valued function of x. In particular, if we introduce
the complex variables z=x'+ix?> and z=x'-ix?, and under
analytic continuation z— ze*™, 7—Zze 2™, the correlator ac-
quires only a phase 277y, ,, the two operators are said to be
semilocal. The nonlocal operators that we will consider in
the following are of this type. The great usefulness of this
definition is that the index 7, , can be calculated in the ul-
traviolet, where all correlation functions have a simple
power-law form. As we will see, the effect of a perturbation
on the spectrum of a theory will crucially depend on the
locality properties of the perturbing operator.

Let us imagine now that we perturb an integrable theory
H;,; with a nonintegrable perturbation

H=Hint_g J' dx‘I’(x), (50)

where W(x) is a scalar field. The variation of the spectrum of
the theory can be studied perturbatively in g, in the same
spirit as standard quantum mechanics (QM) perturbation
theory, taking advantage of the fact that in integrable models
matrix elements of perturbing operators

v / »
Fy . byay.a (O s O30,

m

. ’Hn)
OVO)61, . O 0s (51

w91

/
=bl,.,.,bm<01’ R

or form factors (FF’s), can be computed exactly.*’ The re-
lated perturbative approach is called form-factor perturbation
theory (FFPT).28

According to Ref. 28, the first-order term in the expansion
of the mass variation of the particle A, is given by
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om? = 2g (0W(0)|6),=2gC'Fy, (im),  (52)
where the two-particle FF F ;I'],az( 0,—0,)
=(0[W(0)[6;, 6)q, o, depends on the difference of the rapidi-
ties only if W is a scalar operator. In Eq. (52) we used the
crossing property valid for Lorentz scalars,

F;’III""’b ...,an(ei""’ar/n;al’"'?an)

m>é 1
m
bibl -V Y o
=[Ict IFyt by g, O o OB 6,
j=1 "

(53)

where 6= 6+im and C is the charge conjugation matrix sat-
isfying two requirements: C'=C and C*>=I. For Majorana
fermions C is trivial because they are neutral.

Since this is a strong-coupling (IR) analysis, if g in Eq.
(50) scales under RG, it has to be replaced in Eq. (52) by its
renormalized value at energy of the order of the largest mass
in the theory:

g— g =g(m). (54)

The definition of the coupling constant at energy m is some-
what ambiguous. The problem is that RG equations are uni-
versal only in the first loop and beyond this they depend on
the regularization scheme. By introducing g/ we stretch
these equations to their limit. Therefore we will not be able
to establish a rigorous relationship between the IR and UV
parameters.

In analogy with QM degenerate perturbation theory, the
perturbed masses for degenerate multiplets are obtained by
diagonalizing the matrix {Mm,n}z{Fn\P’m(iw)}, where the indi-
ces n and m belong to the degenerate multiplet. If the sym-
metry of the perturbing operator is less than the symmetry of
the multiplet, the perturbation will split it.

Assuming that the IR coupling constants in Eq. (52) are
smooth functions of the bare ones and F¥(im);,, is finite, the
spectrum evolves adiabatically. However, there are effects
which do not appear in the first order. The perturbation may
also generate an effective attraction between the particles and
lead to an enlargement of the particle content of the theory
through the formation of bound states below the two-particle
threshold. For small g%/ the appearance of bound states can
be studied solving the eigenvalue equation for the two-
particle wave function. This will be done in some detail later
in the text [cf. Eq. (64)].

A more dramatic change in the particle content of the
theory happens when W is nonlocal with respect to the op-
erator ¢,, which generates the particle a.?® In this case, as
shown below, the two-particle FF F;Ifa(ﬁ) has a pole for 6
=i7r and then the mass variation (52) diverges. This infinite
mass variation implies that the original particle a (it will be
called a “quark” in analogy with high-energy physics) is con-
fined and disappears from the spectrum of the perturbed
theory. The resulting spectrum consists of quark bound
states—‘mesons.” Their masses may be higher than the two-
quark threshold. The analysis of the meson spectrum will be
done in Sec. VII D.
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The way the nonlocality properties of an operator affect
its FF’s can be seen as follows. From the general theory of
FF’s it is known that the n-particle FF has kinematical poles,
associated with annihilation processes, whenever the rapidi-
ties of a particle and antiparticle differ by i7. The residue is
given by*’

. W .
- 1Res9/:6FE,a,al’_“’an(0’ +17, 6,6y, ....6,)

- (1 _ e27Ti'ya.‘PH Sa’ai(ﬁ— ai))Fgfl,...,an(al’ ceey 0,1),

i=1
(55)

where v, y is the semilocality index between ¢, and V. It is
easy to see that for two particles (n=0) the right-hand side
(RHS) vanishes if 7, y is an integer. Then a two-particle FF
has a pole at #=im only if the operator is nonlocal. As a
consequence of Eq. (55) the mass variation (52) induced by a
nonlocal operator is infinite. From Eq. (55) it follows that for
(6~¢)

Fr

0T = 0+im 0~ )

8aa75bb7 5ab!5bal
L0 g (26 |,
(6-6) " (0+6)> «h(26')

== aa,h<q,>

(56)

with a,,=(1-e*™a¥)(1-e?™¥). This will be needed in
the following.

The factorized scattering approach can also be con-
structed for massless integrable models,*® despite the subtle-
ties in defining a scattering theory between massless particles
in 1+1 dimensions. In this case the excitations are right- and
left-moving particles Agz(6), A;(6) with dispersion relation
er(0)=pr(0)=(M/2)e? and e;(6)=—p,(0)=(M/2)e ?, where
M here is just a scale (for simplicity we consider only par-
ticles with no internal indices; this is the only situation that
we will encounter in the following). Also the FF’s can be
defined and computed in analogy with the massive case,*
and FFPT can be used to study the mass generation, which,
to first order, will be given by’

om = gF;gL(iw— ), (57)
where FXL(ﬁ) is the right-left FF:
Fi1(012) = O (0)|AR(6)A[(6)). (58)

Also in this case confinement is related to the nonlocality
properties of the perturbing operator.>®

B. Nonlocality properties of the perturbing operators

In order to apply the above methods to deformations of
GN models like in Egs. (25)—(28), let us study the locality
properties of the perturbing operators with respect to the GN
particles.

Consider first a massive O(N) GN model (N>2). Gener-
ally speaking an operator of the form W=}/ is local with
respect to the vector particles A fio but not with respect to the
kinks Ay This can be easily seen even without explicitly
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introducing kink creating operators. In fact the kink is an
elementary excitation of the GN model that interpolates be-
tween positive and negative minima of /%y and therefore
this operator changes sign across a kink configuration. This
implies that the nonlocality index between the kink creating
operator and W, is eZ™Y=—_1, but at the same time, an opera-
tor that is a product of two fermionic bilinears belonging to
the same GN model, W, = /sy ), is local also with re-
spect to the kinks. As a consequence, Eq. (52) can be safely
used to evaluate the first-order effect of deforming the O(N)
GN according to Eq. (26), since the perturbation is local with
respect to both kinks and fermions. This implies that the
spectrum will evolve adiabatically; the only important effect
is to split the degeneracy between some states as discussed in
the next section.

On the other hand, if one takes two different massive GN
models—say, Hogylx] and Hoppl€] (N,M>2)—and
couples them like in Eq. (28), the perturbation W,
= X4x1E2E is nonlocal with respect to the kinks of the two
GN models, thus leading to their confinement. This is in
agreement with the semiclassical analysis of Sec. V.

C. First-order effects: Perturbations around the
O(6)-symmetric point

We first apply FFPT to study the spectrum of vector par-
ticles around the O(6)-symmetric point. We consider small
deviations of coupling constants in Egs. (2) from the point
where all of them are equal, g,=g+3dg, (a=[p,—],
[c,ss],[o,=].[c,st],[o,+]). The perturbation is local and
then Eq. (52) can be safely applied, with g, replaced by
g4(m). Tt should be emphasized that the coupling constants g,
carry information about physical quantities only when they
are small. Beyond the first-loop approximation RG equations
are not universal depending on the regularization scheme.
We assume that the interaction between physical particles
does not change substantially once g,~1 and therefore
stretching the RG equations to the limit of their validity,
In(e/m)~ 1, we can estimate the anisotropy of the coupling
constants in the strong-coupling regime. This assumption is
not justified but its consistency with know results will be
checked.

For 8g,/g<<1 we can linearize the RG equations (5). The
details of the calculations with all notations are given in
Appendix D. We find

8g4(e) =AolIn(e/m)] 2 + (T, 1 C_1 o + TyaCoipp)
X[In(e/m)]"* + (T, 3C1jp4 + T0uCipp2)
X[In(e/m)]~"2, (59)

where C, .~ 6,8(0)gy? (9, stands for a particular linear com-
bination of couplings) are RG invariants, which can be ob-
tained explicitly using the results of Appendix D, and A,
~208g,(0)/ g%. At scales of the order of the mass we can set
In(e/m)=1 in Eq. (59) and substitute the result into Eq.
(52). By dimensionality considerations the matrix element of
the current-current product is const X m?. We remark that this
normalization yields the correct estimate of the mass change
at the uniform variation of the coupling constants. Indeed, in
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this case, according to Eq. (59), the change of the effective
coupling at energy m is dgo/g; and Eq. (52) gives om
~ 88/ g%m. On the other hand, we obtain the same estimate
from the known dependence of the mass on the bare cou-

pling:

) am? 2mPar
om” = 5530 =- ?5&). (60)
0 0

It is interesting to estimate the mass splittings for the case
of small g,. Then the largest RG invariants that produce a
splitting of the multiplet are C,,, (the most relevant term,
proportional to Ay, is the same for any fermion). Taking only
them into account we obtain the following mass corrections:
sm'™

C

-~ [5gp,—(m) + 5gc,xs(m) + 35gc,xt(m)] -~ C1/2,+ + C1/2,—7

(s)
ms -~ [3 5g(r,—(m) + 25gc,xs(m)] -~ C1/2,+ - 2Cl/2,—»

(tr)
ms ~ [25g0,+(m) + 5gu’,—(m) + 25gc,sz(m)] ~=Cipny-

(61)

One can conclude from Eq. (61) that for any finite RG in-
variants the O(6) vector multiplet is split. Nevertheless, the
splitting is very small in the regime of validity of this analy-
sis.

Let us now apply Eq. (52) to study the evolution of the
kink masses. Since they are degenerate, we need to diago-
nalize the matrix with elements k{6, a0, . Where
k; ; indicate kinks of the degenerate multiplet. The needed FF
has the form>!

Fz;ﬁcj(eij) = (Ol 0 0. 0j>ki,kj =(1- 5a,h)cki,kf(9),
(62)

where C is the charge conjugation matrix and the function
f(6) is finite at O=isr. From this, using Eq. (53), one gets
that, for a # b,

k,.< 2 ‘ﬂz'ﬁzﬁe‘ﬁﬂ 0j>kj = 5kl-,kjf( 0), (63)

and then the matrix is diagonal. Using now Eq. (52) one
finds that the mass variation is the same for any kink and
then the multiplet is not split.

D. Beyond the first order

Let us now turn to the problem of kink confinement in-
duced by a nonlocal operator. This analysis in important to
study the spectrum close to the first-order transition line. In
this case the FF in Eq. (52) is infinite and this formula cannot
applied. Nevertheless, for g/ sufficiently small the lower
part of the meson spectrum can be studied within the two-
quarks approximation described in Ref. 52 in the context of
the Ising model. It is convenient to parametrize the ZF op-
erators directly in terms of momentum; the relationship be-
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tween the two parametrizations can be found in Eq. (48). The
two-particle wave function can be written in the center-of-
mass frame as

W)= f A, ,(P)AL(P)AS(= p)[0). (64)

In general a and b can be different particles with masses M,,
and M}, but both nonlocal with respect to V. Note that the
wave function is not written in an explicit relativistic invari-
ant form although the states have a relativistic normalization.
The eigenvalue problem gives the equation

[E-e,(p) - eb(p)](;/;a,b(p)‘sa,a’ Oppr + le,a(P) Oa ' O )

- gffff dp’a,b<p,—p|\1f(0)|pl,_p,>ar’brlZa’,b’(p,)7

(65)

where g9/ is the renormalized coupling constant at energy
~(M_,+M,). For energies close to the threshold (small mo-
mentum) one can approximate E—e,(p)—e,(p)=e-p*/2u,
with e=E— (M ,+M,) and u=M M,/ (M +M,). If the opera-
tor is nonlocal, it follows from Eq. (55) that the right-hand
side is dominated by the double pole in the four-particle FF.
It will be convenient for us to distinguish between two cases.
One is the confinement of identical particles, and the other is
when confining particles are not identical having, in general,
different masses. These two cases are qualitatively similar,
but there are differences in details.

We consider first the confinement of two kinks that belong
to different GN models induced by the operator Wy
= XaXoEngr. Let us call a; kinks that belong to Hoylx] and
b; kinks that belong to Hy([£]. Given the structure of the
potential, the FF factorizes as

a ,b1<P1’P2|‘1’3 |P{’Pé>a2,h2
= o PUOGXDIP s (Pl (EREDIP),,- (66)

According to Egs. (55) and (56) for p~p’' we can approxi-
mate

, 2iM,,
o Pl OGrXDIP D0, =~ XeXLY Oy ayr (67
(p1-p1)

where we have used the fact that e?™¥¥;=—1. Clearly the
same approximation is valid for b]<p2|(§R§L)|pé>b2. From this
we get the eigenvalue equation

~ “ dp’ ~ ,
(_ €+ p2/2,u) wa,b(p) = )\a,blpf —,2 lpa,b(p )a
= (P=p')
(68)
where P indicates the principal part and

N = 48 XX X EREDIM M. (69)

After a Fourier transform to configuration space Eq. (68)
takes the form
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1 d?\-
(— €+ Nyl X] - ﬂ@) Yo p(X) =0, (70)
where
~ dp . .~
l//a,b(X) = f 2_pelpxlzba,b(p) . (71)
T

In general this equation must be supplemented by symmetry
conditions.

The eigenvalue equation (71) describes a particle confined
in a linear potential. The solution is well known.>> In the
region X>0 one can introduce the new variable ¢
=2\, 1) (X —€/N,;) so as to yield

(9
— =¥ =0 72
TR 1)
at {>-2u/ 7\2,};)” 3¢, from which it follows that the solution
is the Airy function

D () = Ai(Q). (73)

The eigenstates are determined either by the zeros of the
derivative of the Airy function Ai’({) at X=0 (symmetric
wave functions) or by the zeros of the function itself (anti-
symmetric wave functions). Calling them {; we have

E~(M,+M,)= ()\5,1/1“)”351'

[Ai"(=£) =0 or Ai(- £) =0]. (74)

Clearly, if the particles a, b are identical, the above analysis
requires minor modifications as we will see below.

In agreement with the semiclassical arguments of Sec. IV
we see that the kinks of the O(N;) and O(N,) models disap-
pear from the spectrum and are replaced by the generations
of mesons which energies belong to the original two-particle
continuum starting from M|+ M,. Stable meson states must
have spectral gaps smaller than E;<2E,~2(M,+M,). The
above analysis is quantitatively valid if the number of meson
generations is large. For the simplified model O(3) X O(3) it
is easy to express this number in terms of the RG invariants.
Setting A; ,=const X M, , we find from Egs. (89) below that
at g, ~—1 the effective coupling constant is

g ~[2|Cypl + CLip]”? (75)
provided |C,/,|+C_,/,> 1. Then using Eq. (69) we obtain

2/3
MM
aateel 2} . (76)

2 3 eff
i M, +M
(gab ) ( 1 2) |:g M1 M2

Since £;~i*? at i>1, this sets the limit for the number of

meson generations as

i ~ 8y NM /My + \MoM,)). (77)

Thus it appears that the limit of weak confinement can be
achieved by either taking small g, or considering quarks
with vastly different masses. These two routes, however, lead
to nonequivalent limits. The limit M;/M,—0 is different
from the limit g,;— 0 and cannot be studied using the above
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FIG. 2. A qualitative picture of the spectrum of the O(N)
X O(M) GN model.

formulas. The reason is that when the confinement radius
(oM 1 Mop)™"? becomes of the order of the size of the
lightest kink M7', one can no longer use Eq. (67). Thus the
above analysis is valid only at

My > g M. (78)

At smaller mass ratios one can either use more accurate ex-
pressions for the FF’s or resort to the semiclassical analysis
of Sec. V B. As we know from this analysis, confinement of
a light particle on a heavy kink produces a zero-energy
bound state and the scattering continuum separated from the
bound state by a gap of the order of g,;M,. This is of the
order of the energy of the lowest bound state (gih/ w3 at
My~ goyM>.

Let us repeat the above analysis for confinement of iden-
tical particles (M,=M,=M) induced, for instance, by an op-
erator V. As we discussed in Sec. 1V, this leads to the for-
mation of vector particles. Within the integral of Eq. (65), we
can approximate

w\P= Y O)p" .= p") i )

~ —M2<\If> 511,0 5/7,})2 _ 5[1,!9 5b,az:| . (79)
(p-p)" (p+p)
With a few manipulations Eq. (65) can be put into the form
(79) with N, ,=4g’M*(¥). In this case the particles are in-
distinguishable, so only antisymmetric Airy functions are ac-
ceptable. The summary of the above results is shown sche-
matically in Fig. 2.

It should also be noticed that if the unperturbed theory,
like in the case of the O(N) GN model, possesses bound
states of mass M, between particles a and b (associated
with poles of the S-matrix on the physical strip), the eigen-
value equation (65) has to be modified taking into account
this residual attraction,

[E—e(0) —ex(0)] — [E—e (0) —ey(6) + AEa,h]v (80)

where AE, ;=M +M,-M, ;. As a consequence, Eq. (70) is
modified as
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1 d°
(— “~spap T —boé(X))%,ﬁ(X) =0. (81
The & function is chosen in such a way that vector particles
appear also at A=0. For the O(3) case, by=0.

The formation of bound states induced by a local pertur-
bation can be discussed in similar terms. For small g%/ the
two-particle wave function can be taken in the form (64)
from which the eigenvalue equation (65) follows. The crucial
difference with respect to the case discussed above is that,
since the, operator is local, the four-particle FF’s in Eq. (65)
only have first-order, poles giving rise to a nonsingular po-
tential. Bound states form if the perturbation is such that
there is a solution of Eq. (65) with energies lower than M,
+M,. This is what is found, for instance, for the O(4) GN
perturbed by the 7, anisotropy, as discussed below.

E. Coupling of massive and massless modes

The situation close to the U(1) and 7, critical points, de-
scribed by Eq. (28) with N,=1,2, is more tricky since some
gapless modes are present. This problem was already ad-
dressed in Sec. V C and FFPT cannot add much to that
analysis. Nevertheless, we find it instructive to briefly dis-
cuss the problem also in this framework. Let us look for
simplicity at Eq. (28) with N;=3, N,=1 and uniform defor-
mation 9g,,=9g. For dg=0 the spectrum consists of a mass-
less Majorana mode and massive O(3) kinks. According to
Egs. (52) and (57) the mass variation is given by

S = 2. Se (vl G )
3 g<XRXL>FR’L (17T 00)7 (8 )
om?, = 28¢(EE) L OXax110),s (83)

where the indices 3 and « indicate massless Majorana fermi-
ons and massive O(3) GN kinks, respectively. The VEV
(Xzxy) is different from zero and F;ig)(ﬁ) is constant for
any value of 6; then from Eq. (82) it follows that the pertur-
bation induces a mass linear in dg—i.e., as soon as the cou-
pling is turned on a massive singlet appears in the spectrum.

One needs to be careful in the analysis of the second
equation. In fact, (§Z§z) vanishes in the unperturbed theory,
implying that the mass variation of the kinks vanishes in the
first order. Nevertheless, <§§§i> ~ &ms and then Eq. (83) can
still be applied, just keeping in mind that the effect on the
kinks mass is of higher order in Jdg. Since the operator
(X%x7) is nonlocal with respect to the kinks, the RHS of Eq.
(83) diverges and kinks confine. One should notice that be-
sides the one considered in Eq. (83), there are other second-
order contributions to the mass variation of the kinks; nev-
ertheless, they will not be able to compensate the divergence
and will not modify qualitatively the kink confinement. It
can be shown that the confined states will always be unstable
and then, in agreement with the semiclassical analysis, the
only stable particles will be singlets and kinks with quantum
numbers of the O(N+1) model.

These results can also be checked using the opposite limit
8¢ ~ g1=g, and treating the model (28) as a perturbation of
the O(4) GN (remember that for N=4 the GN model has only
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FIG. 3. A qualitative picture of the spectrum of the model inter-
polating between the O(N) X Z, and O(N+1) GN models.

kinks in the spectrum). This perturbation is local with respect
to the O(4) kinks and then produces an adiabatic change of
their masses. At the same time we know that the O(4) model
also contain (unstable) vector particles above the two-kink
threshold. As described in the previous section we can use
FFPT to check whether the perturbation induces further at-
traction that stabilizes them. Since the vector particles are
bound states of kinks, for small deviations from the O(4)
point we can write their wave function like Eq. (64), with a
and b being O(4) kinks, and study the stability of the bound
state by solving the eigenvalue equation (65). Even without
entering into the details of the computation one can easily
see that the form of the potential naturally split singlet and
triplet bound states and in particular the interaction between
kinks in the singlet state is attracting while the one between
kinks in the triplet state repulsive. Then it turns out that the
interaction stabilizes the singlet that will appear in the spec-
trum. This implies that the singlet state will be stable for any
value of 8g < g5 and will cross the threshold at the O(4) point
(see Fig. 3). We can repeat the same procedure for N;=5; the
main difference is that the unperturbed theory has fermionic
states in the spectrum.

VIII. SPECTRUM AROUND THE PHASE BOUNDARIES

The analysis of the previous sections allows us to under-
stand qualitatively, but rigorously, the spectrum of the model
(2) close to the phase boundaries, where it can be seen as a
perturbation of some integrable models.

A. From SCd to CDWd (SCs to CDW) phases
through 7, QCP

At the 7, QCP the Hamiltonian (2) is described by a de-
formed O(5) GN model decoupled from the critical Ising
model. The effect of the anisotropy is to lift the degeneracy
between the vector particles. Away from the 7, QCP the
coupling is

— 2(EEN Lo (XaXD) + el (ErED + (EEDT}. (84)

It is convenient to study the spectrum for g,,=g,_ =g,
=g and g, =g, =gy When the O(5) symmetry is exact. The
RG equations
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§=-38 -8y Sx=—4exe (85)
have the following RG invariant: C=(g>-g3)/gy". To under-
stand the spectrum we can use results from the previous sec-
tions as well as the exact solution of the (5+1) model pre-
sented in Appendix C. The spectrum consisted of 5+1 vector
particle multiplets and a quartet of kinks. The symmetry of
the spectrum remains O(5) X 7, which corresponds to the
splitting of the vector multiplet as 5+ 1. Following the argu-
ments of Sec. VII C we find that at large C> 1 the mass ratio
of the different vector particles is ~gy(m)~C™3. At C<1
the vector multiplet approaches the O(6) symmetry with the
splitting ~C.

Then, in general, the SCd phase has kink particles with
the O(6) quantum numbers and vector multiplet containing a
triplet, doublet, and a singlet with different masses. All
masses have the same sign. By going through 7, QCP the
singlet mass changes sign and one finds the orbital antiferro-
magnet (CDWd) phase.

B. From one SC (CDW) phase to another one through
u@) QCp

At the U(1) transition two Majorana fermions are mass-
less and the rest is a deformed O(3) GN model equivalent,
for small deformations, to the 3+1 model discussed in Sec.
VI. Thus the spectrum consists of the Gaussian massless
mode, the SU(2) kink doublet, and a singlet particle of a
lower mass. The ®£_) field acquires a mass gap as soon as the
coupling between the two sectors is on. The effective field
theory describing the lowest excitations is the sine-Gordon
(SG) one:

1
S= E[a,L@(;)]Z +v cos[ O], (86)

with v =i([g, o (XgX]) + gesséil]) and Br=dm(1—g, _/2m)7".
The SG kinks with period 27/ constitute a low-lying dou-
blet. Thus the vector multiplet is reduced to the U(1) doublet
and the Majorana singlet. For 8?>>4m (repulsive interac-
tions) there are no sine-Gordon bound states, but if ,82<47T,
are also additional bound states (breathers). These particles
are absent in the O(6) GN model. As far as the kinks are
concerned, they acquire both spin and U(1) quantum num-
bers via creation of bound states between half (anti)kinks of
®" with period 7/ and the SU(2) kinks.

C. Around the first-order line

At the first-order transition the spectrum consists of kinks
with different masses M; and M, belonging to the isotropic
and anisotropic [U(1) X Z,] O(3) GN models, respectively.
As soon as the interaction is turned on all kinks confine and
one has fermions close to the two kink thresholds 2M | and
2M, and new kinks close to the M;+M, threshold. As we
discussed earlier in Sec. VII A, the region of weak confine-
ment, where one may observe several generations of kinks, is
likely to be narrow.
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FIG. 4. RG flows (88) for C,,,=0. The thick line represents the
flow with C_1/2=0.

IX. FURTHER FROM THE BOUNDARIES: O(3) X O(3)
MODEL AS A SIMPLIFIED CASE

With the results of the previous sections at hand we will
return to the case N=6 and consider the model (2) with a
more symmetric form of the interaction

V=g, 06x)? — 28x(XeXD) (E&)) — g (&kED?, (87)

as it was done in Refs. 10, 54, and 55. Though the subse-
quent RG analysis has a significant overlap with the one
conducted in these papers, we include it here for complete-
ness. The RG equations have the following form:

$.=81+3g% &= +3g%. $x=28x(g.+g).
(88)

In this case we have managed to find the RG invariants ex-
plicitly:

2
8+8-—8 8+ — 8-

Cp=""=", Cip=""F—=. (89)
Vlgxl 2\ gx]

For g,=g+ dg, these invariants correspond to the ones found
in Sec. VII C. (see Figs. 4 and 5). If the O(3) X O(3) model
is replaced by O(N) X O(N), the power 1/2 in Egs. (89) is
replaced by (N—2)/(N—1) This means that in the large-N
limit the ratios of coupling constants become RG invariants
which coincides with conclusions of Sec. V. We also observe
that a sign of the quadratic form 7y is RG invariant which
gives support to the 1/N analysis of Sec. V. Using these RG
invariants one can integrate Eqs. (88). It should be kept in
mind, however, that Egs. (88) together with the explicit form
(89) are valid only at |g,/]<1. As soon as one of the cou-
plings becomes ~1 the scaling of this coupling should be
stopped and the problem reconsidered.
The solution of this equation is given by
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FIG. 5. RG flows (88) for C;,,>0. The thick line represents the
flow with C_l/2=O.

gx(1) d

8

e[ )
ex(0) gNC_1pg "+ Cipg+ g

which can be expressed in terms of elliptic functions of com-
plex modulus and argument.

The phase diagram has three areas corresponding to dif-
ferent properties of the interaction tensor.

(i) The signature of the interaction tensor is positive:
Cy»>0 and C_;/,>0. All couplings scale to zero.

(ii) The signature is negative (C;,,<0) and C_;,,>0. The
system scales to strong coupling. The energy scale on which
the spectral gaps are formed is given by

M~ A [ f i dg
~Aexp|-m / .
lex(©)] 8N C_1128" + Clppg + &

O

At C_;,>0 the integral in the exponent diverges at gx(0)
— 0. Therefore the theory has a proper scaling limit M
=const X gx(0) —0, A — <o, This limit is characterized by the
RG invariants C, ;. The case C.;,=0 corresponds to the
O(6) GN model. The opposite limit max(C,,,;) > 1 describes
the O(3) X O(3) model in the regime of weak confinement
(see Secs. V B and VII D).

(iii) C_;,,<0. The system scales to strong coupling for
any sign of the bare diagonal couplings. In this case the
scaling trajectory for gx(¢) bounces off its minimal value g*
given by the root of the equation

[¢ T2+ CTolg 1= |C1pl =0. (92)

If gx(0) >0, the weakest interaction is achieved at the energy
scale

: 8x(0) d
E*=Aexpl—'n'f. J mg > > (93)
s gVCoipg "+ Cipgt+g

and the strong-coupling regime is reached at
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FIG. 6. The qualitative picture of the mass spectrum of the
0O(3) X O(3) GN model as a function 1/Cyj,. The dashed lines show
masses of mesons.

M=E expl—ﬂ'f* ’, 1/2g - = 1. (94)
¢ gVCipg "+ Cipg+g

As we said in the Introduction, the maximal spectral gap
corresponding to gy(0) — + is

M~ E?/A. (95)

Since the integral (90) never diverges at C_;,, <0, the RG
time in which the strong-coupling limit is reached always
remains finite. Therefore at finite C_;,, <0 the scaling limit
does not exist.

If we relax conditions on the scaling limit, we can venture
into the area C_;;; <0, as far as the spectral gaps remain
much smaller than the bandwidth. For this we need g* to be
small which is achieved by making C; small. Thus the effec-
tive low-energy theory describing the state with emergent
attraction is the C_;,,=0 field theory with nonrelativistic cor-
rections in M/A. The condition C_;;,=0 does not put any
restrictions on Cjp,; in the realistic two-leg ladder, where
bare lattice interactions are not small, C;, may have any
value. Equation (89), pointing to small values of C,, at
small bare couplings, is not valid in that limit.

Taking the above into account we can qualitatively de-
scribe the overall spectrum of the O(3) X O(3) using results
of Secs. VIIC and VIID. The results are summarized in
Fig. 6.

A. Mass is induced in the otherwise massless sector

It remains to study the situation when some coupling con-
stants are much larger than the others such that they reach
the strong-coupling limit first. This analysis is complemen-
tary to the one of Secs. VC and VIIE. In this case one
should study the spectrum using two-stage RG. There are
two cases to consider.

(i) One of the sectors is massless at gy=0. Let it be the +
sector g_(0)<0,g,>0, so that at gy=0 the interaction in Y,
sector is marginally irrelevant. The condition C_;, <0 is ful-
filled. As we shall demonstrate, the vector particles do appear
in this sector at gy 0, but the symmetry is not restored.
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(ii) Both sectors are massive at gy=0. Let 0<|gy(0)]
<g+(0)g_(0) and —g,(0)~-g_(0)>0. Then the coupling
gx(M) is still weak. Following the arguments of the previous
sections, we conclude that the interaction leads to the cre-
ation of generations of O(6) kinks with masses close to M,
+ M, and the formation of two generations of the vector par-
ticles: one with masses close to 2M; and the other one with
masses close to 2M,.

We use the two-stage RG. Let M5 is the mass scale of the
O(3) GN model in the — sector. At this energy the renormal-
ization of g_ coupling terminates and a nonzero average is
formed:

(EM3E(0)) ~ - M. (96)

Replacing the £¢ operator by its average in the low-energy
effective action for y fermions we obtain the effective action
like Eq. (44) with the UV cutoff M;:

i

2)?41 YM&,LLXa + iMOA_/aXa - g+(M3) ()?aXa)z’ (97)

Logr=
where M0=igX(M3)(§Z(M§1)§}Z(O)>. The form of this Hamil-
tonian suggests that the vector triplet in the — sector is sta-
bilized. For the procedure to be self-consistent the mass of
this vector particle should be M, <<M;. Let us assume that
g.+(M3) is still positive, which is the case at sufficiently small
gx(0). Then the downward renormalization of g, will con-
tinue until the energy M, (the resulting mass for y fermions).
The latter is determined by the equation

M
M, = - : (98)

IR
1 8 )
4

We see that the presence of the repulsion in the + channel
can further reduce the mass of the vector particle. The model
(97) was introduced in Ref. 56 to describe low-energy prop-
erties of the spin S=1 Heisenberg antiferromagnetic chain.

B. 4+2 splitting

The trickiest and at the same time the most realistic case
is when the modes split as 2+4 with repulsive interaction
between the four magnetic modes. In this case neither group
can produce a mass gap and the gap is generated solely by
the interaction. This happens, for instance, in the model with
no interchain tunneling in the presence of the density-density
interaction. Then only the 2kp components of the density
interact, leading to the arrangement

80+=80¢-=10 >0, 8ess=8est = 8>

where v originates from the intrachain exchange interaction.
The O(6) symmetry is split as O(4) X U(1)

3
ig cos O Xaxt +vlixaxi)?. (99)
a=0

The RG equations
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U=-202-2¢% g=-g(g,_+3v),

(100)

gp,—:_4g2’

where ,82/477:1+gp,_/ 2. In the realistic case of repulsion
8p—- <0 the system scales to strong coupling with v changing
sign. Assuming that —g,_ is the largest among the coupling
constants and neglecting its renormalization we arrive at the
approximate solution

2
0
g= g0, v=00) - Q1) (100
18-
such that v changes sign at
* 1 _lv(0
o 1n[|gp’2|v( )+1] (102)
2|g,.-| £%(0)

which fixes the upper limit for the gaps E*2/A ~ Ae"". This
corresponds to the scenario when the mass is generated by
the effective attraction among the fermions.

At small d=%/4w<1/2 another scenario can be real-
ized. To understand the spectrum we resort to a 1/N approxi-
mation where N is the number of fermion species. Assuming
that the fermion masses are larger than the boson ones, we
integrate over fermions and obtain the following effective
potential for G)i_)E ¢ field:

&N

V=- . cosz(B¢)ln{ (103)

Tt
4 glcos(Be)| |’

which can be approximated as a pure cosine. This potential is
relevant only when d<<1/2 and for d>1/4 the spectrum
contains only kinks. Let us call their mass gap m,. Then the
estimate for the fermion gap is

m, =~ g(cos(Bep)) = gCpAlmy/A),

where Cp is a constant. The fermion gap is indeed much
larger than the kinks gap which justifies the integration over
the fermionic modes. Thus the spectrum in this case consists
only of the O(6) kinks. The kinks acquire quantum numbers
from the spinor representation of the O(6) group through
attachment of the fermions zero modes (see Sec. V).

(104)

X. CORRELATION FUNCTIONS AND EXPERIMENTAL
PROBES

A detailed analysis of correlation functions is outside the
scope of this paper, so we restrict this discussion to some
qualitative remarks.

Among the available experimental methods the ones
which probe correlations functions at various frequencies
and momenta are angle-resolved photoemission spectroscopy
(ARPES) and inelastic neutron and x-ray scattering. All other
probes measure either local correlation functions [nuclear
magnetic resonance (NMR), tunneling spectroscopy] or cor-
relation functions at zero momenta (optical conductivity, Ra-
man scattering).

The only known system which the effective Hamiltonian
resembles the one for a single two-leg ladder are single wall
carbon nanotubes. However, though the doped nanotube is
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described by the effective Hamiltonian (2),%7 the values of
the bare couplings for the nanotubes of available size are
such that the gaps are extremely small. In other experimen-
tally available systems, such as the telephone number com-
pound mentioned in Introduction, ladders are packed into a
three-dimensional (3D) arrangement. In that case interactions
of gapless charge modes from different ladders may lead to
3D ordering.

Let us discuss the behavior of correlation functions above
3D phase transition (if such transition occurs). In this case
both (DS') and ®£+) exponents have power-law correlation
functions. Since these exponents enter the majority of experi-
mentally measurable correlation functions, emission of all
massive excitations is accompanied by emission of gapless
bosonic modes. This makes the massive particles incoherent.
The best one can do at the circumstances is to look for op-
erators whose correlation functions contain matrix elements
corresponding to emission of just one massive particle (and,
of course, a cascade of gapless bosons).

Having this in mind, let us consider, for example, the SCd
phase. In this phase all o (u) fields are locked together with
COS[\J‘HT@E‘_)](SiH). Then the operators with matrix elements
between the vacuum and a single-particle state of the
doublet-vector particle are the Fourier components of the
particle density at Zkf):

p(2k) =2 R} Ly,

VT i )

(01020300 F oz ).
(105)

As far as the magnetic triplet is concerned, it is emitted at
2(k2)+k1(,2)) by the magnetization operator

L mo® imet)
S4(2ky) = RZ,UUZU,LmU, = Eeuw‘b: PRACLCH [Naﬂo + Mao_o],

(106)

where

N= (U1 ua03, 1 T2 3, T Mo fh3),

M = (010243, 01 1203, 11 02,03).
The corresponding quasicoherent peaks disappear below 7.

since the @E,J') is locked and correlations of ei";@y) become
short ranged. However, if the SCd phase is replaced at stron-
ger interactions by the 4kz-ordered Wigner crystal (recall the
discussion in Sec. I B), it is @' field which is locked. Then
the all the above peaks become sharp (this was in fact ob-
served in the telephone number compound?®).

XI. CONCLUSIONS

In this paper we made an attempt to outline the picture of
the excitation spectrum of a field theory with a symmetry of
a doped two-leg ladder: namely, the anisotropic O(6) Gross-
Neveu model. This model is not integrable, and then it is not
possible to obtain exact results except for some specific
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points in parameter space. We combined information coming
from the RG analysis with semiclassical methods and form-
factor perturbation theory. It follows from our analysis that
throughout most of the phase diagram the spectrum consists
of degenerate quartets of kinks and antikinks and the multi-
plet of vector particles split as 3+2+1. This basic picture
experiences corrections when one moves through the phase
diagram. Namely, in some areas of the phase diagram the
splitting is extremely small, while in some others it may
become so large that some multiplets are pushed in the con-
tinuum and become unstable. The phase diagram presents
different types of quantum critical points. At second-order
transition lines masses of certain particles vanish. Very close
to the first-order transition line additional generations of
kinks emerge. Strong interactions in some sectors may gen-
erate additional bound states (like breathers in the asymmet-
ric charge sector).

As we have mentioned many times throughout the text,
one potential application of this theory is “telephone num-
ber” compound Sry,_,Ca,Cu,,O4. This is undoubtedly a
strongly correlated system. The measurements of low-
frequency dielectric and optical response demonstrate exis-
tence of a weakly pinned phason mode,®® which we identi-
fied as the <I)£+) mode. At the same time such probes as
NMR,? inelastic neutron scattering (Ref. 4) and ARPES (Ref.
5) show gaps in all other parts of the spectrum. This is in
agreement with existing theoretical understanding of the lad-
der materials.

The question of the validity of the quasi-one-dimensional
field theory description is decided by (i) comparison between
the values of the gaps and the bandwidth and by (ii) presence
of essentially one-dimensional effects, such as different gap
values for different channels. The field theory is valid when
the gaps are small compared to the bandwidth. The gaps
extracted from the ARPES measurements were obtained only
for x=0 where the number of holes is apparently rather small
(though not zero, since according to Ref. 8 the gapless CDW
mode exists at this concentration). The ARPES shows the
single-electron gap ~0.3 eV and the bandwidth ~1.2 eV.’
At the same time the neutron scattering (also available only
for x=0) gives the spin-triplet gap ~32 meV with the band-
width for the spin excitations ~200 meV. NMR measure-
ments done in a broad range of Ca concentrations show that
the spin gap decreases with doping and becomes less than
200 K at x>3. The absence of temperature saturation of the
magnetic susceptibility indicates a crossover to the paramag-
netic regime, meaning that gaps for nonmagnetic excitations
also become smaller at these x. Therefore the gap/bandwidth
ratios are sufficiently small for the field theory description to
be valid.

On the other hand, the optical conductivity measurements
indicate the presence of essentially one-dimensional effects.
They show a strong peak at radio frequencies (presumably
coming from the phason mode) and a threshold at infrared
frequencies (the so-called CDW gap). If the CDW state
would form as a result of Fermi surface instability, as hap-
pens in three-dimensional systems with nested Fermi sur-
faces, this gap would be twice as large as the single-particle
gap measured by ARPES. It would also coincide with the
spin gap. However, according to Ref. 59, the values of the
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CDW gaps at x=0, 3, and 9 are 130 meV, 110 meV, and
3 meV, respectively, which is either several times larger or
much smaller than the spin gap. From this analysis we con-
clude that though detailed comparison between theory and
experiment would be premature, the field theory description
of the telephone number compound is a reasonable approach
(as far as the system remains strongly one dimensional which
probably corresponds to x<<9).

We believe that the present experiments allow one to de-
termine the part of the phase diagram where the telephone
number compound is located. The recent x-ray measure-
ments show that the holes may crystallize in a three-
dimensional Wigner crystal®® (the use of the term is ex-
plained in Ref. 32). Since the particle peaks sharpen below
the transition, we take it as an indication that this is a 4kp
Wigner crystal replacing the SCd phase, as described in Sec.
III. Such a crystal exists only if the electron-electron inter-
action has a long-range tail. This points towards the standard
Coulomb interaction as the primary agent of its formation.
Such an interaction may lead to relatively small values of 3
and consequently to new bound states. It is just possible that
one such bound state (a breather in the @E_) sector) appears
as a sharp peak in the Raman scattering experiments.®!
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APPENDIX A: BOSONIZATION

We adopt the following notations:

The e
R =—LL o n Tpo, L

7, Yy
= o= =% (A1)
V2may

p.o
V2may

where p=+1 and ¢ and ¢ are bosonic fields with right and
left chirality. The Klein factors satisfy anticommutation rela-
tions of the O(4) Clifford algebra

{77(1’ 7]})} = 554}7

and can be chosen as follows:2°

Ny 7y =i(= DPFD2, (A2)

The chiral bosonic fields are decomposed into the normal
modes as follows:

N-1cMo=1

1
opo= e+ 71+ old" +pe7T (A

with the same decomposition for @. The bosonic field ® and
its dual ® as usual are
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O = ¢ + G

5,C 5,C

0 = ¢ _ g

S,C 5,C

(A4)

The Ising model order and disorder parameter fields o and
o are related to the bosonic fields as follows:

— . —
cos[v’w@i”] = 0,05, sm[\r’w(I)g*)] = [ M,

cos[\/7_7®§+)] = 0,5, sin[ \"77®§+)] =0, (A5)

with the similar formulas relating @i_), ®§_) to 03, 07, U3, M-

APPENDIX B: SEMICLASSICAL ANALYSIS OF
GENERALIZED O(2r) GN MODELS

In order to have a more intuitive picture of the effect of
perturbations (26) and (28) on GN models we repeat the
semiclassical analysis of Sec. V for N and M even, N=2n
and M=2m, following Ref. 34. The advantage of this as-
sumption lies in the fact the Majorana fermions can be
bosonized in couples and then the potential of the O(2rn) GN
model (4) takes the form

n 2
V= —g’(z COS(\’/4TT¢),~)) .

i=1

(B1)

It has two families of minima, ¢=\mm and ¢;=\m(n
+1/2), which are usually referred to as positive and negative
vacua because they correspond to positive and negative val-
ues of 2,4y ==; cosV4me,. Fermionic excitations (when
stable) correspond to configurations interpolating between
minima that belong to the same family—for instance, from a
configuration (0,...,0) at x——o to (xy,0,...,0) at x—
+20. On the other hand, kinks interpolate between minima of
different families—for example, from (0,...,0) for x
— o to (=72, ..., x\7/2) for x
—+, It is easy to see that, while there are N possible
fermionic states, the number of kinks states is 2". Note that
since kinks interpolate between positive and negative vacua,
the mean value of ¢4y changes sign along a kink configu-
ration.

From this picture it is clear that fermions can be consid-
ered as bound states of kinks. In fact, for instance, an el-
ementary excitation associated with the transition (0, ...,0)
—( v’;,O, ,0)_can be obtained also_with two transitions
0,...,0) = (+\7/2, ..., +\71/2) > (7,0,...,0),  where
each of the two jumps corresponds to a kink. The stability of
fermions against the decay into a pair of kinks depends on N.

Let us now first consider the effect of a simple perturba-
tion of the form

V=- 2 cos Vﬂcﬁi. (B2)

Here the positive and negative minima are split and only the
former remain absolute minima. This implies that kinks in-
terpolating between different families are not present any-
more and the model has only fermionic excitations. This is a
simple example of confinement. If we now consider the
model (28), the effect of the perturbation on the excitations
of the two GN models, originally decoupled, is somewhat
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similar. When the two models are decoupled each of them
has the same families of minima described above. For in-
stance, if we introduce ¢; and o; associated with the x“’s
and &”s, respectively, configurations like (¢y,...,d,;
0'1,...,0,,):(0,...,0;1\577/2,...,i\s’;/2) are absolute
minima. Nevertheless, this does not remain true in presence
of a perturbation of the form

— ’/_
08,.p COS V47, cos VAo, (B3)

(here we assume that also the perturbation is such that it
can be written in a simple bosonic form). Again the kinks of
the two decoupled GN models confine and disappear from
the spectrum. At the same time, together with fermions, new
kinks with the quantum number of O(N+M) GN appear.
They interpolate between configurations like (0,...,0;0,
0 = (T2, T2, £\ 72, ..., £\7/2), which
remain degenerate minima also of the perturbed theory. Fer-
mionic excitations of the two models remain stable.

Following the same arguments one can easily see that in
presence of perturbations of the form (26) the O(N) kinks
remain stable. In fact, the potential

884 COS \J'ana cos \J'quﬁb (B4)

does not lift the degeneracy of the minima of the unperturbed
GN model.

APPENDIX C: THE EXACT SOLUTION OF 5+1
AND 3+1 MODELS

In this appendix we describe the S-matrix of two models,
which we call the 5+ 1 and 3+ 1 models, with O(5) X 7, and
O(3) X 7, symmetry, respectively. The latter was introduced
and studied in detail in Refs. 42 and 43. The central charge in
the UV computed with the thermodynamic Bethe ansatz is
¢s5.1=3 and c3,;=2. The relationship with the models of in-
terest in the paper is discussed in Sec. VI.

The spectrum of the 5+ 1 model consists of a singlet Ma-
jorana fermion with mass m, a quintet of Majorana fermions
with masses V3M, and a quartet of kinks = antikinks (spinor
particles) with mass M. The S-matrix for the 5+1 model is

va Svs -1
Ss+1= Svs Sss 555 s
-1 &5 -1

(C1

where
30—

60 = e+

and SYY, SY%, and S$* are the O(5) S-matrices of vector and
spinor particles. The above S-matrices were found in Refs.
38 (for the vector particles) and 39 (for kinks). The spinor
S-matrix has the following form:

O+1im/3 A
- P, +
0—1im/3 60—

O+im A

S“(e)=f(0) i)asvm+ PO >
i o

(C2)

where Py, P,, and P, represent projectors onto singlet,
vector, and antisymmetric tensor representations and
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0 1 i 5 160 1 16
Ni+—JIr'f=———I{=-—=—|T =+ —

2 2 27 6 27 3 27
f(6) = : : : —.
0 1 16 5 16 1 16
NNi-—JIr'l=+—I{=-+— | == —

2 2 27 6 2 3 27

The S-matrix has one physical pole on the physical strip (0
<Im #<m) at #=im/3 corresponding to the vector particle
and one unphysical at 277i/3. Each of the S-matrices is cross-
ing symmetric, including the scalar factor & &(0)=-¢&(im
-0).

For the (3+1) model we have a similar structure:

[SVOLE &
S3+1=( —B ,

(C3)
e -1
where
e~
&0)=——
e +1

and $5U? is the S-matrix of SU(2) Thirring model solitons.
APPENDIX D: SOLUTION OF THE LINEARIZED
RG EQUATIONS

The RG equations (5) can be simplified for g,=g+ g,
with g/dg,<<1. Defining for simplicity of notations Jg,
=x, we find that, to first order in x Egs. (5) take the form

X

i =-Dx, (D1)
where
O 1 0 3
172 1/2 3/2 3/2
D=| 0 1 1 1 (D2)

172 172 1/2 3/2
o o 1 2

—_ = = OO

and g is solution of g=—4g> and has the form
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)= . D3
8= (D3)
It is convenient to introduce y
x =Ty, (D4)
which satisfies the equation
y=-T"'DTy2g(t), y(0)=T"'x(0)=A4,,  (D5)
where
-3 -6 -1 2 1
3 3 -1 -11
T=| -2 -2 0 -2 1 (D6)
0O 1 0 1 1
1 0 1 0 1

is chosen such that T-!DT=diag(\;,\5, A5, \4,\s), with \’s
being the eigenvalues of Eq. (D2), N\j=h,=—1, Ny=N\4=1,
and As=4. Since the eigenvectors of degenerate eigenvalues
are linearly independent, all solutions of Eq. (D5) have the
form

Ya =Aa eXP[— )\al(t)]’ (D7)
where
1 4 1 .
I(r) = E In(gy ) — 5 In(gy —41). (D8)
From this it follows that
1\ M2
Va =Aa(—> [In(e/m) + 1], (D9)
80

where the relationship between ¢ and & was used. The solu-
tion of Eq. (D1) can be obtained inverting Eq. (D4).
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