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We investigate the quantum phase transition of the O�3� nonlinear � model without Berry phase in two
spatial dimensions. Utilizing the CP1 representation of the nonlinear � model, we obtain an effective action in
terms of bosonic spinons interacting via compact U�1� gauge fields. Based on the effective field theory, we find
that the bosonic spinons are deconfined to emerge at the quantum critical point of the nonlinear � model. It is
emphasized that the deconfinement of spinons is realized in the absence of Berry phase. This is in contrast to
the previous study of Senthil et al. �Science 303, 1490 �2004��, where the Berry phase plays a crucial role,
resulting in the deconfinement of spinons. It is the reason why the deconfinement is obtained even in the
absence of the Berry phase effect that the quantum critical point is described by the XY �“neutral”� fixed point,
not the IXY �“charged”� fixed point. The IXY fixed point is shown to be unstable against instanton excitations
and the instanton excitations are proliferated. At the IXY fixed point it is the Berry phase effect that suppresses
the instanton excitations, causing the deconfinement of spinons. On the other hand, the XY fixed point is found
to be stable against instanton excitations because an effective internal charge is zero at the neutral XY fixed
point. As a result the deconfinement of spinons occurs at the quantum critical point of the O�3� nonlinear �

model in two dimensions.
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I. MOTIVATION AND SUMMARY

Nature of quantum criticality is one of the central interests
in modern condensed matter physics. Especially, deconfined
quantum criticality has been proposed in various strongly
correlated electron systems such as low dimensional quan-
tum antiferromagnets1–8 and Kondo systems.9–12 In the
present paper we investigate one deconfined quantum criti-
cality based on the O�3� nonlinear � model describing a
quantum phase transition from antiferromagnetism to quan-
tum disordered paramagnetism on two dimensional square
lattices. This phase transition has been originally analyzed by
Bernevig et al.1 In the study the authors got to the conclusion
that although the appropriate “off-critical” elementary de-
grees of freedom are given by either spin 1 excitons �gapped
paramagnons� in the quantum disordered paramagnetism and
spin 1 antiferromagnons in the antiferromagnetism, at the
quantum critical point such excitations should break up into
more elementary spin 1/2 excitations usually called
spinons.1 Thus, spinons emerge as true, deconfined, elemen-
tary excitations right at the quantum critical point. This is the
precise meaning of the deconfined quantum criticality in the
context of quantum antiferromagnetism. In Fig. 1 schematic
phase diagram and proposed elementary excitations in the
O�3� nonlinear � model are shown.

This was challenged by Senthil et al.2 They claimed that
since the phase transition in Ref. 1 is supposed to fall into
Landau-Ginzburg-Wilson �LGW� paradigm, the spectrum at
the quantum critical point should be fully understandable
only in terms of spin 1 bosonic degrees of freedom.2 Senthil
et al. proposed, as a possible candidate for a deconfined
quantum critical point, a direct quantum phase transition be-
tween a Neel antiferromagnet and a valance bond solid
�VBS� state. In particular, in the Neel state one gets spinon

condensation. In the paramagnetic phase instanton excita-
tions �tunnelling events between energetically degenerate but
topologically inequivalent vacua of the U�1� gauge field in
the CP1 representation of the O�3� nonlinear � model�
should possibly arise, whose condensation does not allow
spinon deconfinement. However, Senthil et al. argued that
this is not the case at the quantum critical point, where a
Berry phase term makes instantons irrelevant and accord-
ingly, makes it possible to achieve spinon deconfinement.2

Apparently, this would prove that it is not possible to get
spinon deconfinement without Berry phase, which would in-
validate the results of Bernevig et al.

In the present paper we show that such a contradiction
does not exist. We focus our attention to the CP1 represen-
tation of the O�3� nonlinear � model without Berry phase
�that is, the system studied by Bernevig et al.�, which leads
to the two flavor Abelian Higgs model. In such a model the
basic degrees of freedom are provided by a complex doublet
of bosonic spinon fields, plus a compact U�1� gauge field
giving long range interactions among spinons. Using a renor-
malization group �RG� analysis, we investigate the quantum
critical point of the two flavor Abelian Higgs model. To per-
form an RG analysis, we move to the dual representation of

FIG. 1. Schematic phase diagram and proposed elementary ex-
citations in the O�3� nonlinear � model with the spin stiffness gn

−1.
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the CP1 action, in which the basic fields are the vortex fields
representing spin 1/2 merons.2 In the language of meron
fields the phase where the meron fields have zero expectation
value is associated with the Neel state, while the phase in
which the meron fields take a nonzero expectation value
�vortex condensation� corresponds to a featureless quantum
disordered paramagnetic phase �here, not the VBS owing to
the absence of Berry phase�. In both phases processes in
which an instanton is created with an attached vortex cre-
ation �annihilation� operator are relevant. This forbids spinon
deconfinement in either off-critical phase.

To analyze the quantum critical point of the system, we
first resort to an effective low energy action in Eq. �9�, where
only phase fluctuations of the vortex fields are allowed and
the instanton term is explicitly included. The parameters of
such an action are the stiffness parameter of the vortex
phase, �, the instanton fugacity, ym, and the phase stiffness of
the dual Higgs field, �. An RG analysis permits us to write
down the scaling equations in Eq. �12�. When specified to the
particular case D=3 �that is, a planar model at zero tempera-
ture�, such equations exhibit two quantum critical points. The
former one is at �*=0, ym

* =0 and �*=0. Such a critical point,
dubbed inverted XY (IXY) fixed point or “charged” XY fixed
point, is identified with the quantum phase transition studied
by Senthil et al.2 The IXY fixed point is shown to be unstable
against instanton excitations �ym�0� and the instanton exci-
tations are proliferated. Since condensation of vortices or
instantons does not allow spinon unbinding, this is consistent
with the conclusion of Senthil and coworkers, that is, with
the absence of spinon deconfinement without a Berry phase
term. The latter critical point is at �*=0, ym

* =0 and �*�0.
Remarkably, we find that this new fixed point remains stable
against instanton excitations. From this analysis one sees that
although off criticality the instantons are relevant every-
where, they become irrelevant at the quantum critical point.
This allows spinon deconfinement, which is different from
the conclusion by Senthil et al., since this critical point does
not coincide with their one. We refer to this fixed point as the
charge “neutral” XY one. The XY fixed point is, instead, iden-
tified with the quantum critical point studied by Bernevig et
al., thus showing that the deconfinement of spinons takes
place even without the Berry phase. As a result we find that
the system is described by the critical field theory in Eq. �13�
near the quantum critical point.

Recently, it was reported the result of Monte-Carlo
simulation3 supporting the existence of deconfined spinons at
the quantum critical point of the O�3� nonlinear � model in
the absence of the contribution of Berry phase. They claimed
that critical fluctuations of bosonic spinons at the quantum
critical point result in the nonlocal action of the gauge field
and this contribution causes the deconfinement of spinons.3

II. EFFECTIVE ACTION FOR QUANTUM
ANTIFERROMAGNETS WITH EASY PLANE

ANISOTROPY: ABELIAN HIGGS MODEL WITH TWO
FLAVORS

Low energy physics of two dimensional quantum antifer-
romagnets on square lattices is described by the O�3� non-

linear � model in the presence of Berry phase2,3,13

S = Sn + SB,

Sn =� d3x
1

2gn
���n�2,

SB = iS�
r

�rAr. �1�

Here n is the unit three component vector representing the
Néel order parameter. gn

−1 denotes the spin stiffness. The
term SB represents the contribution of Berry phase with �r
= �−1�rx+ry. S in the Berry phase term is the value of spin 1/2
here. Ar is the area enclosed by the curve mapped out by the
time evolution of n��� on the unit sphere.2 Representing the
spin component in terms of bosonic spinons, n= 1

2z�
†��	z	

called the CP1 representation, we obtain an effective bosonic
quantum electrodynamics in two space and one time dimen-
sions �QED3�2,3,13

S = SB +� d3x� 1

2gn
���� − ia��z��2	 . �2�

Here z� is the bosonic spinon with �=1, 2 and a�, the com-
pact U�1� gauge field mediating long range interactions
among spinons. SB is the Berry phase action in association
with the time component of the U�1� gauge field.2 Following
Senthil et al., we consider easy plane anisotropy. In the easy
plane limit the bosonic spinor is represented to be z�= � z1

z2
�

= �1/
2�� ei
1

ei
2
�2

. Inserting this into the above action Eq. �2�,
we obtain an effective field theory for the SU�2� quantum
antiferromagnet with the easy plane anisotropy, Nb=2 Abe-
lian Higgs model in the field theoretic language

S =� d3x��

2
���
1 − a��2 +

�

2
���
2 − a��2 +

1

2e2 �� � a�2	 .

�3�

Here Nb is the flavor number of bosonic spinons. As men-
tioned earlier, the flavors are two �Nb=2�. ��gn

−1 is the stiff-
ness parameter of the phase fields of spinons. The kinetic
energy of the gauge field is introduced with an internal gauge
charge e. The kinetic energy can be generated by integration
over high energy spinons. In �2+1�D this term does not af-
fect the phase transitions of this model. This is because 1/e2

has a negative scaling dimension and this kinetic energy term
becomes irrelevant in the low energy limit. It is noted again
that the Berry phase term SB will not be considered any
more. The present paper investigates the deconfinement of
spinons at the quantum critical point in the absence of the
Berry phase effect.

III. ABELIAN HIGGS MODEL WITH ONE FLAVOR:
RELEVANCE OF INSTANTON EXCITATIONS AT THE IXY

FIXED POINT

We first review the results of Senthil et al.2 Although the
Nb=1 Abelian Higgs model is considered in this section, this
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consideration shows well how Berry phase plays a special
role, causing the deconfinement of spinons. We note that this
one flavor Abelian Higgs model was also utilized to show the
relevance of Berry phase as a toy model in Ref. 2. We con-
sider the following Nb=1 Abelian Higgs model

S =� d3x��

2
���
 − a��2 +

1

2e2 �� � a�2	 . �4�

Here 
 is the phase of a Higgs field and a�, the compact
U�1� gauge field. � is the phase stiffness parameter and e, the
internal electric charge of the Higgs field. This effective ac-
tion is usually proposed to describe a superconductor to in-
sulator transition of charged bosons.14 In this paper we focus
our attention on phase fluctuations instead of amplitude fluc-
tuations of Higgs fields. In the case of noncompact U�1�
gauge fields a charged fixed point to govern the supercon-
ducting transition is expected to exist.14 RG equations are
obtained to be in one loop level

d�

dl
= �D − 2�� − �e2� ,

�5�
de2

dl
= �4 − D�e2 − e4

with �=2/3� and =1/24�.15 l is a usual scaling parameter
and D denotes a dimension of space and time. We consider
the case of D=3. The last term −�e2� in the first equation
originates from the self-energy correction of the Higgs field
owing to gauge fluctuations while the term −e4 in the sec-
ond equation results from that of the gauge field due to
screening of the internal gauge charge by massless excita-
tions of the Higgs fields.15 In Fig. 2 these processes are ex-
plicitly shown by Feynman diagrams. In these RG equations
there exist two fixed points; one is the XY �neutral� fixed
point of e*2=0 and �*=0 and the other, the IXY �charged�
fixed point of e*2=1/ and �*=0. The XY fixed point is
unstable against nonzero charge e2�0 and the RG flows in
the parameter space of �� ,e2� converge into the IXY fixed
point owing to 1−�e*2=1−� /�0. In other words, the
quantum critical point of the superconductor to insulator
transition is described by the IXY fixed point.14

In the case of compact U�1� gauge fields we must admit
instanton excitations representing tunnelling events between
topologically inequivalent gauge vacua. Performing the stan-
dard duality transformation,2,16,17 we obtain an effective vor-
tex action in the presence of instanton contributions

Sdual =� d3x��

2
���� − c��2 +

1

2�
�� � c�2 +

e2

2
c�

2 − ym cos �	 .

�6�

Here � is the phase of a vortex field and c�, the vortex gauge
field mediating interactions between the vortices. � is the
stiffness parameter of the vortex phase field � and ym
�e−Sinst, the instanton fugacity with an instanton action Sinst
�1/e2.17 The vortex gauge field c� is massive owing to the
massless U�1� gauge field a� and it can be ignored in the low
energy limit.18 The last term −ym cos � appears as a result of
instanton excitations.2,17 When an instanton is created with a
probability ym, a magnetic flux should be emitted from the
instanton owing to the gauss law. In the presence of Higgs
fields the magnetic flux is in the form of a vortex. Thus a
vortex creation operator e−i� is attached to an instanton in the
form of yme−i�. Performing the summation of instanton and
anti-instanton excitations in the dilute approximation, the cos
potential for vortex fluctuations is obtained.2,17 In the above
sine-Gordon action phase fluctuations of the vortex fields act
as instanton �magnetic� potentials to the instantons �Dirac
magnetic monopoles�. Integrating over vortex phase fluctua-
tions instead of performing the summation of instantons, we
obtain Coulomb interactions �1/x in �2+1�D between the
instantons.17,19 Interaction strength of the magnetic potential
is proportional to �−1. Thus, the inverse stiffness parameter
�−1 plays the same role as the magnetic charge. Owing to the
Coulomb interaction the instantons are expected to be decon-
fined. This implies that tunnelling events are very activated.
Gauge fluctuations a� are very strong and confinement of
Higgs fields is obtained. In the following we shall see this
using an RG analysis.

Ignoring the vortex gauge field c�, we obtain the RG
equations of the usual sine-Gordon model4,5

d�

dl
= �D − 2�� + 	ym

2 1

�
,

dym

dl
= �D − �

1

�
ym, �7�

with positive numerical constants, 	 and �.5 In our consid-
eration their precise values are not important. In these two
equations there exist no stable fixed points in �2+1�D while
in �1+1�D there is a line of fixed points describing the
Kosterliz-Thouless transition as well known.4 The fixed
point of �*=0 and ym

* =0 corresponds to the IXY fixed point
of the original Abelian Higgs model. The IXY fixed point is
not stable against instanton excitations ym�0. Both the
phase stiffness � and the instanton fugacity ym become larger
and larger at low energy. If we rewrite the RG equation of
the stiffness parameter � in terms of the magnetic charge g
corresponding to the inverse stiffness parameter �−1 in the
presence of Higgs fields, i.e., g=�−1, we obtain the same RG
equation with Ref. 5 for the magnetic charge, dg /dl=−�D
−2�g−	ym

3 g3. The effective magnetic charge g becomes
smaller and smaller to be zero owing to the negative bare
scaling dimension −�D−2� in the presence of screening of
magnetic charges by instanton excitations. The negative bare

FIG. 2. Feynman diagrams of the self-energy of Higgs fields and
that of U�1� gauge fields.
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scaling dimension −1 of the magnetic charge in D=3 results
from the bare Coulomb interaction �1/x between instantons.
The screening effect is represented by the last term −	ym

3 g3

and this leads the Coulomb potential to be the Yukawa-type
potential �e−x/ /x where  is the screening length in asso-
ciation with the instanton fugacity. The zero magnetic charge
leads the instanton fugacity to go to infinity at low energy. In
other words, the instantons are more activated. Depth of the
cos potential in Eq. �6� becomes deeper and deeper. Thus, the
phase of vortex fields is pinned at one ground position of the
cos potential. We conclude that instanton excitations induce
vortex condensation �ei���0 and instantons remain decon-
fined as the case of the pure U�1� gauge theory in �2+1�D.19

Confinement of charged bosons is realized. This is the result
in the absence of the Berry phase effect.

If there exists a Berry phase term, the IXY fixed point can
be stable against instanton excitations.2 The contribution of
Berry phase to instantons is given by LB= i�� /2��n�n�Qn.2,3

Here n labels dual lattices of original lattices. �Qn represents
an instanton excitation at the dual site n. �n is a fixed integer
field and it is given by 0,1,2,3 depending on whether the dual
lattice coordinate is �even, even�, �even, odd�, �odd, even� or
�odd, odd�.2,3 Performing the duality transformation in the
presence of this Berry phase term,2 we find that the Berry
phase gives rise to spatial oscillation in the instanton induced
term −ym cos �. Another way to say this is that the Berry
phase gives destructive interference to instanton excitations.
Instantons acquire Berry phases depending on instanton po-
sitions and summation of the instantons results in spatial
dependence in the cos potential.2 Thus, the contribution of
instanton excitations makes a partition function vanish unless
the instanton excitations are quadrupled, i.e., �Qn�0 �mod
4�. Only quadrupled instanton excitations contribute to the
partition function and this effect is proven to be irrelevant at
the quantum critical point described by the IXY fixed
point.2,20 It is the result of Senthil et al. in the case of the
Nb=1 Abelian Higgs model. In the case of the Nb=2 Abelian
Higgs model the same argument can be applied to the IXY
fixed point. As a result the deconfinement of spinons is real-
ized owing to the Berry phase effect. However, we find that
one different thing appears in the case of the Nb=2 Abelian
Higgs model. We show that there exists another fixed point
called the charge neutral XY fixed point. The neutral XY
fixed point is shown to be stable against instanton excitations
in the absence of Berry phase.

IV. RENORMALIZATION-GROUP ANALYSIS OF
ABELIAN HIGGS MODEL WITH TWO FLAVORS:

IRRELEVANCE OF INSTANTON EXCITATIONS AT THE
XY FIXED POINT

We return to the main problem, Nb=2 Abelian Higgs
model Eq. �3�. In two spatial dimensions it is well known
that the O�3� nonlinear � model in the absence of Berry
phase, Sn in Eq. �1� shows a continuous phase transition be-

tween an antiferromagnetically ordered state with O�3� sym-
metry breaking and a quantum disordered phase with no
symmetry breaking at zero temperature, depending on the
spin stiffness parameter gn

−1.13 Thus, Eq. �3� derived from Eq.
�1� is naturally expected to exhibit the second order quantum
phase transition between the two phases, depending on the
phase stiffness parameter �. At a sufficiently large stiffness
above the critical stiffness �c the Neel state would emerge.
This ordered phase is represented by condensation of
spinons, �z����ei
���0. The spinon condensation leads the
U�1� gauge field to be massive via the Anderson-Higgs
mechanism. Integrating over the massive U�1� gauge field,
we obtain an effective field theory in terms of spinon and
antispinon confined objects, z1

†z2�e−i�
1−
2� corresponding to
antiferromagnons of spin 1. In the context of the gauge
theory this phase corresponds to the Higgs-confinement
phase.21 At a sufficiently small stiffness below the critical
stiffness quantum fluctuations of the phase fields 
� destroy
the antiferromagnetic long range order and a quantum disor-
dered phase appears with gapped spinons, �z����ei
��=0.
The massive spinon excitations would be confined to form
spinon and anti-spinon composites corresponding to massive
spin excitons or gapped paramagnons of spin 1.

It should be noted that the quantum disordered phase con-
sidered above is fully symmetric and thus featureless owing
to the absence of Berry phase. If the Berry phase term is
introduced in the featureless quantum disordered phase, the
Berry phase leads the quantum disordered phase to be a val-
ance bond solid �VBS�.2 This VBS exhibits translational
symmetry breaking.2 In the VBS massive spinons are also
confined to form massive meson excitations. These are spin
excitons, spin singlet to triplet excitations.2 In the context of
the gauge theory the VBS corresponds to a confinement
phase owing to the condensation of instantons as the above
quantum disordered phase. In both the antiferromagnetism
and the quantum disordered paramagnetism in the absence of
Berry phase or the VBS in the presence of Berry phase, the
spinons are always confined and thus, fractional spin 1/2
excitations, spinons are not found.

Now we examine the quantum critical point. In the pres-
ence of the Berry phase effect it was already discussed in the
previous section that the fractional spin 1/2 spinon excita-
tions can be deconfined to emerge at the quantum critical
point described by the IXY fixed point. On the other hand, in
the absence of Berry phase the IXY fixed point was shown to
be unstable against instanton excitations. Only the confine-
ment of spinons is expected to arise. In this respect a new
scenario for deconfinement of spinons is necessary in the
present case. It seems to be natural to consider a new fixed
point instead of the IXY fixed point. Indeed, a new stable
fixed point, the charge neutral XY fixed point is found in the
Nb=2 Abelian Higgs model. The deconfinement scenario in
the present paper is completely different from the previous
one.2

Performing the standard duality transformation of the Nb
=2 Abelian Higgs model Eq. �3�, we obtain an effective vor-
tex action in the presence of instantons2,17
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Sdual =� d3x����� − ic1���1�2 + ���� − ic2���2�2

+ m2���1�2 + ��2�2� +
u

2
���1�4 + ��2�4� +

1

2�
�� � c1�2

+
1

2�
�� � c2�2 +

e2

2
�c1� + c2��2 − zm��1

†�2
† + �1�2�	 .

�8�

Here �1�2� represents the vortex field and c1�2��, the vortex
gauge field mediating interactions between vortices. m is the
mass of vortex fields and u, the coupling strength of local
interactions between vortices. The vortex mass is given by
m2��−�c, where �c is the critical stiffness parameter. zm
�e−Sinst is the instanton fugacity with an instanton action
Sinst�1/e2. Vortex excitations can be considered to be
merons �half Skyrmions�.2 �1 is the vortex in the z1�ei
1

spinon field and it carries down spin nz=−1/2 in the core.22

�2 is that in the z2�ei
2 spinon field and it carries up spin
nz=1/2 in the core.22 Physical picture of the meron excita-
tions is well described in Ref. 2. When an instanton is cre-
ated with a probability zm, a magnetic flux should be emitted
from the instanton owing to the gauss law. Since there exist
two kinds of vortices, the vortex creation operator �1

†�2
† is

attached to the instanton.2,17 Here we should not forget the
spin degrees of freedom in the meron fields. Then, we can
see that the operator �1

†�2
† represents a Skyrmion

excitation.23 The spin up meron �2 turns into the spin down
meron �1 and vice versa.23 In this respect an instanton exci-
tation represents a tunnelling event between the spin down
and spin up merons, corresponding to a Skyrmion �hedge-
hog� configuration of the Néel vector fields, n. In this dual
vortex formulation it is the main problem whether the instan-
ton induced term representing Skyrmion excitations is rel-
evant or not. If this term is relevant in the RG sense, only
Skyrmion excitations can appear. The Skyrmion excitations
change spin 1 �n2

z −n1
z =1� in the vortex core. As a result only

spin 1 excitations are possible and fractionalized spinon ex-
citations do not occur. In other words, a spin up meron is
confined with a spin down meron to appear only in the form
of a Skyrmion. Only if the Skyrmion excitation term be-
comes irrelevant, the meron excitations of spin 1/2 can
emerge. The confinement �deconfinement� of merons in the
dual vortex description corresponds to the confinement �de-
confinement� of spinons in the original Higgs field represen-
tation. It is known that the instanton induced term is relevant
in both antiferromagnetism and quantum disordered
paramagnetism.2 We study the relevance of the instanton in-
duced term using an RG analysis. In the case of the Nb=1
Abelian Higgs model we have already seen the relevance of
instanton excitations.

In passing, we briefly discuss vortex descriptions for pos-
sible quantum phases. In the case of ���c a vortex vacuum
����=0 is energetically favorable. This corresponds to anti-
ferromagnetism where spinons are condensed, �z���0. As
mentioned above, the Skyrmion excitation term is relevant
and thus ��1�2��0 is obtained. In the opposite case vortex

condensation �����0 is expected to occur. This naturally
leads to ��1�2��0. The vortex condensation results in
quantum disordered paramagnetism where spinons are
gapped, �z��=0 and confined. The quantum critical point
emerges at �=�c. In the following we show that instanton
excitations become irrelevant at the quantum critical point,
thus causing ��1�2�=0. This implies deconfinement of
meron excitations, �1 and �2, corresponding to that of
spinon excitations, z1 and z2.

In Eq. �8� the mass term �e2 /2��c1�+c2��2 resulting from
the massless U�1� gauge field a� permits us to set c2�=
−c1��−c� in the low energy limit. As a result we obtain the
following dual vortex action in the low energy limit

Sdual =� d3x��

2
����1 − c��2 +

�

2
����2 + c��2 +

1

2�
�� � c�2

− ym cos��1 + �2�	 . �9�

Here �1�2� is the phase field of the vortex field �1�2�. � is the
stiffness parameter of the vortex phase fields and ym

=2�̄1�̄2zm, the renormalized instanton fugacity with the am-

plitude of vortex condensation �̄1�2�= ���1�2���. We replaced
� /2 with �. In the above dual action one massless vortex
gauge field c� appears in contrast to the case of Nb=1, Eq.
(6) where there is no massless vortex gauge field. We note
that in the vortex vacuum the massless vortex gauge fields
correspond to magnon excitations in the antiferromagnetic
long range order. In the following we show that existence of
the massless vortex gauge field causes the instanton fugacity
ym to be zero at the quantum critical point even in the ab-
sence of Berry phase.

We first discuss two limiting cases in Eq. �9�; one is �
→0 which allows us to ignore the vortex gauge field and the
other, ym→0 which permits us to ignore the instanton exci-
tations. First, ignoring the vortex gauge field in Eq. �9�, we
obtain the following RG equations

d�

dl
= �D − 2�� + 	ym

2 2

�
,

�10�
dym

dl
= �D − �

2

�
ym.

In the case when the vortex gauge field is ignored, the vortex
Lagrangian Eq. �9� is the same as the Lagrangian Eq. �6�
except the fact that the flavor number is two in Eq. �9�. The
effective magnetic charge, g=�−1 is screened by two kinds of
vortices. If we rewrite the first RG equation in Eq. �10� in
terms of the effective magnetic charge g, we obtain dg /dl
=−�D−2�g−2	ym

2 g3. As shown by the second term, two
kinds of vortices screen out the magnetic charge. Eq. �10� is
the same as Eq. �7� except the factor 2. In an appendix we
briefly sketch how Eq. �10� is derived from Eq. �9� in the
absence of the vortex gauge field c�. In these RG equations
both � and ym become larger and larger in the low energy
limit as the case of the Nb=1 Abelian Higgs model �Eq. �7��.
There exist no stable fixed points. Instanton excitations are

DECONFINED QUANTUM CRITICALITY OF THE O�3�… PHYSICAL REVIEW B 72, 035109 �2005�

035109-5



relevant and only the confinement of meron fields �1�2� �the
confinement of spinon fields 
1�2�� is expected to occur.
Next, ignoring the instanton excitations, i.e., the compact-
ness of the U�1� gauge field a� in Eq. �9�, we obtain the
same form of Lagrangian as Eq. �4� and get similar RG equa-
tions with Eq. �5�15

d�

dl
= �D − 2�� − ��� ,

�11�
d�

dl
= �4 − D�� − 2�2.

The factor 2 in the second equation results from the screen-
ing effect by two flavors of the vortex fields. In the above we
have two fixed points; one is the IXY fixed point of �*=0 and
�*=0 which is unstable against nonzero value of � and the
other, the stable XY fixed point of �*=1/2 and �*=0.24 The
stability is guaranteed by 1−��*=1−� /2�0. Consider one
to one correspondence of the RG equations between Eq. �5�
and Eq. �11�. Note that if we ignore the instanton excitations
in Eq. �7�, we obtain the fixed point of �*=0. This fixed
point of the dual vortex action Eq. �6� in the absence of
instantons corresponds to the IXY fixed point of a supercon-
ductor to insulator transition in the original Higgs field rep-
resentation Eq. �4�. What Eq. �7� and Eq. �10� tell us is that
the IXY fixed point becomes unstable when we admit the
instanton excitations. The presence of the additional vortex
gauge field also makes the IXY fixed point unstable even in
the absence of instanton excitations, resulting in the stable
XY fixed point in the case of the same stiffness parameter for
the two phase fields. It is the key question in this paper
whether the XY fixed point in Eq. (11) remains stable or not
after including the instanton excitations.

Admitting both the massless vortex gauge fields and the
instanton excitations, we obtain the following RG equations
as a combined form of Eq. (10) and Eq. (11)

d�

dl
= �D − 2�� + 	ym

2 2

�
− ��� ,

d�

dl
= �4 − D�� − 2�2, �12�

dym

dl
= �D − �

2

�
ym.

In these RG equations the XY fixed point of �*=1/2, �*

=0 and ym
* =0 is only the stable one against instanton excita-

tions while the IXY fixed point of �*=0, �*=0 and ym
* =0 is

unstable against both the vortex gauge field excitations �
�0 and the instanton excitations ym�0. It is instructive to
rewrite the first RG equation in terms of the effective mag-
netic charge g=�−1. It is obtained to be dg /dl=−�D−2�g
−2	ym

2 g3+��g. At the XY fixed point the effective magnetic
charge g*=�*−1 becomes infinite because of −�1−��*��0 as
the case of noncompact gauge fields. Since the XY fixed
point is the charge neutral fixed point, it seems to be natural
that the effective magnetic charge in the presence of Higgs

fields is infinite at the XY fixed point.25 This infinitely large
effective magnetic charge makes the instanton excitations ir-
relevant, i.e., ym→0.

In both the Néel and quantum disordered phases the in-
stanton induced term plays a special role, resulting in only
the Skyrmion excitations. Away from the quantum critical
point �the XY fixed point� we find that the instanton fugacity
goes to infinity in the low energy limit �Eq. �12��. Thus,
depth of the cos potential in Eq. �9� becomes infinitely deep
in the low energy limit and one ground position is chosen for
the �1+�2 field. This implies that fluctuations of the �1 field
are strongly correlated with those of the �2 field, permanently
causing an only ground state of the cos potential for the �1
+�2 field. This leads to ��1�2��0 in both phases of Eq. �8�.
Thus, the meron excitations are not possible and only spin 1
excitations are expected to occur.2,17 However, at the quan-
tum critical point the instanton excitations become irrelevant
as shown in Eq. �12�. The cos potential in Eq. �9� can be
safely ignored at the quantum critical point and the �1 field
can fluctuate “independently” with the �2 field. Here “ ” is
used in the sense that the �1 field is coupled to the �2 field via
the noncompact U�1� gauge field c�. As a result the meron
excitations carrying fractionalized spin 1/2 are expected to
appear.

Now we can reach the critical field theory at the XY fixed
point based on the results of Eq. �12�. Inserting the fixed
point values of �*=1/2, �*=0 and ym

* =0 into Eq. �9�, we
obtain the critical field theory at the XY fixed point, Ldual
= ��* /2�����1−c��2+ ��* /2�����2+c��2+ �1/2�*����c�2
−ym

* cos��1+�2�= �1/2�*����c�2. However, this critical field
theory is not satisfactory in the sense that there are no terms
representing critical fluctuations of vortex fields �merons�.
There should be deconfined critical meron fluctuations. It
seems to be natural to introduce the contribution of critical
vortex fluctuations coupled to the noncompact vortex gauge
fields c�, Lv= ����− ic���1�2+ ����+ ic���2�2+m*2���1�2
+ ��2�2�+ �u* /2����1�4+ ��2�4�. Here �1�2� represents the
meron field. m* and u* are the fixed point values of the mass
and self-interaction strength of vortex fields, respectively, at
the quantum critical point. Notice that the fixed point value
of the vortex mass should be zero, m*2=0. This zero vortex
mass trivially leads to the zero fixed point value of the vortex
stiffness parameter, i.e., �*=0 at the quantum critical point.
This can be easily checked by the relation �*�−m*2 /u*=0
in the mean field �tree� level. The fixed point value u* is not
explicitly shown in the present paper since we utilize the
effective phase action Eq. �9�. It is certain that its fixed point
value is finite.14 As a result we reach the following critical
field theory

Lc = ���� − ic���1�2 + ���� + ic���2�2 +
u*

2
���1�4 + ��2�4�

+
1

2�* �� � c�2. �13�

The deconfined quantum critical point in the O�3� nonlinear
� model with the easy plane anisotropy is described by the
critical field theory Eq. (13) in terms of the merons interact-
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ing via the noncompact U�1� gauge fields.
We reemphasize the main difference between our decon-

finement scenario and the previous one.2 In the earlier study2

the fixed point to govern critical dynamics was not clearly
pointed out. But, the study2 infers that the fixed point is the
charged fixed point �IXY fixed point�. At the charged fixed
point the Berry phase plays a special role (causing destruc-
tive interference for instanton excitations and making the
instantons irrelevant) to result in the deconfinement of criti-
cal bosonic spinons. On the other hand, our present study
claims that the true fixed point of the quantum phase transi-
tion in the O�3� nonlinear � model with the easy plane an-
isotropy is not the charged fixed point but the charge neutral
fixed point �XY fixed point�. At the neutral XY fixed point the
fixed point value of the internal charge is zero and thus its
corresponding magnetic charge is infinite, causing the irrel-
evance of instantons even in the absence of Berry phase. The
deconfinement of spinons is expected to occur at the quan-
tum critical point.

One may suspect that it is physically meaningful to con-
sider the O�3� nonlinear � model without Berry phase. In a
different angle this doubt is associated with the question
when the contribution of Berry phase can be ignored. The
following two cases may be the candidates; one is the case of
double layered antiferromagnets and the other, the presence
of disorders. It is well known that in two leg ladders the
contribution of Berry phase cancels between the legs.26 The
same mechanism works in the double layered quantum
antiferromagnets.27 In this case the mechanism of spinon de-
confinement proposed by Senthil et al. cannot be applied.
Instead, our mechanism may be applicable. One problem is
that in the double layered antiferromagnet there exist more
flavors than those in the one layer system. However, it is
certain that massless vortex gauge fields still remain. The
presence of massless vortex gauge fields is expected to cause
the deconfinement of spinons. More cautious studies are re-
quired near future.

The presence of nonmagnetic disorders leads to random
depletion of spins. This results in two important effects.
First, the random depletion introduces a random Berry phase
term to the nonlinear � model.28 Second, it causes a random
exchange coupling between spins.28 We expect that the ran-
dom Berry phase term is difficult to suppress instanton exci-
tations. The contribution of Berry phase to instantons is
given by LB= i�� /2��n�n�Qn

2, as mentioned earlier. Re-
member that in the absence of randomness �n is a fixed in-
teger field and it is given by 0, 1, 2, 3 depending on whether
the dual lattice coordinate is �even, even�, �even, odd�, �odd,
even� or �odd, odd�.2 The presence of disorders introduces
randomness to �n. In other words, the random depletion of
spins results in ��n�=0, where �…� denotes the average over
disorders. The effect of random Berry phase would not be
sufficient to suppress the instanton excitations. Thus, the
mechanism of spinon deconfinement by Senthil et al. would
not work in the presence of disorders. One problem is the
effect of random exchange couplings. In the limit of weak
randomness we may treat the effect of disorders as a random
mass term of spinons in the CP1 representation.29 Then, the
problem becomes whether the randomness is relevant or not.

When the random mass is relevant, the spinons would be
localized near the disorders. The quantum criticality is ex-
pected to disappear. As a result the spinons would be con-
fined to form antiferromagnetic spin fluctuations of spin 1.
This consideration is consistent with increase of antiferro-
magnetic correlations when nonmagnetic impurities are
doped into nonmagnetic states.28 Our preliminary calculation
shows that the deconfined quantum criticality is sustained
against sufficiently weak disorders, which is completely con-
sistent with the case of fermionic QED3 describing the alge-
braic spin liquid.6 In this case the mechanism of the decon-
fined quantum criticality is due to the XY fixed point
resulting from massless vortex gauge fields. The role of non-
magnetic disorders in the deconfined quantum criticality is
under our current investigation.

V. CONCLUSION

In the present study we investigated the deconfinement of
bosonic spinons at the quantum critical point of the O�3�
nonlinear � model without Berry phase in the easy plane
limit. The low energy effective field theory in the CP1 rep-
resentation is given by the Nb=2 Abelian Higgs model with
Nb, the flavor number of bosonic spinons. The quantum criti-
cal point of the Nb=2 noncompact Abelian Higgs model cor-
responds to the XY fixed point while that of the Nb=1 non-
compact Abelian Higgs model, the IXY fixed point. This
difference originates from the existence of massless vortex
gauge fields in the case of Nb=2. We showed that the instan-
ton fugacity becomes zero at the XY fixed point and thus,
instanton excitations do not destabilize the XY fixed point.
As a consequence we find the critical field theory �Eq. �13��
in terms of fractional particles �merons� coupled to noncom-
pact U�1� gauge fields at the quantum critical point of the
Nb=2 Abelian Higgs model in �2+1�D. On the other hand,
the IXY fixed point was shown to be unstable against instan-
ton excitations. In order to obtain deconfined spinons at the
IXY fixed point, the contribution of Berry phase seems to be
crucial.
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APPENDIX A

We briefly sketch how to derive Eq. �10� from Eq. �9� in
the absence of the vortex gauge field. This derivation is
based on Ref. 13. We consider the two flavor sine-Gordon
action

S =� dDx��

2
����1�2 +

�

2
����2�2 − ym cos��1 + �2�	 .

�A1�

Here we utilize an Wilsonian approach. We first divide the
��� field defined on the momentum cutoff � into low and
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high energy degrees of freedom, ���� and h�, respectively,

����x� = �����x� + h��x� ,

�����x� = �
0�p���

dDp

�2��Deip·x����p� ,

h��x� = �
���p��

dDp

�2��Deip·x����p� . �A2�

Inserting these low and high energy degrees of freedom into
the above Eq. �A1� and integrating over the high energy field
variables h�, we obtain the following expression of a parti-
tion function

Z� =� D�1�D�2�e−S���1�,�2��

=� D�1��Dh1D�2��Dh2e−S���1��+h1,�2��+h2�

=� D�1��D�2��e
−S̃���1��,�2���. �A3�

Here the effective action S̃���1�� ,�2��� defined on the mo-
mentum cutoff � is given by

e−S̃���1��,�2��� =� Dh1Dh2 exp�−� dDx��

2
����1���

2

+
�

2
����2���

2 +
�

2
���h1�2 +

�

2
���h2�2

− ym cos��1�� + �2�� + h1 + h2�	
� N exp�−� dDx��

2
����1���

2 +
�

2
����2���

2	
��e�dDxym cos��1��+�2��+h1+h2��h1,h2

, �A4�

where �. . .�h1,h2
represents averaging over the Gaussian action

of the high energy fields, Sh�h1 ,h2�=�dDx(�� /2����h1�2

+ �� /2����h2�2), and the constant N is given by N
=�Dh1Dh2e−Sh�h1,h2�. Expanding the exponential to the sec-
ond order in the fugacity �ym� expansion, we obtain the fol-

lowing expression of the effective action S̃���1�� ,�2���,

S̃���1��,�2��� =� dDx��

2
„���1���x�…2 +

�

2
„���2���x�…2 − ym�cos„�1���x� + �2���x� + h1�x� + h2�x�…�h1,h2


−� dDx� dDx�

ym
2

2
��cos„�1���x� + �2���x� + h1�x� + h2�x�…cos„�1���x�� + �2���x�� + h1�x�� + h2�x��…�h1,h2

− �cos„�1���x� + �2���x� + h1�x� + h2�x�…�h1,h2
�cos„�1���x�� + �2���x�� + h1�x�� + h2�x��…�h1,h2

� . �A5�

Now we evaluate the average of the cos potentials over the Gaussian action Sh�h1 ,h2� of the high energy fields h1, h2. The
term of the first order in the fugacity ym is obtained to be

�cos„�1���x� + �2���x� + h1�x� + h2�x�…�h1,h2
=

1

2
�ei�1���x�+i�2���x��eih1�x�+ih2�x��h1,h2

+ H.c.�

= exp�−
1

2
Gh1

�0� −
1

2
Gh2

�0�	cos„�1���x� + �2���x�…

= B1�0�B2�0�cos„�1���x� + �2���x�… . �A6�

Here Gh�
�x� is the propagator of the high energy fields, given by Gh�

�x�= �1/������p���dDp / �2��D�eip·x�1/ p2�, and its
associated factor B�, B�=exp�− 1

2Gh�
�0��. Gh1

=Gh2
is trivially shown, resulting in B1=B2. This is the reason why the factor 2

appears in Eq. �10�. Notice from the momentum integral that the quantities, G� and B� depend on the momentum cutoff. The
terms of the second order in the fugacity ym can be calculated in the same way

�cos„�1���x� + �2���x� + h1�x� + h2�x�…cos„�1���x�� + �2���x�� + h1�x�� + h2�x��…�h1,h2
− �cos„�1���x� + �2���x� + h1�x�

+ h2�x�…�h1,h2
�cos„�1���x�� + �2���x�� + h1�x�� + h2�x��…�h1,h2

=
1

4
B1

2�0��B1
2�x − x�� − 1�B2

2�0��B2
2�x − x�� − 1�cos„�1���x� + �1���x�� + �2���x� + �2���x��… +

1

4
B1

2�0��B1
−2�x − x�� − 1�B2

2�0�

��B2
−2�x − x�� − 1�cos„�1���x� − �1���x�� + �2���x� − �2���x��… �

1

4
B1

2�0��B1
2��� − 1�B2

2�0��B2
2��� − 1�cos„2�1���z�

+ 2�2���z�… +
1

4
B1

2�0��B1
−2��� − 1�B2

2�0��B2
−2��� − 1��1 −

1

2
„� · ��1���z� + � · ��2da��z�…2	 , �A7�

where z� 1
2 �x+x�� and ��x−x�.
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The last step in the Wilsonian RG approach is the rescaling in the coordinates x and the momentum cutoff ��. Inserting Eq.
�A6� and �A7� into Eq. �A5�, and performing the rescaling x→elx� in the resulting effective action Eq. �5�, we obtain the
following expression of the effective action

S����1��,�2��� =� dDx�eDl��

2
�1 +

ym
2

8�
B1

2�0�B2
2�0�Ae−2l

„����1���x��…2 +
�

2
�1 +

ym
2

8�
B1

2�0�B2
2�0�Ae−2l

„����2���x��…2

− ymB1�0�B2�0�cos„�1���x�� + �2���x��…	
=� dDx����

2
„����1���x��…2 +

��

2
„����2���x��…2 − ym� cos„�1���x�� + �2���x��…	 �A8�

with A=�dD��B1
−2���−1��B2

−2���−1��2. As a result we find
the scaling relations between the renormalized and bare cou-
plings

�� = e�D−2�l�1 +
ym

2

8�
B1

2�0�B2
2�0�A� ,

�A9�
ym� = eDlB1�0�B2�0�ym.

The above expressions completely coincide with those in
Ref. 13 when the two flavors are reduced to one flavor. Using
the cutoff dependent green function Gh�

�0���1/��l in ��
=e−l�, we obtain the cutoff dependent values, B��0�
=e−��1/��l and A=8	�2/��l, where � and 	 are positive nu-
merical constants. Inserting these into Eq. �A9� and expand-
ing the exponentials in the limit of l→0, we obtain the RG
equations, Eq. �10� for the stiffness � and instanton fugacity
ym. Notice that the two flavors �=1,2 lead to the numerical
factor 2 in Eq. �10�.
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