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We develop a new formulation of the functional renormalization group �RG� for interacting fermions. Our
approach unifies the purely fermionic formulation based on the Grassmannian functional integral, which has
been used in recent years by many authors, with the traditional Wilsonian RG approach to quantum systems
pioneered by Hertz �Phys. Rev. B 14, 1165 �1976��, which attempts to describe the infrared behavior of the
system in terms of an effective bosonic theory associated with the soft modes of the underlying fermionic
problem. In our approach, we decouple the interaction by means of a suitable Hubbard-Stratonovich transfor-
mation �following the Hertz approach�, but do not eliminate the fermions; instead, we derive an exact hierarchy
of RG flow equations for the irreducible vertices of the resulting coupled field theory involving both fermionic
and bosonic fields. The freedom of choosing a momentum transfer cutoff for the bosonic soft modes in addition
to the usual band cutoff for the fermions opens the possibility of new RG schemes. In particular, we show how
the exact solution of the Tomonaga-Luttinger model �i.e., one-dimensional fermions with linear energy disper-
sion and interactions involving only small momentum transfers� emerges from the functional RG if one works
with a momentum transfer cutoff. Then the Ward identities associated with the local particle conservation at
each Fermi point are valid at every stage of the RG flow and provide a solution of an infinite hierarchy of flow
equations for the irreducible vertices. The RG flow equation for the irreducible single-particle self-energy can
then be closed and can be reduced to a linear integrodifferential equation, the solution of which yields the result
familiar from bosonization. We suggest new truncation schemes of the exact hierarchy of flow equations,
which might be useful even outside the weak coupling regime.
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I. INTRODUCTION

In condensed matter and statistical physics the renormal-
ization group �RG� in the form developed by Wilson and
coauthors1–3 has been very successful. At the heart of this
intuitively appealing formulation of the RG lies the concept
of an effective action describing the physical properties of a
system at a coarse grained scale. Conceptually, the derivation
of this effective action is rather simple provided the theory
can be formulated in terms of a functional integral: one sim-
ply integrates out the degrees of freedom describing short-
wavelength fluctuations in a certain regime, and subse-
quently rescales the remaining degrees of freedom in order to
compare the new effective action with the original one. Of
course, in practice, the necessary functional integration can
almost never be performed analytically, so that one has to
resort to some approximate procedure.4 However, if the
elimination of the short wavelength modes is performed in
infinitesimal steps, one can write down a formally exact RG
flow equation describing the change of the effective action
due to mode elimination and rescaling. The earliest version
of such a functional RG equation has been derived by Weg-
ner and Houghton.5 Subsequently, many authors have de-
rived alternative versions of the functional RG with the same
physical content, using different types of generating func-
tionals. In particular, the advantages of working with the
generating functional of the one-particle irreducible vertices
have been realized early on by Di Castro, Jona-Lasinio, and
Peliti,6 and by Nicoll, Chang, and Stanley.7,8 The focus of the

above works was an accurate description of second-order
phase transitions at finite temperatures, where quantum me-
chanics is irrelevant.

In recent years, there has been much interest in quantum
systems exhibiting phase transitions as a function of some
nonthermal control parameter, such as pressure or density. In
a pioneering paper, Hertz9 showed how the powerful ma-
chinery of the Wilsonian RG can be generalized to study
quantum critical phenomena in Fermi systems. Technically,
this is achieved with the help of so-called Hubbard-
Stratonovich transformations, which replace the fermionic
two-particle interaction by a suitable bosonic field that
couples to a quadratic form in the fermion operators.10 The
fermions can then be integrated out in a formally exact way,
resulting in an effective action for the bosonic field. Of
course, there are many possible ways of decoupling fermi-
onic two-body interactions by means of Hubbard-
Stratonovich transformations. In the spirit of the usual
Ginzburg-Landau-Wilson approach to classical critical phe-
nomena, one tries to construct the effective bosonic theory
such that the field can be identified with the fluctuating order
parameter, or its field conjugate. However, if the system sup-
ports additional soft modes that couple to the order
parameter,11,12 an attempt to construct an effective field
theory in terms of the order parameter alone leads in general
to an effective action with singular and nonlocal vertices, so
that the usual RG methods developed for classical phase
transitions cannot be applied. In this case, it is better to con-
struct an effective action involving all soft modes explicitly.
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However, for a given problem the nature of the soft modes is
not known a priori, so that the explicit introduction of the
corresponding degrees of freedom by means of a suitable
Hubbard-Stratonovich transformation is always based on
some prejudice about the nature of the ground state and the
low-lying excitations of the system. Recently, the breakdown
of simple Ginzburg-Landau-Wilson theory has also been dis-
cussed in the context of quantum antiferromagnets by Senthil
et al.13

In order to have a completely unbiased RG approach for
interacting fermions, one can also apply the Wilsonian RG
directly to the Grassmannian functional integral representa-
tion of the partition function or the Green’s functions of an
interacting Fermi system.14 In the past ten years, several
groups have further developed this method.15–27 In particular,
the mode elimination step of the RG transformation has been
elegantly cast into formally exact differential equations for
suitably defined generating functionals. These functional
equations then translate to an infinite hierarchy of integro-
differential equations for the vertices. On a technical level, it
is often advantageous to work with the generating functional
of the one-particle irreducible vertices.6–8 For classical field
theories the exact RG flow equation for this generating func-
tional has been obtained by Wetterich,28 and by Morris.29 For
nonrelativistic fermions, the corresponding flow equation has
been derived by Salmhofer and Honerkamp19 and, indepen-
dently and in more explicit form, by Kopietz and Busche.20

However, the purely fermionic formulation of the Wilso-
nian RG has several disadvantages. In order to obtain at least
an approximate solution of the formally exact hierarchy of
RG flow equations for the vertices, severe truncations have
to be made, which can only be justified as long as the fermi-
onic four-point vertex �i.e., the effective interaction� remains
small. Hence, in practice the fermionic functional RG is re-
stricted to the weak coupling regime, so that possible strong
coupling fixed points are not accessible within this method.
Usually, one-loop truncated RG equations are iterated until at
least one of the marginal interaction constants becomes large,
which is then interpreted as a weak-coupling instability of
the Fermi system in the corresponding channel.16–18

Within the framework of the Wilsonian functional RG, a
consistent two-loop calculation has not been performed so
far due to the immense technical difficulties involved. Such a
calculation should also take into account the frequency de-
pendence of the effective interaction and the self-energy cor-
rections to the internal Green’s functions. Note that in the
work by Katanin and Kampf26 the frequency dependence of
the effective interaction has been ignored, so that the effect
of possible bosonic collective modes is not included in these
calculations. It is well known that two-loop calculations are
more conveniently performed using the field-theoretical RG
method, provided the physical problem of interest can be
mapped onto a renormalizable field theory. Ferraz and
coauthors30,31 recently used the field-theoretical RG to calcu-
late the single-particle Green function at the two loop level
for a special two-dimensional Fermi system with a flat Fermi
surface. Interestingly, they found a new non-Fermi liquid
fixed point characterized by a finite renormalized effective
interaction and a vanishing wave-function renormalization.
The running interaction without wave-function renormaliza-

tion diverges in this model, but the divergence is canceled by
the vanishing wave-function renormalization such that the
renormalized interaction remains finite.

Another difficulty inherent in any RG approach to Fermi
systems at finite densities arises from the fact that the true
Fermi surface of the interacting many-body system is not
known a priori. In fact, in dimensions D�1 interactions can
even change the symmetry of the Fermi surface.32,33 In a
perturbative approach, finding the renormalized Fermi sur-
face is a delicate self-consistency problem;34 if one starts
from the wrong Fermi surface one usually encounters un-
physical singularities.35 So far, the self-consistent renormal-
ization of the Fermi surface has not been included in the
numerical analysis of the one-loop truncated fermionic func-
tional RG. As shown in Refs. 20, 22, and 31, the renormal-
ized Fermi surface can be defined as a fixed point of the RG
and can in principle be calculated self-consistently entirely
within the RG framework.

The progress in overcoming the above difficulties inher-
ent in the RG approach to fermions using a purely fermionic
parametrization has been rather slow. In our opinion, this has
a simple physical reason: the low lying excitations �i.e., soft
modes� of an interacting Fermi system consist not only of
fermionic quasiparticles, but also of bosonic collective
excitations.36 The latter are rather difficult to describe within
the purely fermionic parametrizations used in Refs. 15–27.
Naturally, a formulation of the functional RG where both
fermionic and bosonic excitations are treated on equal foot-
ing should lead to a more convenient parametrization. Such a
strategy seems also natural in light of the observation by
Kirkpatrick, Belitz, and co-workers11 �see also Ref. 12� that
an effective low-energy and long-wavelength action with
well-behaved vertices is only obtained if the soft modes are
not integrated out, but appear explicitly as quantum fields.

Our aim in this work is to set up a functional renormal-
ization group scheme that allows for a simultaneous treat-
ment of fermionic as well as collective bosonic degrees of
freedom. This is done by explicitly decoupling the interac-
tion via a Hubbard-Stratonovich transformation in the spirit
of Hertz9 and then considering the functional renormalization
group equations for the mixed field theory involving both
fermionic and bosonic fields. This type of approach has been
suggested previously by Correia, Polonyi, and Richert,37 who
studied the homogeneous electron gas by means of a gradient
expansion of a functional version of a Callan-Symanzik
equation. Here, we follow the more standard approach and
derive a hierarchy of flow equations for the vertex functions
of our coupled Fermi-Bose theory. A related approach has
also been developed by Wetterich and coauthors.38,39 How-
ever, they discussed only a simple truncation of the exact
hierarchy of RG flow equations involving an effective poten-
tial in a bosonic sector and a momentum-independent
Yukawa coupling. They did not pay any attention to the
problem of the compatibility of the RG flow with Ward iden-
tities, which play a crucial role for interacting fermions with
dominant forward scattering. Our procedure bridges the gap
between the purely bosonic approach to quantum critical
phenomena by Hertz9 and the purely fermionic functional
RG method developed in the past decade by several
authors.15–27 Contrary to the approach by Hertz,9 in our ap-
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proach the fermionic degrees of freedom are still present, so
that the feedback of the collective bosonic modes on the
one-particle spectral properties of the fermions can be stud-
ied.

The parametrization of the low-lying excitations of an in-
teracting Fermi system in terms of collective bosonic fields is
most natural in one spatial dimension,40,41 where Fermi-
liquid theory breaks down and is replaced by the Luttinger-
liquid concept.41 An exactly solvable paradigm of a Luttinger
liquid is the Tomonaga-Luttinger model �TLM�,40–42 consist-
ing of fermions with exactly linear energy dispersion and
interactions involving only small momentum transfers. A de-
scription in terms of bosonic variables is well known to pro-
vide an exact solution for thermodynamic quantities as well
as correlation functions.40–42 One might then wonder if it is
also possible to obtain the complete form of the correlation
functions of the TLM entirely within the framework of the
functional RG. An attempt21 to calculate the momentum- and
frequency- dependent single-particle spectral function
A�k ,�� of the TLM by means of an approximate iterative
two-loop solution of the functional RG equations at weak
coupling yields the correct behavior of A�±kF ,�� known
from bosonization �where kF is the Fermi momentum�, but
yields incorrect threshold singularities for momenta away
from ±kF. In this work we go considerably beyond Ref. 21
and show how the TLM can be solved exactly using our
mixed fermionic-bosonic functional RG. A crucial point of
our method is that the RG can be set up in such a way that
the Ward identities underlying the exact solubility of the
TLM43–45,47 are preserved by the RG. This is not the case in
the purely fermionic formulation of the functional RG.27

Very recently, Benfatto and Mastropietro48 also developed
an implementation of the RG for the TLM which takes the
asymptotic Ward identities into account. However, these au-
thors did not introduce bosonic collective fields and did not
attempt to calculate the exact single-particle Green’s func-
tion.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model, carry out the decoupling of the in-
teraction and set up a compact notation which turns out to
facilitate the bookkeeping in the derivation of the functional
RG equations that is presented in detail in Sec. III. In Sec.
IV, we introduce a new RG scheme which uses the momen-
tum transfer of the effective interaction as a cutoff. We show
that for linearized energy dispersion the resulting infinite hi-
erarchy of flow equations for the irreducible vertices involv-
ing two external fermion legs and an arbitrary number of
external boson legs can be solved exactly by means of an
infinite set of Ward identities. Using these identities, the flow
equation for the irreducible self-energy can then be reduced
to a closed linear integro-differential equation, which can be
solved exactly. In one dimension, we recover in Sec. IV C
the exact solution of the Tomonaga-Luttinger model in the
form familiar from functional bosonization.47,49 Finally, in
Sec. V, we summarize our results and give a brief outlook on
possible further applications of our method. There are three
appendices where we present some more technical details. In
Appendix A, we use our compact notation introduced in Sec.
II to discuss the structure of the tree expansion in our
coupled Fermi-Bose theory. Appendix B contains a deriva-

tion of the skeleton diagrams for the first few irreducible
vertices of our theory using the Dyson-Schwinger equations
of motion, which follow from the invariance of the func-
tional integral with respect to infinitesimal shift transforma-
tions. Finally, in Appendix C we use the gauge invariance of
the mixed Fermi-Bose action to derive a cascade of infinitely
many Ward identities involving vertices with two fermion
legs and an arbitrary number of boson legs.

II. INTERACTING FERMIONS AS COUPLED
FERMI-BOSE SYSTEMS

In this section we discuss the Hubbard-Stratonovich trans-
formation and set up a condensed notation to treat fermionic
and bosonic fields on the same footing. This will allow us to
keep track of the rather complicated diagrammatic structure
of the flow equations associated with our coupled Fermi-
Bose system in a very efficient way. A similar notation has
been used previously in Refs. 19 and 39.

A. Hubbard-Stratonovich transformation

We consider a normal fermionic many-body system with
two-particle density-density interactions. In the usual Grass-
mannian functional integral approach10 the grand-canonical
partition function and all �imaginary�-time-ordered Green’s
functions can be represented as functional averages involv-
ing the following Euclidean action:

S��̄,�� = S0��̄,�� + Sint��̄,�� , �2.1�

S0��̄,�� = �
�
�

K

�̄K��− i� + �k���K�, �2.2�

Sint��̄,�� =
1

2 �
���
�

K̄

f
k̄

���
�̄K̄��K̄��, �2.3�

where the composite index K= �i� ,k� contains a fermionic
Matsubara frequency i� as well as an ordinary wave vector
k. Here the energy dispersion �k�=�k�−� is measured rela-

tive to the chemical potential �, and f
k̄

��� are some
momentum-dependent interaction parameters. Throughout
this paper, labels with an overbar refer to bosonic frequen-
cies and momenta, while labels without an overbar refer to
fermionic ones. We have normalized the Grassmann fields

�K� and �̄K� such that the integration measure in Eq. �2.1� is

�
K

=
1

	V
�
�,k

→
	,V→
� d�

2�

dDk

�2��D , �2.4�

where 	 is the inverse temperature and V is the volume of
the system. The Fourier components of the density are rep-
resented by the following composite field:

�K̄� = �
K

�̄K��K+K̄,�, �2.5�

which implies �̄K̄�=�−K̄�. The discrete index � is formally
written as a spin projection, but will later on also serve to
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distinguish right and left moving fields in the Tomonaga-
Luttinger model. This is why a dependence of the dispersion
�k� on � has been kept.

The interaction is bilinear in the densities and can be
decoupled by means of a Hubbard-Stratonovich
transformation.47 The interaction is then mediated by a real
field � and the resulting action reads as

S��̄,�,�� = S0��̄,�� + S0��� + S1��̄,�,�� , �2.6�

where the free bosonic part is given by

S0��� =
1

2 �
���
�

K̄

�f
k̄

−1�����
K̄�

*
�K̄��, �2.7�

and the coupling between Fermi and Bose fields is

S1��̄,�,�� = i�
�
�

K̄

�̄K̄��K̄� = i�
�
�

K
�

K̄

�̄K+K̄,��K��K̄�.

�2.8�

The Fourier components of a real field satisfy �
K̄�

*
=�−K̄�.

For the manipulations in the next section it will prove advan-
tageous to further condense the notation and collect the fields

in a vector 
= �� , �̄ ,��. The quadratic part of the action can
then be written in the symmetric form

S0�
� = S0��̄,�� + S0��� = −
1

2
�
,�G0�−1
�

= −
1

2
�

�
�

��

��G0����

−1

��, �2.9�

where G0 is now a matrix in frequency, momentum, spin,
and field-type indices, and � is a “super label” for all of these
indices. The symbol �� denotes integration over the continu-
ous components and summation over the discrete compo-
nents of �. The matrix G0

−1 has the block structure

G0
−1 = � 0 ��Ĝ0

−1�T 0

Ĝ0
−1 0 0

0 0 − F̂0
−1
	 , �2.10�

where50 �=−1 and Ĝ0 and F̂0 are infinite matrices in fre-
quency, momentum, and spin space, with matrix elements

�Ĝ0�K�,K��� = �K,K�����G0,��K� , �2.11�

�F̂0�K̄�,K̄��� = �K̄+K̄�,0F0,����K̄� , �2.12�

where

G0,��K� = �i� − �k��−1, �2.13�

F0,����K̄� = f
k̄

���. �2.14�

The Kronecker �K,K�=	V��,���k,k� appearing in Eqs. �2.11�
and �2.12� is normalized such that it reduces to Dirac � func-
tions �K,K�→ �2��D+1���−�����D��k−k�� in the limit 	 ,V

→
. Note that the bare interaction plays the role of a free
bosonic Green’s function. For later reference, we note that
the inverse of Eq. �2.10� is

G0 = � 0 Ĝ0 0

�Ĝ0
T 0 0

0 0 − F̂0

	 , �2.15�

and that the transpose of G0 satisfies

G0
T = ZG0 = G0Z , �2.16�

where the “statistics matrix” Z is defined by

�Z���� = ������. �2.17�

Here, ��=−1 if the superindex � refers to a Fermi field, and
��=1 if � labels a Bose field.

B. Generating functionals

1. Generating functional of connected Green’s functions

We now introduce sources J� and define the generating
functional G�J� of the Green’s functions as follows:

G�J� = eGc�J� =
1

Z0
� D
 e−S0−S1+�J,
�. �2.18�

Here, Gc�J� is the generating functional for connected
Green’s functions and the partition function Z0 of the non-
interacting system can be written as the Gaussian integral,

Z0 =� D
 e−S0. �2.19�

Let us use the compact notation

�J,
� = �
�

J�
�. �2.20�

Conventionally, the source terms for fields of different types
are written out explicitly in the form10

�J,
� = �j̄,�� + ��̄, j� + �J*,�� = �
�
�

K

j̄K��K�

+ �
�
�

K

�̄K�jK� + �
�
�

K̄

J
K̄�

*
�K̄�. �2.21�

A comparison between Eq. �2.20� and Eq. �2.21� shows that
the sources in the compact notation are related to the stan-

dard ones by J= �j̄ ,�j ,J*�. The connected n-line Green’s
functions Gc,�1. . .�n

�n� are then defined via the functional Taylor
expansion

Gc�J� = �
n=0



1

n!
�

�1

¯ �
�n

Gc,�1. . .�n

�n� J�1
· . . . · J�n

,

�2.22�

implying
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Gc,�1. . .�n

�n� =
 ��n�Gc�J�
�J�n

¯ �J�1



J=0

. �2.23�

In particular, the exact Green’s function of our interacting
system is given by

�G���� = −
 ��2�Gc

�J��J��



J=0

= − Gc,���
�2� , �2.24�

which we shall write in compact matrix notation as

G = − 
 ��2�Gc

�J �J



J=0
= � 0 Ĝ 0

�ĜT 0 0

0 0 − F̂
	 . �2.25�

For the last equality, it has been assumed that no symmetry
breaking occurs. Thus, G has the same block structure as the
noninteracting G0 in Eq. �2.15� so that, similarly to Eq.
�2.16�,

GT = ZG = GZ . �2.26�

In the noninteracting limit �S1→0� one easily verifies by
elementary Gaussian integration that the matrix G given in
Eq. �2.24� reduces to G0, as defined in Eq. �2.15�. The self-
energy matrix also has the same block structure as the in-
verse free propagator. Dyson’s equation then reads as

G−1 = G0
−1 − � , �2.27�

where the matrix � contains the one-fermion-line irreducible
self-energy ���K� and the one-interaction-line irreducible

polarization ���K̄� in the following blocks:

� = �0 ���̂�T 0

�̂ 0 0

0 0 �̂
	 , �2.28�

where

��̂�K�,K��� = �K,K��������K�� , �2.29�

��̂�K̄�,K̄��� = �K̄+K̄�,0�������K̄�� . �2.30�

These matrices are spin-diagonal because the bare coupling

S1��̄ ,� ,�� between Fermi and Bose fields in Eq. �2.8� is
diagonal in the spin index. The blocks of the full Green’s
function matrix G in Eq. �2.25� contain the exact single-
particle Green’s function and the effective �screened� inter-
action,

�Ĝ�K�,K��� = �K,K�����G��K� , �2.31�

�F̂�K̄�,K̄��� = �K̄+K̄�,0F����K̄� , �2.32�

with

G��K� = �G0,�
−1 �K� − ���K��−1, �2.33�

F����K̄� = �F̂0
−1 + �̂�

K̄�,−K̄��

−1
. �2.34�

2. Generating functional of one-line irreducible vertices

Below, we shall derive exact functional RG equations for
the one-line irreducible vertices of our coupled Fermi-Bose
theory. The diagrammatic perturbation theory consists of
both fermion and boson lines. We require irreducibility with
respect to both types of lines and call this one-line irreduc-
ibility. One should keep in mind that a boson line represents
the two-body electron-electron interaction which is screened
by zero-sound bubbles for small momentum transfers. This
means that in fermionic language our vertices are not only
one-particle irreducible but are also approximately two-
particle irreducible in the zero-sound channel in the sense
that particle-hole bubbles are eliminated in favor of the ef-
fective bosonic propagator. In order to obtain the generating
functional of the corresponding irreducible vertices, we per-
form a Legendre transformation with respect to all field com-
ponents, introducing the classical field51


� =
�Gc

�J�

. �2.35�

After inverting this relation for J=J�
� we may calculate the
Legendre effective action,

L�
� = �J�
�,
� − Gc�J�
�� . �2.36�

From this we obtain

J� = ��

�L
�
�

, �2.37�

which we may write in compact matrix notation as

J = Z
�L
�


. �2.38�

In this notation the chain rule simply reads as

�

�

=

��2�L
�
 �


Z
�

�J
. �2.39�

Applying this to both sides of Eq. �2.35� we obtain

1 =
�


�

=

��2�L
�
 �


Z
��2�Gc

�J �J
. �2.40�

For vanishing fields 
 and J this yields


 ��2�L
�
 �





=0

= − ZG−1 = − �G−1�T. �2.41�

The advantage of our compact notation is now obvious: the
minus signs associated with the Grassmann fields can be
neatly collected in the “statistics matrix” Z. If the Grassmann
sources are introduced in the conventional way,10 the minus
signs generated by commuting two Grassmann fields are dis-
tributed in a more complicated manner in the matrices of
second derivatives.20,37

From Eq. �2.41� it is evident that we need to subtract the
free action from L�
� to obtain the generating functional for
the irreducible vertex functions,
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��
� = L�
� − S0�
� = L�
� +
1

2
�
,�G0

−1�
� .

�2.42�

Then we have, using the Dyson equation �2.27�,


 ��2��

�
 �





=0
= 
 ��2�L

�
 �





=0
+ �G0

−1�T = − �G−1�T + �G0
−1�T

= �T. �2.43�

In general, the one-line irreducible vertices are defined as
coefficients in an expansion of ��
� with respect to the
fields,

��
� = �
n=0



1

n!
�

�1

¯ �
�n

��1,. . .,�n

�n� 
�1
· . . . · 
�n

.

�2.44�

The vertices ��n� have the same symmetry with respect to
interchange of the indices as the monomial in the fields, i.e.,
the interchange of two neighboring Fermi fields yields a mi-
nus sign. Graphically, we represent the vertices ��n� by an
oriented circle with n external legs, as shown in Fig. 1. With
the definition �2.44� and Eq. �2.43� we have �

���
�2� = ������.

The fact that also the higher-order vertices ��n� defined in Eq.
�2.44� are indeed one-line irreducible �i.e., cannot be sepa-
rated into two parts by cutting a single fermion line or a
single interaction line� can be shown iteratively by generat-
ing a tree expansion from higher-order derivatives of Eq.
�2.40�. We show this explicitly in Appendix A.

III. FUNCTIONAL RG FLOW EQUATIONS
FOR ONE-LINE IRREDUCIBLE VERTICES

In this section we derive exact RG flow equations for the
generating functional of the one-line irreducible vertices of
our coupled Fermi-Bose theory. We also classify the various
vertices of the theory based on their scaling dimensions and
propose a new truncation scheme involving the building
blocks of the skeleton diagrams for fermionic and bosonic
two-point functions.

A. Cutoff schemes

Since the interaction now appears as a propagator of the
field �, it is possible to introduce a momentum-transfer cut-
off in the interaction on the same footing as a bandwidth
cutoff. A bandwidth cutoff restricts the relevant fermionic
degrees of freedom to the vicinity of the Fermi surface, and
appears to be most natural in the RG approach to fermions in
one spatial dimension.52 In higher dimensions, the Wilsonian
idea of eliminating the degrees of freedom in the vicinity of
the Fermi surface is implemented by defining for each mo-
mentum k an associated kF by means of a suitable projection
onto the Fermi surface20 and then integrating over fields with
momenta in the energy shell v0�� ��k−�kF

��v0�0, where
�k is the energy dispersion in the absence of interactions.
Here v0 is some suitably defined velocity �for example, some
average Fermi velocity�, which we introduce to give � units
of momentum. We shall refer to v0� as bandwidth cutoff.
Formally, we introduce such a cutoff into our theory by sub-
stituting for the free fermionic Green’s function in Eq.
�2.13�,

G0,��K� → ��� � DK � �0�G0,��K� =
��� � DK � �0�

i� − �k�

,

�3.1�

with

DK = ��k − �kF
�/v0. �3.2�

Here ����x��0�=1 if the logical expression in the brack-
ets is true, and ����x��0�=0 if the logical expression is
false. Ambiguities associated with the sharp �-function cut-
off can be avoided by smoothing out the � functions and
taking the sharp cutoff limit at the end of the calculation.29 In
order to construct a consistent scaling theory, the kF in Eq.
�3.2� should refer to the true Fermi surface of the interacting
system, which can in principle be obtained self-consistently
from the condition that the RG flows into a fixed point.20,22

The above bandwidth-cutoff procedure has several disad-
vantages. On the one hand, for any finite value of the cutoff
parameter v0� the Ward identities are violated.27 Moreover,
the RG flow of two-particle response functions probing the
response at small momentum transfers �such as the com-
pressibility or the uniform magnetic susceptibility� is artifi-
cially suppressed by the bandwidth cutoff. To cure the latter
problem, various other parameters have been proposed to
serve as a cutoff for the RG, such as the temperature18 or
even the strength of the interaction.53 While for practical
calculations these new cutoff schemes may have their advan-
tages, the intuitively appealing RG picture that the coarse
grained parameters of the renormalized theory contain the
effect of the degrees of freedom at shorter length scales and
higher energies gets somewhat blurred �if not completely
lost� by these new schemes.

The above mentioned problems can be elegantly avoided
in our mixed Fermi-Bose theory if we work with a momen-
tum cutoff in the bosonic sector of our theory, which
amounts to replacing in Eq. �2.14�,

FIG. 1. Graphical representation of the symmetrized one-line
irreducible n-point vertex defined via Eq. �2.44�. Because for fer-
mions the order of the indices is important �exchanging two neigh-
boring fermion legs will generate a minus sign� the circles repre-
senting the irreducible vertices have an arrow that points to the leg
corresponding to the first index; subsequent indices are arranged in
the order indicated by the arrow. External legs denote either outgo-

ing fermions ��̄�, incoming fermions ���, or bosons ���.
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F0,����K̄� → ��� � D̄K̄ � �0�F0,����K̄�

= ��� � D̄K̄ � �0�f
k̄

���, �3.3�

where

D̄K̄ = �k̄� . �3.4�

Keeping in mind that the bosonic field mediates the effective
interaction, it is clear that � is a cutoff for the momentum
transfer of the interaction. This is precisely the same cutoff
scheme employed in the seminal work by Hertz,9 who dis-
cussed also more general frequency-dependent cutoffs for
the labels of the bosonic Hubbard-Stratonovich fields, corre-

sponding to more complicated functions D̄K̄ than the one
given in Eq. �3.4�. Moreover, in the exact solution of the
one-dimensional Tomonaga-Luttinger model �abbreviated
here as TLM, as already defined above� by means of a care-
ful application of the bosonization method,54 the maximal
momentum transfered by the interaction appears as the natu-
ral cutoff scale.

In our RG approach we have the freedom of choosing
both the bandwidth cutoff v0� and the momentum-transfer
cutoff � independently. In particular, we may even choose to
get rid of the bandwidth cutoff completely and work with a
momentum-transfer cutoff only. In this work, we shall show
that if the interaction involves only small momentum trans-
fers, then the pure momentum-transfer cutoff scheme indeed
regularizes all infrared singularities in one dimension. More-
over and most importantly, introducing a cutoff only in the
momentum transfer leads to exact RG flow equations that do
not violate the Ward identities responsible for the exact solu-
bility of the TLM. Given this fact, it is not surprising that we
can solve the infinite hierarchy of RG flow equations exactly
and obtain the exact single-particle Green’s function of the
TLM within the framework of the functional RG.

B. Flow equations for completely symmetrized vertices

With the substitutions �3.1� and �3.3�, the noninteracting
Green’s function G0, and hence all generating functionals,
depend on the cutoff parameter �. We can now follow the
evolution of the generating functionals as we change the cut-
off. The differentiation of Eq. �2.18� with respect to � yields
for the generating functional of the Green’s functions,

��G = �1

2

 �

�J
,���G0

−1�
�

�J
� − �� ln Z0�G . �3.5�

For the connected version Gc�J�=ln G�J�, we obtain

��Gc =
1

2

�Gc

�J
,���G0

−1�
�Gc

�J
� +

1

2
Tr
���G0

−1����2�Gc

�J �J
�T�

− �� ln Z0. �3.6�

In the derivation of flow equations for L or � �see Eqs.
�2.36� and �2.42��, we should keep in mind that in these
functionals the fields 
 are held constant rather than the
sources J. Hence, Eq. �2.36� implies

��L�
� = − ���Gc�J��J=J��
�. �3.7�

Using this and Eq. �3.6� we obtain for the functional ��
�
=L�
�−S0�
�,

��� = −
1

2
Tr
���G0

−1����2�Gc

�J �J
�T� + �� ln Z0. �3.8�

To derive a closed equation for �, we express the matrix
��2�Gc /�J �J in terms of derivatives of � using Eq. �A4�.
After some rearrangements we obtain the exact flow equation
for the generating functional ��
� of the one-line irreducible
vertices,

��� = −
1

2
Tr�ZĠTUT�1 − GTUT�−1�

−
1

2
Tr�ZĠ0

T�T�1 − G0
T�T�−1� , �3.9�

where the matrix U�
� is the field-dependent part of the
second functional derivative of ��
�, as defined in Eq. �A1�.
For convenience we have introduced the single-scale propa-

gator Ġ as

Ġ = − G���G0
−1�G = �1 − G0��−1���G0��1 − �G0�−1,

�3.10�

which reduces to Ġ0=��G0 in the absence of interactions.

The matrix Ġ has the same block structure as the matrix G in

Eq. �2.25�. We denote the corresponding blocks by Ĝ
˙

and F̂
˙
.

In the limit of a sharp �-function cutoff29 the blocks of the
single scale propagator are explicitly given by

�Ĝ˙ �K�,K��� = �K,K�����Ġ��K� , �3.11�

�F̂˙ �K̄�,K̄��� = �K̄+K̄�,0Ḟ����K̄� , �3.12�

with

Ġ��K� = −
��� − DK�

i� − �k� − ���K�
, �3.13�

Ḟ����K̄� = − ��� − D̄K̄��F̂0
−1 + �̂�

K̄�,−K̄��

−1
, �3.14�

where on the right-hand side of Eq. �3.14� it is understood
that the �-function cutoff should be omitted from the matrix

elements of F̂0.
The second line in Eq. �3.9� does not depend on the fields

any longer and therefore represents the flow of the interac-
tion correction ��0� to the grand-canonical potential,

����0� = −
1

2
Tr�ZĠ0

T�T�1 − G0
T�T�−1� . �3.15�

Since we have already dropped constant parts of the action in
the Hubbard-Stratonovich transformation, we will not keep
track of ��0� in the following.

The first line on the right-hand side of Eq. �3.9� gives the
flow of one-line irreducible vertices. We can generate a hier-
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archy of flow equations for the vertices by expanding both
sides in powers of the fields. On the left-hand side, we sim-
ply insert the functional Taylor expansion �2.44� of ��
�,
while on the right-hand side we substitute the expansion of
U�
� given in Eq. �A7�. For a comparison of the coefficients
on both sides, the right-hand side has to be symmetrized with
respect to external lines on different vertices. We can write
down the resulting infinite system of flow equations for the
one-line irreducible vertices ��n� with n�1 in the following
closed form:

����1,. . .,�n

�n� = −
1

2�
l=1




�
m1,. . .,ml=1




�n,m1+. . .+ml

�S�1,. . .,�m1
;�m1+1,. . .,�m1+m2

;. . .;�m1+. . .+ml−1+1,. . .,�n
�

Tr�ZĠT��1,. . .,�m1

�m1+2�T GT��m1+1,. . .,�m1+m2

�m2+2�T

�GT · . . . · ��m1+. . .+ml−1+1,. . .,�n

�ml+2�T �� . �3.16�

Here the matrices ��1. . .�m

�m+2� are given in Eq. �A8� and the
symmetrization operator S is defined in Eq. �A11�. The effect
of S is rather simple: it acts on an expression already sym-

metric in the index groups separated by semicolons to gen-
erate an expression symmetric also with respect to the ex-
change of indices between different groups. From one
summand in Eq. �3.16� the symmetrization operator S thus
creates n! / �m1!¯ml!� terms.

Figures 2 and 3 show a graphical representation of the
flow of the vertices ��2� and ��3�. With the graphical notation
for the totally symmetric vertices introduced in Fig. 1 all the
signs and combinatorics have a graphical representation. In
the next section we will leave the shorthand notation and go
back to more physical vertices, explicitly exhibiting the dif-
ferent types of fields. All this can be done on a graphical
level and involves only straightforward combinatorics. In
this sense the derivation of higher flow equations is at the
same level of complexity as ordinary Feynman graph expan-
sions.

C. Flow equations for physical vertices

Usually, the generating functional ���̄ ,� ,�� is expanded
in terms of correlation functions that are not symmetrized
with respect to the exchange of legs involving different types
of fields. If we explicitly display momentum and frequency
conservation, such an expansion reads as

���̄,�,�� = �
n=0




�
m=0



1

�n!�2m!
�

K1��1�
¯ �

Kn��n�
�

K1�1

¯ �
Kn�n

�
K̄1�̄1

¯ �
K̄m�̄m

�K1�+. . .+Kn�,K1+. . .+Kn+K̄1+. . .+K̄m

���2n,m��K1��1�, . . . ,Kn��n�;K1�1, . . . ,Kn�n;K̄1�̄1, . . . ,K̄m�̄m�

��̄K1��1�
· . . . · �̄Kn��n�

�K1�1
· . . . · �Kn�n

�K̄1�̄1
· . . . · �K̄m�̄m

. �3.17�

Diagrammatically, we represent a physical vertex ��2n,m� in-
volving 2n external fermion legs and m external boson legs
by a triangle to emphasize that our theory contains three
types of fields; see Fig. 4. We represent a leg associated with
a �̄ field by an arrow pointing outward, a leg for � by an
arrow pointing inward, and a leg for � with a wiggly line
without an arrow. Recall that our Bose field is real because it
couples to the density, so that it should be represented
graphically by an undirected line. On the contrary, for a
propagator G or Ġ, the field �̄ is represented by an arrow

pointing inward and � by an arrow pointing outward. Apart
from the energy-and momentum-conserving delta function,
the totally symmetric vertices defined by the expansion
�2.44� coincide with the nonsymmetric ones in Eq. �3.17� for
the same order of the indices. We can therefore obtain the
flow equations for the nonsymmetric vertices by choosing a
definite realization of the external legs and by carrying out
the intermediate sums over the different field species, i.e., by
drawing all possible lines in the intermediate loop �two pos-
sible orientations of solid lines or one wiggly line�. On the

FIG. 2. Graphical representation of Eq. �3.16� for n=2, describing the flow of the totally symmetric two-point vertex. Empty circles with

G and Ġ denote the exact matrix propagator G and the single-scale propagator Ġ defined in Eqs. �2.24� and �3.10�, respectively.
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right-hand side one then has to appropriately order all the
legs on the vertices, keeping track of signs for the inter-
change of two neighboring fermion legs. Having done so, we
can use the pictorial dictionary in Fig. 4 to obtain diagrams
involving the physical correlation functions. In this way, we
obtain from the diagram for the completely symmetric two-
point vertex shown in Fig. 2 the diagram for the fermionic
self-energy in Fig. 5 as well as the diagram for the irreduc-
ible polarization shown in Fig. 6. Moreover, if we specify the
external legs in the diagram for the completely symmetric
three-legged vertex shown in Fig. 3 to be two fermion legs
and one boson leg, we obtain the flow equation for the three-
legged vertex shown in Fig. 7.

The flow equation for the vertex correction in Fig. 7 looks
very complicated, so that at this point the reader might won-
der how in one dimension we will be able to obtain the exact
solution of the TLM using our approach. We shall explain
this in detail in Sec. IV but let us anticipate here the crucial
step: obviously all diagrams shown in Figs. 5–7 can be sub-
divided into two classes: those involving a fermionic single-
scale propagator �the slash appears on an internal fermion
line�, and those with a bosonic single-scale propagator �with
a slash on an internal boson line�. At this point we have not
specified the cutoff procedure, but as mentioned in the Intro-
duction, in Sec. IV we shall work with a bosonic cutoff only.
In this case all diagrams with a slash attached to a fermion
line should simply be omitted. This is the crucial simplifica-
tion which will allow us to solve the hierarchy of flow equa-
tions exactly. Let us proceed in this section without specify-
ing a particular cutoff procedure.

D. Rescaling and classification of vertices

In order to assign scaling dimensions to the vertices, we
have to define how we rescale momenta, frequencies, and
fields under the RG transformation. The rescaling is not
unique but depends on the nature of the fixed point we are

FIG. 3. Graphical representa-
tion of Eq. �3.16� for n=3, de-
scribing the flow of the totally
symmetric three-point vertex.

FIG. 4. Pictorial dictionary to translate graphs involving totally
symmetrized vertices to ones involving physical vertices, which are
only symmetrized within fields of the same type. The diagrams on

the right-hand sides of the last four lines represent G, Ġ, F, and Ḟ,
respectively.

FIG. 5. Flow of the irreducible fermionic self-energy. The dia-
grams are obtained from the diagrams shown in Fig. 2 by specifying
the external legs to be one outgoing and one incoming fermion leg.
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looking for. Let us be general here and assume that in the
bosonic sector the relation between momentum and fre-
quency is characterized by a bosonic dynamic exponent z�

�this is the exponent z introduced by Hertz9�, while in the
fermionic sector the corresponding dynamic exponent is z�.
Rescaled dimensionless bosonic momenta q̄ and frequencies
�̄ are then introduced as usual,9

q̄ = k̄/�, �̄ = �̄/�̄�, �̄� � �z�. �3.18�

For convenience, we choose the factor �̄� such that it has
units of energy; �̄ is then dimensionless.

The proper rescaling of the fermionic momenta is not so
obvious. Certainly, all momenta should be measured with
respect to suitable points kF on the Fermi surface. One pos-
sibility is to rescale only the component k� = �k−kF� · v̂F of a
given momentum that is parallel to the local Fermi surface
velocity vF �and hence perpendicular to the Fermi
surface�,14,20 where v̂F is a unit vector in the direction of vF.
Unfortunately, in dimensions D�1 this leads to rather com-
plicated geometric constructions, because in a fixed reference
frame the component k� to be rescaled varies for different
points on the Fermi surface. However, if the initial
momentum-transfer cutoff �0 in Eq. �3.3� is small compared
with the typical radius of the Fermi surface, the initial and
final momenta associated with a scattering process lie both
on nearby points on the Fermi surface. In this case it seems
natural to pick one fixed reference point kF,� on the Fermi
surface, and then measure all fermionic momentum labels ki

and ki� in ��2n,m��K1� , . . . ,Kn� ;K1 , . . . ,Kn ; K̄1 , . . . , K̄m� relative
to this kF,�. Here, the index � labels the different points on
the Fermi surface, for example, in one dimension �= ±1,
with kF,±1= ±kF. We then define rescaled fermionic momenta
q and frequencies � as follows:

q = �k − kF,��/�, � = �/��, �� � �z�. �3.19�

The factor �� should again have units of energy such that �
is dimensionless. Iterating the usual RG steps consisting of

mode elimination and rescaling, we then coarse grain the
degrees of freedom in a sphere around the chosen point
kF,�. Because by assumption the maximal momentum
transfer mediated by the interaction is small compared
with �kF,��, the fermionic momenta appearing in

��2n,m��K1� , . . . ,Kn� ;K1 , . . . ,Kn ; K̄1 , . . . , K̄m� are all in the vi-
cinity of the chosen kF,�. This property is also responsible
for the approximate validity of the closed loop theorem for
interacting fermions with dominant forward scattering in ar-
bitrary dimensions.45,47,49

Apart from the rescaling of momenta and frequencies, we
have to specify the rescaling of the fields. As usual, we re-

quire that the Gaussian part S0�
�=S0��̄ ,��+S0��� of our
effective action is invariant under rescaling. For the fermi-

onic part this is achieved by defining renormalized fields �̃Q�

in D dimensions via

FIG. 6. Flow of the irreducible polarization, obtained from the
totally symmetric diagram in Fig. 2 by setting both external legs
equal to boson legs. Note that each closed fermion loop gives rise to
an additional factor of �=−1.

FIG. 7. Flow of three-legged vertex with two fermion legs and
one boson leg, obtained as a special case of the diagram in Fig. 3.
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�K� = 
 Z

�D��
2 �1/2

�̃Q�, �3.20�

where Z is the fermionic wave-function renormalization fac-
tor and Q= �q , i�� denotes the rescaled fermionic momenta
and Matsubara frequencies as defined in Eq. �3.19�. With this
rescaling the wave-function renormalization and the Fermi
velocity have a vanishing scaling dimension �corresponding
to marginal couplings�, while the momentum- and
frequency-independent part of the self-energy is relevant
with scaling dimension +1; see Ref. 20. Analogously, we find
that the bosonic Gaussian part of the action is invariant under
rescaling if we express it in terms of the renormalized
bosonic field �̃Q̄� defined by

�K̄� = 
 Z̄

�D�̄��0

�1/2

�̃Q̄�, �3.21�

where Z̄ is the bosonic wave-function renormalization factor,

Q̄= �q̄ , i�̄� denotes the rescaled bosonic momenta and Mat-
subara frequencies defined in Eq. �3.18�, and �0 denotes the
noninteracting density of states at the Fermi surface. We in-
troduce the factor of �0 for convenience to make all rescaled
vertices dimensionless. By construction Eq. �3.21� assigns
vanishing scaling dimensions to the bare interaction param-

eters f
k̄

���, corresponding to marginal Landau interaction pa-
rameters.

Expressing each term in the expansion of the generating

functional ���̄ ,� ,�� given in Eq. �3.17� in terms of the re-
scaled variables defined above and using the fact that � is
dimensionless, we obtain the scaling form of the vertices.
Omitting for simplicity the degeneracy labels �, and assum-
ing z��z�,55 we define the rescaled vertices,

�̃l
�2n,m��Q1�, . . . ,Qn�;Q1, . . . ,Qn;Q̄1, . . . ,Q̄m�

= �0
−m/2�D�n−1+m/2���

−1�̄�
m/2ZnZ̄m/2

���
�2n,m��K1�, . . . ,Kn�;K1, . . . ,Kn;K̄1, . . . ,K̄m� ,

�3.22�

where we have to exclude the cases of purely bosonic verti-
ces �n=0� as well as the fermionic two-point vertex �i.e., the
rescaled irreducible self-energy, corresponding to n=1 and
m=0�, which both need separate definitions. For the purely
bosonic vertices �n=0� we set

�̃l
�0,m��Q̄1, . . . ,Q̄m� = �0

−m/2��D�̄��−1+m/2Z̄m/2

���
�0,m��K̄1, . . . ,K̄m� , �3.23�

while for the fermionic two-point vertex we should subtract
the exact fixed point self-energy �*�kF,� , i0� at the Fermi-
surface reference-point kF,� and for vanishing frequency as a
counterterm,20,22

�̃l
�2,0��Q;Q� � �̃l�Q� =

Z

��

���K� − �*�kF,�,i0�� .

�3.24�

If necessary, the counterterm �*�kF,� , i0� can be recon-

structed from the condition that the constant part r̃l= �̃l�0� of
the self-energy flows into an RG fixed point.20,22 We consider
the rescaled vertices to be functions of the logarithmic flow
parameter l=−ln�� /�0�. Introducing the flowing anomalous
dimensions associated with the fermionic and bosonic fields,

�l = − �l ln Z, �̄l = − �l ln Z̄ , �3.25�

we can then write down the flow equations for the rescaled
vertices. Omitting the arguments, we obtain for n�1 the
flow equation55

�l�̃l
�2n,m� = ��1 − n�D + zmin −

m

2
�D + z�� − n�l −

m

2
�̄l

− �
i=1

n 
Qi� ·
�

�Qi�
+ Qi ·

�

�Qi
� − �

i=1

m

Q̄i ·
�

�Q̄i

��̃l
�2n,m�

+ �̃
˙

l
�2n,m�, �3.26�

where zmin=min�z� ,z��. For n=0 we obtain from Eq. �3.23�,

�l�̃l
�0,m� = �
1 −

m

2
��D + z�� −

m

2
�̄l − �

i=1

m

Q̄i ·
�

�Q̄i

��̃l
�0,m�

+ �̃
˙

l
�0,m�, �3.27�

where we have introduced the notation

Q ·
�

�Q
� q · �q + z��

�

��
, �3.28�

Q̄ ·
�

�Q̄
� q̄ · �q̄ + z��̄

�

��̄
. �3.29�

The inhomogeneities in Eqs. �3.26� and �3.27� are given by
the rescaled version of the right-hand sides of the flow equa-
tions for the unrescaled vertices, i.e., for n�1, and z��z�,55

�̃
˙

l
�2n,m��Q1�, . . . ,Qn�;Q1, . . . ,Qn�;Q̄1, . . . ,Q̄m�

= �0
−m/2�D�n−1+m/2���

−1�̄�
m/2ZnZ̄m/2

��− � ����
�2n,m���Ki;Ki;K̄i��� , �3.30�

and for n=0,

�̃
˙

l
�0,m��Q̄1, . . . ,Q̄m� = �0

−m/2��D�̄��−1+m/2Z̄m/2

��− � ����
�0,m��K̄1, . . . ,K̄m�� .

�3.31�

By properly counting all factors it is then not difficult to see
that the explicit expressions for the inhomogeneities in Eqs.
�3.30� and �3.31� can be simply obtained from their unres-
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caled counterparts by replacing all vertices and propagators
with their rescaled analogs, where the rescaled propagators
are defined by

G�K� =
Z

��

G̃�Q�, F�K̄� =
Z̄

�0
F̃�Q̄� , �3.32�

and the corresponding rescaled single-scale propagators are
defined via

�Ġ�K� = −
Z

��

G̃
˙ �Q�, �Ḟ�K̄� = −

Z̄

�0
F̃
˙ �Q̄� . �3.33�

From Eqs. �3.26� and �3.27� we can read off the scaling

dimensions of the vertices: the scaling dimension of �̃�2n,m�

in D dimensions is

D�2n,m� = ��1 − n�D + zmin − �D + z��m/2, for n � 1,

�D + z���1 − m/2� , for n = 0.
�

�3.34�

In the particular case of the Tomonaga-Luttinger model,
where D=1 and z�=z�=1, we have D�2n,m�=2−n−m. Hence,

in this case �̃�2,0��Q=0� and �̃�0,1� are relevant with scaling

dimension +1, while �̃�4,0��Qi=0� and �̃�2,1��Qi= Q̄i=0� are
marginal. All other vertices are irrelevant. Of course, the

linear terms in the expansion of �̃�2,0��Q ;Q� for small Q are
also marginal. These terms determine the wave-function
renormalization factor Z and the Fermi velocity renormaliza-
tion ṽl; see Eqs. �4.20� and �4.25� below. Note that for short-
range interactions the dispersion of the zero-sound mode is
linear in any dimension.47 Hence, as long as the density re-

sponse is dominated by the zero sound mode, Eq. �3.34�
remains valid for D�1 with z�=z�=1. In this case the scal-
ing dimension of the purely fermionic four-point vertex is
D�4,0�=1−D and the scaling dimension of the three-legged
vertex with two fermion legs and one boson leg is D�2,1�

= �1−D� /2. Both vertices become irrelevant in D�1. As dis-
cussed in the following section, this means that the random-
phase approximation �RPA� for the effective interaction, as
well as the so-called GW approximation56 for the fermionic
self-energy, are qualitatively correct in D�1.

E. A simple truncation scheme: Keeping only the skeleton
elements for two-point functions

In order to solve the flow equations explicitly, one is
forced to truncate the infinite hierarchy of flow equations. In
the one-particle irreducible version of the purely fermionic
functional RG it is common practice15–18,26,27 to retain only
vertices up to the four-point vertex and set all higher order
vertices equal to zero. Our approach offers new possibilities
for truncation schemes. Consider the skeleton graphs34 for
the one-particle irreducible fermionic self-energy and the

FIG. 8. Skeleton diagrams for �a� the one-particle irreducible
fermionic self-energy; �b� the one-interaction-line irreducible polar-
ization; and �c� the three-legged vertex with two fermion legs and
one boson leg. The small black circle denotes the bare three-legged
vertex. Thin lines denote external legs. The other graphical ele-
ments are the same as in Fig. 4.

FIG. 9. Truncation of the flow equations for �a� fermionic self-
energy, �b� irreducible polarization, and �c� three-legged vertex
which sets all other vertices equal to zero. The internal lines are full
propagators, which depend on the self-energies ��2,0�=� and
��0,2�=�.
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one-interaction-line irreducible polarization shown in Figs.
8�a� and 8�b�. The skeleton graphs contain three basic ele-
ments: the exact fermionic Green’s function, the exact
bosonic Green’s function �i.e., the effective screened interac-
tion�, and the three-legged vertex with two fermion legs and
one boson leg. A systematic derivation of the skeleton expan-
sion for the vertices in our coupled Fermi-Bose theory is
presented in Appendix B. One advantage of our RG ap-
proach �as compared with more conventional methods in-
volving only fermionic fields� is that it yields directly the
flow equations for basic elements appearing in the skeleton
graphs for the self-energy and the polarization shown in
Fig. 8. Of course, in principle the three-legged vertex can be
obtained from the vertex with four fermion legs with the help
of the skeleton graph shown in Fig. 8�c�. However, calculat-
ing the three-legged vertex from the four-legged vertex

in this way involves an intermediate integration, which
requires the knowledge of the momentum and frequency
dependence of the four-legged vertex. Unfortunately, in prac-
tice the purely fermionic functional RG equations have to
be severely truncated so that up to now it has not been pos-
sible to keep track of the frequency dependence of the four-
legged fermion vertex within the purely fermionic functional
RG.

To obtain a closed system of RG equations involving only
the skeleton elements, let us retain only the vertices ���K�,
���K̄� and ��2,1��K+ K̄� ;K� ; K̄�� on the right-hand sides
of the exact flow equations for these quantities shown in
Figs. 5–7, and set all other vertices equal to zero. The result-
ing closed system of flow equations is shown graphically in
Fig. 9. Explicitly, the flow equations are

�����K� = �
K̄

�Ḟ���K̄�G��K + K̄� + F���K̄�Ġ��K + K̄����2,1��K + K̄�;K�;K̄����2,1��K�;K + K̄�;− K̄�� , �3.35�

�����K̄� = − ��
K

�Ġ��K�G��K + K̄� + G��K�Ġ��K + K̄����2,1��K + K̄�;K�;K̄����2,1��K�;K + K̄�;− K̄�� , �3.36�

����2,1��K + K̄�;K�;K̄�� = �
K̄�

�Ḟ���K̄��G��K + K̄��G��K + K̄ + K̄�� + F���K̄��Ġ��K + K̄��G��K + K̄ + K̄��

+ F���K̄��G��K + K̄��Ġ��K + K̄ + K̄�����2,1��K + K̄�;K + K̄ + K̄��;− K̄���

���2,1��K + K̄ + K̄��;K + K̄��;K̄����2,1��K + K̄��;K�;K̄��� . �3.37�

These equations form a closed system of integrodifferential
equations that can in principle be solved numerically. If the
initial momentum transfer cutoff �0 is chosen larger than the
maximal momentum transferred by the bare interaction, and
if the initial bandwidth cutoff v0�0 is larger than the band-
width of the bare energy dispersion, then the initial condi-

tions are ���K��0
=0, ���K̄��0

=0, and ��2,1��K
+ K̄� ;K� ; K̄���0

= i. A numerical solution of these coupled
equations seems to be a difficult task, which we shall not
attempt in this work. Note, however, that in Sec. III D we
have argued that for regular interactions in dimensions D
�1 the three-legged vertex is actually irrelevant in the RG
sense. Hence, we expect that the qualitatively correct behav-
ior of the fermionic self-energy and of the polarization can
be obtained by ignoring the flow of the three-legged vertex,
setting ��2,1�→ i. If we further ignore interaction corrections
to the internal propagators in the flow equation �3.36� for the
polarization, it is easy to see that the solution of this equation
is nothing but the noninteracting polarization. This is equiva-
lent with the RPA for the effective interaction. Substituting
this into the flow equation �3.35� for the self-energy and
ignoring again self-energy corrections to the internal Green’s

functions, we obtain the non-self-consistent GW
approximation56 for the fermionic self-energy. For regular
interactions in D�1 we therefore expect that the RPA and
the GW approximation are qualitatively correct. However,
for strong bare interactions quantitatively accurate results
can only be expected if the vertex corrections described by
Eq. �3.37� are at least approximately taken into account.

We shall consider this problem again in Sec. IV D, where
we discuss truncations of an expansion based on relevance.
To lowest order, this approximation will agree with Eqs.
�3.35�–�3.37� when the dependence of the vertex ��2,1� on
momenta and frequencies is ignored. There, we use the re-
sulting equations to calculate an approximation to the elec-
tronic Green’s function of the one-dimensional Tomonaga-
Luttinger model. Amazingly, this simple truncation is
sufficient to reproduce the correct anomalous dimension
known from bosonization even for large values of the bare
coupling.

IV. THE MOMENTUM-TRANSFER CUTOFF AS FLOW
PARAMETER

The truncation discussed in Sec. III E violates the Ward
identities relating vertices with different numbers of external
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legs �for a self-contained derivation of the Ward identities
within the framework of our functional integral approach,
see Appendix C�. Moreover, even if we do not truncate the
exact hierarchy of flow equations shown in Figs. 5–7, the
Ward identities are violated for any finite value of the
bandwidth-cutoff v0�, because the cutoff leads to a violation
of the underlying gauge symmetry. We can thus only expect
the Ward identities to be restored in the limit v0�→0. Recall
that in the Tomonaga-Luttinger model the Ward identities are
valid in the strict sense only in the presence of the Dirac sea,
implying that the ultraviolet cutoff v0�0 has been removed.
The Ward identities and the underlying asymptotic conserva-
tion laws are crucial for the exact solubility of the TLM43,44

and its higher-dimensional generalization.45,47,57,58 In order
to reproduce the exact solution of the TLM known from
bosonization within the functional RG, it is very important to
have RG flow equations which are consistent with the Ward
identities, even for finite values of the cutoff. In this section
we show that this requirement is fulfilled if we work in our
mixed Fermi-Bose RG with a momentum-transfer cutoff �
only and take the limit v0�→0 of a vanishing bandwidth
cutoff.

A. Exact flow equations for momentum-transfer cutoff

As already briefly mentioned at the end of Sec. III C, if
we work with a momentum transfer cutoff � only, then all
diagrams with a slash on an internal fermionic Green’s func-
tion �corresponding to the fermionic component of the
single-scale propagator given in Eq. �3.13�� on the right-hand
sides of the exact flow equations shown in Figs. 5–7 should
be omitted. The exact flow equations for the electronic self-
energy and the irreducible polarization then reduce to

�����K� =
1

2
�

K̄

Ḟ���K̄���2,2��K�;K�;K̄�,− K̄��

+ �
K̄

Ḟ���K̄�G��K + K̄���2,1��K + K̄�;K�;K̄��

� ��2,1��K�;K + K̄�;− K̄�� , �4.1�

�����K̄� =
1

2
�

K̄�
Ḟ���K̄���0,4��K̄��,− K̄��,K̄�,− K̄��

− �
K̄�

Ḟ���K̄��F���K̄ + K̄��

���0,3��− K̄�,K̄ + K̄��,− K̄���

���0,3��K̄��,− K̄ − K̄��,K̄�� . �4.2�

These equations are shown graphically in Fig. 10. A graphi-
cal representation of the corresponding exact flow equation
for the three-legged vertex is shown in Fig. 11. Still, these
flow equations look rather complicated. Since we have im-
posed a cutoff only in the momentum transfered by the
bosons, the initial conditions at scale �0 are nontrivial. The
initial value of the three-legged vertex is still ��0

�2,1�= i, but the
pure boson vertices ��0,m� with m external legs are initially

given by the symmetrized closed fermion loops shown in
Fig. 12. All other vertices vanish at the initial scale �0. An
essential simplification occurs now if we linearize the energy
dispersion relative to the Fermi surface. If the initial momen-
tum transfer cutoff �0 is small compared with the typical
Fermi momentum, then we may set all pure boson vertices
��0,m� with more than two external boson legs �m�2� equal
to zero. This is nothing but the closed loop theorem,43–45,47,49

which is valid exactly for the one-dimensional TLM �where
the energy dispersion is linear by definition�. In higher di-
mensions, the closed loop theorem is valid to a very good

FIG. 10. Exact flow equations for �a� the fermionic self-energy
and �b� the irreducible polarization in the momentum-transfer cutoff
scheme.

FIG. 11. Exact flow equations for the three-legged vertex with
two fermion legs and one boson leg in the momentum-transfer cut-
off scheme.
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approximation as long as the linearization of the energy dis-
persion is justified within a given sectorization of the Fermi
surface and scattering processes that transfer momentum be-
tween different sectors of the Fermi surface can be
neglected.47,49 Note that the closed loop theorem is consistent
with the momentum-transfer cutoff flow, because pure boson
vertices ��0,m� with m�3 are not generated if they initially
vanish.

Assuming the validity of the closed loop theorem, the
right-hand side of the flow equation �4.2� for the polarization
vanishes identically, because it depends only on boson verti-
ces with more than two external legs. Physically, this means

that there are no corrections to the noninteracting polariza-
tion, so that the RPA for the effective interaction is exact.
This is of course well known since the pioneering work by
Dzyaloshinskii and Larkin.43 Moreover, the last three dia-
grams in the flow equation for ��2,1� shown in Fig. 11 also
vanish, because they contain the vertex ��0,3�. However, the
remaining diagrams in Fig. 10�a� and Fig. 11 still look quite
complicated, so that we still have to solve an infinite hierar-
chy of coupled flow equations. In the next subsection we
show how this infinite system of coupled integrodifferential
equations can be solved exactly.

B. Ward identities as solutions of the infinite hierarchy of flow
equations

Let us consider the terms on the right-hand sides of the
flow equations for the vertices ��2,m� with two external fer-
mion legs and an arbitrary number of boson legs. Assuming
the validity of the closed loop theorem, all pure boson verti-
ces ��0,m� with m�2 vanish. From Fig. 10�a� and Fig. 11 it is
clear that in general the right-hand side of the flow equation
for ����2,m� depends on ��2,m+2� and on all ��2,m�� with m�
�m. In fact, from our general expression for the flow of the
totally symmetrized vertices given in Eq. �3.16�, we can de-
rive the flow equations for the vertices ��2,m� with arbitrary m
in closed form �we omit for simplicity the degeneracy index
��,

����2,m��K�;K;K̄1, . . . ,K̄m� =
1

2
�

K̄

Ḟ���K̄���2,m+2��K�;K;− K̄,K̄,K̄1, . . . ,K̄m� + �
l=2




�
m1,. . .,ml=1


 �m,�imi

�i
mi!

��
P
�

K̄

Ḟ�K̄���2,m1+1��K�;K̃1;K̄P�1�, . . . ,K̄P�m1�,−K̄�G�K̃1���2,m2��K̃1;K̃2;K̄P�m1+1�, . . . ,K̄P�m1+m2��

�G�K̃2� · . . . · G�K̃l−1���2,ml+1��K̃l−1;K;K̄,K̄P�m−ml+1�, . . . ,K̄P�m�� , �4.3�

where we have defined

K� = K + �
i=1

m

K̄i, K̃i = K� + K̄ − �
j=1

m1+. . .+mi

K̄P�j�, �4.4�

and P denotes a permutation of �1, . . . ,m�. A graphical rep-
resentation of Eq. �4.3� is shown in Fig. 13. Note that the
flow equation �4.1� for the irreducible self-energy is a special
case of Eq. �4.3� for m=0.

We are now facing the problem of solving the infinite
hierarchy of coupled flow equations given by Eq. �4.3�. In
view of the fact that these equations are exact and that in one
dimension the single-particle Green’s function of the TLM
can be calculated exactly via bosonization, we expect that
this infinite hierarchy of flow equations can also be solved
exactly. Indeed, the solutions of these equations are nothing

but infinitely many Ward identities relating the vertex ��2,m�

with two fermion legs and m boson legs to the vertex ��2,m−1�

with one boson leg less. We derive these Ward identities
within the framework of our functional integral approach in
Appendix C. For m=1 the Ward identity is well
known,43–45,47

G�K + K̄���2,1��K + K̄;K;K̄�G�K�

=
− i

i�̄ − vF,� · k̄
�G�K + K̄� − G�K�� . �4.5�

Here vF,� is the Fermi velocity associated with the indepen-
dent fermionic label K= �k , i��, where �k−kF,��� �kF,��. The
Ward identity �4.5� has been used in Refs. 43 and 45 to close
the skeleton equation for the self-energy and thus obtain the

FIG. 12. Initial condition for the pure boson vertices in the
momentum transfer cutoff scheme. The sum is taken over the m!
permutations of the labels of the external legs. For linearized energy
dispersion, all symmetrized closed fermion loops with more than
two external legs vanish.
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exact Green’s function of the TLM without invoking the ma-
chinery of bosonization. A Ward identity for ��4,1� has also
been used to prove the vanishing of the renormalization
group 	 function for the TLM.46 However, for solving the
TLM exactly within the framework of the functional RG, we
need the Ward identities for all vertices ��2,m� with m�1. As
shown in Appendix C, for linear energy dispersion we have

��2,m��K�;K;K̄1, . . . ,K̄m�

=
− i

i�̄l − vF,� · k̄l

����2,m−1��K�;K + K̄l;K̄1, . . . ,K̄l−1,K̄l+1, . . . ,K̄m�

− ��2,m−1��K� − K̄l;K;K̄1, . . . ,K̄l−1,K̄l+1, . . . ,K̄m�� ,

�4.6�

where 1� l�m. For clarity let us write down here the spe-
cial case m=2,

��2,2��K + K̄1 + K̄2;K;K̄1,K̄2�

=
− i

i�̄1 − vF,� · k̄1

���2,1��K + K̄1 + K̄2;K + K̄1;K̄2�

− ��2,1��K + K̄2;K;K̄2��

=
− i

i�̄2 − vF,� · k̄2

���2,1��K + K̄1 + K̄2;K + K̄2;K̄1�

− ��2,1��K + K̄1;K;K̄1�� . �4.7�

Diagrammatic representations of the Ward identities given in
Eqs. �4.5� and �4.6� are shown in Fig. 14. To prove that these
Ward identities indeed solve our infinite system of flow
equations given by Eqs. �4.1� and �4.3�, we start from the
flow equation for ��2,m+1�. Substituting on both sides of this
exact flow equation the Ward identities, we can reduce it to a
new flow equation involving only vertices where the number
of boson legs is reduced by one, but with an external bosonic
momentum entering the vertices at various places. Graphi-
cally, we indicate the place where the bosonic momentum
enters the vertex by a double slash, as shown in Fig. 14. The
important point is now that all diagrams with double slashes
attached to intermediate Green’s functions cancel due to the
fact that all vertices ��2,m� can be expressed in terms of a
difference of vertices ��2,m−1�, with a same prefactor that is
independent of m. Graphically, only the diagrams with a
double slash attached to the leftmost or rightmost Green’s
function survive. Canceling the common prefactor, it is then

easy to see that the RG equation derived in this way from the
functional RG equation for ��2,m+1� is nothing but the exact
RG equation for ��2,m�. Hence, the Ward identities provide
relations between the vertices ��2,m� that are consistent with
the relations implied by the exact hierarchy of RG flow equa-
tions in the momentum-transfer cutoff scheme. In other
words, the Ward identities are the solutions of the infinite
hierarchy of flow equations!

C. Exact solution of the Tomonaga-Luttinger model via the
exact RG

Given the cascade of Ward identities �4.5� and �4.6� we
can close the integrodifferential equation �4.1� for the irre-
ducible self-energy. Note that this equation involves both the
three-legged vertex and the four-legged vertex with two fer-
mion legs and two boson legs, so that the Ward identity �4.5�
is not sufficient to close the flow equation. Of course, if one
is only interested in calculating the Green’s function of the
TLM, it is simpler to start from the skeleton equation for the
self-energy shown in Fig. 8, which can be closed by means
of the Ward identity �4.5� for the three-legged vertex only.
Nevertheless, it is instructive to see how the exact solution
emerges within the framework of the functional RG. Substi-
tuting Eqs. �4.5� and �4.7� into Eq. �4.1�, we obtain the fol-
lowing integrodifferential equation for the electronic self-
energy:

�����K� = G�
−2�K��

K̄

Ḟ���K̄�

�i�̄ − vF,� · k̄�2
�G��K� − G��K + K̄�� .

�4.8�

Here the index � labels not only the different spin species,
but also the different patches of the sectorized Fermi
surface.47 For example, for the spinless case �= ±kF. Using
the fact that in the momentum-transfer cutoff scheme
G2 ���=��G we can alternatively write Eq. �4.8� as a linear
integrodifferential equation for the fermionic Green’s func-
tion,

��G��K� = �
K̄

Ḟ���K̄�

�i�̄ − vF,� · k̄�2
�G��K� − G��K + K̄�� .

�4.9�

If we had simply set the vertex ��2,2� equal to zero in Eq �4.1�
and had then closed this equation by means of the Ward
identity �4.5�, we would have obtained a nonlinear equation.
Thus, the linearity of Eq. �4.9� is the result of a cancellation
of nonlinear terms arising from both Ward identities �4.5�

FIG. 13. Diagrammatic representation of the flow equation �4.3� of vertices with two fermion legs and a general number of boson legs
provided the pure boson vertices with more than two external legs vanish, as implied by the closed loop theorem.
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and �4.7�. Because the second term on the right-hand side of
Eq. �4.9� is a convolution, we can easily solve this equation
by means of a Fourier transformation to imaginary time and
real space. Defining

G��X� = �
K

ei�k·r−���G��K� , �4.10�

H�,��X� = �
K̄

ei�k̄·r−�̄�� Ḟ���K̄�

�i�̄ − vF,� · k̄�2
, �4.11�

where X= �� ,r�, the flow equation �4.9� is transformed to

��� + H�,��X� − H�,��0��G��X� = 0. �4.12�

This implies the conservation law

���exp��
0

�

d���H��,��X� − H��,��0���G��X�� = 0.

�4.13�

Integrating from �=0 to �=�0, we obtain

G��X� = G0,��X�exp�Q��X�� , �4.14�

with

Q��X� = S��0� − S��X� , �4.15�

and

S��X� = − �
0

�0

d�� H��,��X�

= �
K̄

���0 − �k̄��F���K̄�

�i�̄ − vF,� · k̄�2
cos�k̄ · r − �̄�� ,

�4.16�

where we have used the invariance of the RPA interaction

F�K̄� under K̄→−K̄. The solution in Eqs. �4.14�–�4.16� is
well known from the functional integral approach to

bosonization47,49,59,60 where Q��X� arises as a Debye-Waller
factor from Gaussian averaging over the distribution of the
Hubbard-Stratonovich field. In one dimension, Eqs.
�4.14�–�4.16� can be shown47 to be equivalent to the exact
solution for the Green’s function of the Tomonaga-Luttinger
model obtained via conventional bosonization.

Once the exact single-particle Green’s function is known,
the Ward identities in Eqs. �4.5� and �4.6� iteratively yield
expressions for the vertices ��2,m� that solve the whole hier-
archy of flow equations for the vertices with two fermion and
an arbitrary number of boson legs. In principle, the method
described in this section can be applied also to vertices with
more than two fermion legs. For example, the right-hand
sides of the flow equations for the vertices ��4,m� contain only
vertices with no more than four fermion legs. Ward identities
for these vertices would again yield a solution of this com-
plete hierarchy, once the vertices ��2,m� are known. This pro-
cedure can be iterated to obtain vertices with an arbitrary
number of external legs using at each step the complete flow
of vertices with two fewer fermion legs obtained in the pre-
vious step. We have thus devised a method to obtain all
correlation functions of the TLM entirely within the frame-
work of the functional RG.

D. Truncation scheme based on relevance

The structure of the exact Green’s function of the TLM
and the corresponding spectral function A�k ,��=
−�−1 Im G�k ,�+ i0� depend crucially on the Ward identities
discussed above, which in turn are only valid if the energy
dispersion is strictly linear. In order to assess the validity of
the linearization of the energy dispersion, it is important to
develop truncations of the exact hierarchy of flow equations
that do not explicitly make use of the validity of the
asymptotic Ward identities. We now propose such a trunca-
tion scheme.

The coefficients generated in the expansion of a given

vertex ��2n,m��K1� , . . . ,Kn� ;K1 , . . . ,Kn ; K̄1 , . . . , K̄m� in powers
of frequencies and momenta have decreasing scaling dimen-

FIG. 14. �a� Diagrammatic representation of the Ward identity �4.5� for the three-legged vertex and �b� of the Ward identity �4.6� for the
vertex with two fermion legs and m�1 boson legs. The small arrow indicates the place in the diagram where the external bosonic
energy-momentum enters. A double slash to the right of an arrow means that the bosonic momentum is added before the corresponding
Green’s function, while a double slash to the left of an arrow means that the momentum is added after the Green’s function.
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sions, so that the most relevant part of any vertex is obtained
by setting all momenta and frequencies equal to zero. This
classification leads to a simple truncation scheme: We retain
only those vertices whose leading �momentum- and
frequency-independent� part has a positive or vanishing scal-
ing dimension, corresponding to relevant or marginal cou-
plings in the usual RG jargon. In the context of calculating
the critical temperature of the weakly interacting Bose gas in
three dimensions, such a truncation procedure has recently
been shown to give very accurate results.61

To begin with, let us classify all couplings according to
their relevance. With the rescaling defined in Sec. III D, for

D=z�=z�=1, the scaling dimensions of the vertices �̃�2n,m�

are D�2n,m�=2−n−m; see Eq. �3.34�. Hence the vertex �̃�2,2�

as well as the vertices �̃�0,3� and �̃�0,4�, whose unrescaled
versions appear on the right-hand sides of Eqs. �4.1� and
�4.2�, are irrelevant in the RG sense. In contrast, the
momentum- and frequency-independent part of the three-
legged vertex,

 ̃l = �̃�2,1��0;0;0� = 
 �

�0��
�1/2

Zl�
�2,1��KF;KF;0� ,

�4.17�

is marginal.62 Here KF= �±kF ,�=0�. From the general flow
equations �3.26� and �3.30� for the rescaled vertices we ob-
tain the following exact flow equation for the rescaled self-
energy defined in Eq. �3.24�:

�l�̃l�Q� = 
1 − �l + Q ·
�

�Q
��̃l�Q� + �̃

˙
l
�2,0��Q� , �4.18�

with �see Eq. �3.30��

�̃
˙

l
�2,0��Q� = −

Zl

��

� ����
�2,0��K� . �4.19�

We restrict ourselves to spinless fermions here and choose

��=�̄�=vF�, so that with �0= ��vF�−1 the prefactor in Eq.
�4.17� turns out to be �� /�0���1/2=�1/2. As usual, the fer-
mionic wave-function renormalization factor Zl is defined via

Zl = �1 − 
 ���K�
��i��



K=0

�−1

= 1 +
 ��̃l�Q�
��i��



Q=0

. �4.20�

According to Eq. �3.25� the wave-function renormalization
Zl satisfies the flow equation,

�lZl = − �lZl, �4.21�

where the flowing anomalous dimension of the fermion
fields is given by

�l = −
 ��̃
˙

l
�2,0��Q�
��i��



Q=0

. �4.22�

According to Eq. �4.18� the constant part of the self-energy,

r̃l = �̃l�0� , �4.23�

is relevant and satisfies

�lr̃l = �1 − �l�r̃l + �̃
˙

l
�2,0��0� . �4.24�

In general, r̃l will only flow into the fixed point if the initial
coupling r̃0 is properly fine-tuned. Apart from Zl, there are
two more marginal couplings. The first is the Fermi velocity
renormalization factor,21

ṽl = Zl +
 ��̃l�Q�
�q



Q=0

, �4.25�

and the second marginal coupling is the momentum- and
frequency-independent part  ̃l of the rescaled three-legged
vertex given in Eq. �4.17�. The exact flow equations for ṽl
and  ̃l are

�lṽl = − �lṽl +
 ��̃
˙

l
�2,0��Q�
�q



Q=0

, �4.26�

and

�l ̃l = − �l ̃l + �̃
˙

l
�2,1��0;0;0� . �4.27�

If we retain only relevant and marginal couplings, then in the
momentum-transfer cutoff scheme the rescaled fermionic
Green’s function defined in Eq. �3.32� is in D=1 simply
approximated by

G̃�Q� �
1

i� − ṽlq − r̃l

. �4.28�

In order to make progress, we have to approximate the inho-

mogeneities �̃
˙

l
�2,0��Q� and �̃

˙
l
�2,1��0;0 ;0�. In Sec. III E we

have proposed an approximation scheme which retains only
the skeleton elements of the two-point functions. In the
momentum-transfer cutoff scheme, the corresponding flow
equations �3.35�–�3.37� further simplify because we should
omit all terms involving the fermionic single-scale propaga-
tor. Unfortunately, the resulting nonlinear integrodifferential
equations still cannot be solved analytically. In order to sim-
plify these equations further, let us replace the three-legged
vertex on the right-hand sides of these equations by its mar-
ginal part. In this approximation we obtain, from Eq. �3.35�,

�̃
˙

l
�2,0��Q� �  ̃l

2�
Q̄

F̃
˙ �Q̄�G̃�Q + Q̄� , �4.29�

and from Eq. �3.37�,

�̃
˙

l
�2,1��0;0;0� �  ̃l

3�
Q̄

F̃
˙ �Q̄�G̃2�Q̄� . �4.30�

In order to be consistent, we should approximate G̃�Q� in
Eqs. �4.29� and �4.30� by Eq. �4.28�. Then it is easy to see
that the second term on the right-hand sides of the flow equa-
tions �4.26� and �4.27� exactly cancels the contribution from
the anomalous dimension, so that

�l ̃l = 0, �lṽl = 0. �4.31�

For explicit calculations, let us assume that the usual cou-
plings of the TLM52 are g2=g4= f0, so that
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F̃
˙ �Q̄� = ��1 − �q̄��

f̃0�q̄2 + �̄2�

�1 + f̃0�q̄2 + �̄2
, �4.32�

where f̃0=�0f0. From Eqs. �4.22� and �4.29� we then find that
the anomalous dimension �=�l does not flow and is given
by63

� =
f̃0

2

2�1 + f̃0��1 + f̃0 + 1�2
, �4.33�

which agrees exactly with the bosonization result.47,64 We
emphasize that Eq. �4.33� is the correct anomalous dimen-

sion of the TLM, even for f̃0!1, so that, at least as far as the
calculation of � is concerned, the validity of our simple trun-
cation is not restricted to the weak coupling regime. Recall
that the restriction to weak coupling is one of the shortcom-
ings of the conventional fermionic functional RG,15–18,20–27

which was implemented for the TLM in Ref. 21. Because
� is finite, the running vertex ��2,1��KF ;KF ;0� without
wave-function renormalization actually diverges for
�→0. However, the properly renormalized vertex
 ̃l�Zl�

�2,1��KF ;KF ;0� remains finite due to the vanishing
wave-function renormalization,

Zl = e−�l = 
 �

�0
��

, �4.34�

for l→
. Integrating the flow equation �4.18� for the self-
energy with the inhomogeneity approximated by Eqs. �4.29�
and �4.28�, we obtain, after going back to physical
variables,63

��kF + k,i�� = − �
−�0

�0 dk̄

2�
�

−



 d�̄

2�
�0

�k̄�
��

�
fRPA�k̄,i�̄�

i�� + �̄� − vF�k + k̄�
, �4.35�

where the RPA screened interaction is

fRPA�k̄,i�̄� = f0
vF

2 k̄2 + �̄2

vc
2k̄2 + �̄2

. �4.36�

Here vc=vF
�1+ f̃0 is the velocity of collective charge exci-

tations. Equation �4.35� resembles the GW approximation,56

but with the RPA interaction multiplied by an additional sin-

gular vertex correction ��0 / �k̄���. The explicit evaluation of
Eq. �4.35� is rather tedious and will not be further discussed
in this work. The resulting spectral function A�k ,�� agrees at
k=kF with the bosonization result �even at strong coupling�,
but has the wrong threshold singularities for ���
→vc��k±kF��. So far we have not been able to find a reason-
ably simple truncation of the exact flow equations which
completely produces the spectral line shape of A�k ,��, as
predicted by bosonization or by our exact solution presented
in the previous section. Whether a self-consistent numerical
solution of the truncation discussed in Sec. III E �see Eqs.
�3.35�–�3.37�� would reproduce the correct spectral line

shape or not remains an open problem. The numerical solu-
tion of these equations seems to be rather difficult and is
beyond the scope of this work.

V. SUMMARY AND OUTLOOK

In this work we have developed a new formulation of the
functional RG for interacting fermions, which is based on the
explicit introduction of collective bosonic degrees of free-
dom via a suitable Hubbard-Stratonovich transformation. A
similar strategy has been used previously in Refs. 37–39.
However, on the technical level the practical implementation
of this method presented here differs considerable from pre-
vious works. We have payed particular attention to
asymptotic Ward identities, which play a crucial role if the
interaction is dominated by small momentum transfers. In
one dimension, this is the key to obtain the exact solution of
the Tomonaga-Luttinger model entirely within the functional
RG. By using the momentum transfer associated with the
bosonic field as a cutoff parameter, we have formulated the
functional RG in such a way that the RG flow does not
violate the Ward identities. In fact, we have shown that Ward
identities emerge as the solution of the infinite hierarchy of
coupled RG flow equations for the one-line irreducible ver-
tices involving two external fermion legs and an arbitrary
number of boson legs. In principle this method can be iter-
ated to obtain all correlation functions of the TLM entirely
within the framework of the functional RG.

Here we have mainly laid the theoretical foundation of
our approach and developed an efficient method to keep
track of all terms. In future work, we are planning to apply
our technique to other physically interesting problems. Let us
mention some problems where it might be advantageous to
use our approach:

�a� Strong coupling fixed points. One of the big draw-
backs of the conventional �purely fermionic� functional RG
used by many authors15–18,23–27 is that in practice the fre-
quency dependence of the four-point vertex ��4� has to be
neglected, so that the wave-function renormalization factor is
Z=1. Although the resulting runaway flow of the vertices to
strong coupling at a finite scale can be interpreted in terms of
corresponding instabilities, there is the possibility that for
small Z the renormalized effective interaction Z2��4� remains
finite even though the vertex ��4� without wave-function
renormalization seems to diverge.30 In our approach, the ef-
fective interaction acquires a frequency dependence, even
within the lowest-order approximation. In fact, if we ignore
vertex corrections, the effective interaction is simply given
by the RPA. Hence, strong coupling fixed points might be
accessible within our approach. Recall that the rather simple
truncation of Sec. IV D gave the exact anomalous dimension
of the TLM for arbitrary strength of the interaction. Possibly,
more elaborate truncations of the exact hierarchy of RG flow
equations �for example, the truncation based on retaining
skeleton elements of the two-point functions discussed in
Sec. III E; see Fig. 9� will give accurate results for the spec-
tral properties.

�b� Nonuniversal effects in one-dimensional metals. If
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we do not linearize the energy dispersion in one dimension,
there should be a finite momentum scale kc �depending on
the interaction and the band curvature� below which typical
scaling behavior predicted by the TLM emerges. The calcu-
lation of kc as well as the associated nonuniversal spectral
line shape are difficult within bosonization.65 On the other
hand, within the framework of the functional RG the inclu-
sion of irrelevant couplings is certainly possible, so that with
our method it might be possible to shed some new light onto
this old problem. For an explicit calculation of an entire
crossover scaling function between the critical regime and
the short-wavelength regime of interacting bosons in D=3,
see Ref. 61. An analogous calculation of the dynamic scaling
functions for interacting fermions in one dimension remains
to be done.

�c� Itinerant ferromagnetism. Spontaneous ferromag-
netism in Fermi systems is driven by sufficiently strong in-
teractions involving small momentum transfers. Assuming a
given form of the ferromagnetic susceptibility, Altshuler,
Ioffe, and Millis66 concluded on the basis of an elaborate
diagrammatic analysis that in the vicinity of the paramag-
netic, ferromagnetic quantum-critical point in dimensions
D=2 a simple one-loop calculation already yields the correct
qualitative behavior of the electronic self-energy. If this is
true, then in this problem vertex corrections are irrelevant.
Unfortunately, due to the peculiar momentum and frequency

dependence of the ferromagnetic susceptibility "�k̄ , �̄� at the
quantum critical point, the assumption of asymptotic velocity
conservation �see Eq. �C13� in Appendix C� leading to the
Ward identity �4.5�–�4.7� is not justified. Note, however, that
in Ref. 66 the form of the susceptibility is assumed to be
given. The feedback of the collective ferromagnetic fluctua-
tions on the non-Fermi-liquid form of the electronic proper-
ties has not been discussed. The fact that in D�3 the leading

interaction corrections to the inverse susceptibility "−1�k̄ , �̄�
generate a nonanalytic momentum dependence67,68 suggests
that the problem should be reconsidered taking the interplay
between fermionic single-particle excitations and collective
magnetic fluctuations into account. The formalism developed
in this work might be suitable to shed some new light also
onto this problem. The electronic properties of a two-
dimensional Fermi system in the vicinity of a ferromagnetic
instability have recently been studied in Ref. 69. However,
these authors focused on the finite-temperature properties of
the phase transition; they did not attempt to calculate the
fermionic single-particle Green’s function in the vicinity of
the zero-temperature phase transition. Note also that for suf-
ficiently strong interactions even one-dimensional fermions
can in principle have a ferromagnetic instability if the energy
dispersion is nonlinear.70,71

�d� Quantum phase transitions and symmetry break-
ing. Our method unifies the traditional approach to quantum-
phase transitions pioneered by Hertz9 with the modern devel-
opments in the field of fermionic functional RG, so that it
might simplify the theoretical description of quantum phase
transitions in situations where the fermions cannot be com-
pletely integrated out. In order to describe quantum phase
transitions in interacting Fermi systems within the frame-
work of the traditional Ginzburg-Landau-Wilson approach,

all soft modes in the system should be explicitly retained.11

In the purely fermionic functional RG15–27 symmetry break-
ing manifests itself via the divergence of the relevant order-
parameter susceptibility; the symmetry broken phase is dif-
ficult to describe within this approach. On the other hand, in
our approach the order parameter can be introduced explic-
itly as a bosonic field, which acquires a vacuum expectation
value in the symmetry broken phase. Previously, a similar
approach has been developed in Ref. 39 to study antiferro-
magnetism in the two-dimensional Hubbard model.

In summary, we believe that the formulation of the exact
functional RG presented in this work will be quite useful in
many different physical contexts.
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APPENDIX A: TREE EXPANSION OF CONNECTED
GREEN’S FUNCTIONS IN TERMS OF
ONE-LINE IRREDUCIBLE VERTICES

In this appendix we show explicitly that the vertices
��1. . .�n

�n� defined in terms of the functional Taylor expansion
of ��
� in Eq. �2.44� are indeed one-line irreducible. This is
usually10 done graphically by taking higher-order derivatives
of the relation �2.40� between the second functional deriva-
tives of L�
� and Gc�J�. With the help of our compact nota-
tion we can even give the tree expansion of the connected
Green’s function in terms of one-line irreducible vertices in
closed form. To do so, it is advantageous to define the func-
tional

U = � ��2��

�
 �

− 
 ��2��

�
 �





=0
�T

= � ��2��

�
 �

�T

− � ,

�A1�

which is a matrix in superindex space. With this definition,
we have

��2�L
�
 �


= UT − �G−1�T, �A2�

so that

� ��2�L
�
 �


�−1

= − GT�1 − UTGT�−1 = − �
l=0




GT�UTGT�l.

�A3�

From Eq. �2.40� we then obtain
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��2�Gc

�J�J
= Z� ��2�L

�
 �

�−1

= − ZGT�1 − UTGT�−1

= − �
l=0




ZGT�UTGT�l. �A4�

We now expand both sides of Eq. �A4� in powers of the
sources J and compare coefficients. For the matrix on the
left-hand side we obtain, from Eq. �2.22�,

��2�Gc

�J �J
= �

n=0



1

n!
�

�1

¯ �
�n

�Gc,�1. . .�n

�n+2� �TJ�1
· . . . · J�n

,

�A5�

where the matrix Gc,�1. . .�n

�n+2� is defined by

�Gc,�1. . .�n

�n+2� ���� = Gc,����1. . .�n

�n+2� . �A6�

On the right-hand side we use Eqs. �A1� and �2.44� to write

U = �
n=1



1

n!
�

�1

¯ �
�n

��1,. . .,�n

�n+2� 
�1
· . . . · 
�n

, �A7�

where

���1,. . .,�n

�n+2� ���� = �����1. . .�n

�n+2� . �A8�

To compare terms with the same powers of the sources J on
both sides of Eq. �A4�, we need to express the fields 
� on
the right-hand side of Eq. �A7� in terms of the sources, using
Eqs. �2.22� and �2.35�,


� =
�Gc

�J�

= �
m=0



1

m!
�

	1

¯ �
	m

Gc,�	1. . .	m

�m+1� J	1
· . . . · J	m

.

�A9�

Substituting Eqs. �A5�, �A7�, and �A9� into Eq. �A4� and
comparing terms with the same powers of the sources �after
symmetrization�, we obtain a general relation between the
connected and the one-line irreducible correlation functions,

Gc,	1,. . .,	n

�n+2� = − �
l=0




�
n1,. . .,nl=1



1

n1! · . . . · nl!
�

�1
1
¯ �

�n1

1
¯ �

�1
l
¯ �

�nl

l
�

m1
1,. . .,mn1

1 =1




¯ �
m1

l ,. . .,mnl

l =1




�n,�i=1
l �

j=1
ni mj

i

��ZGT�
�1

1,. . .,�n1

1
�n1+2�T GT · . . . · GT�

�1
l ,. . .,�nl

l
�nl+2�T GT�TS	1,. . .,	m1

1;. . .;	n−mnl
l +1,. . .,	n

�G
c,�1

1,	1,. . .,	m1
1

�m1
1+1�

· . . . · G
c,�nl

l ,	n−mnl
l +1,. . .,	n

�mnl

l +1�
� .

�A10�

On the right-hand side of this rather cumbersome expression,
only connected correlation functions with a degree smaller
than on the left-hand side appear. One can therefore recur-
sively express all connected correlation functions via their
one-line irreducible counterparts. Only a finite number of
terms contribute on the right-hand side. The operator S sym-
metrizes the expression in curly brackets with respect to in-
dices on different correlation functions, i.e., it generates all
permutations of the indices with appropriate signs, counting
expressions only once that are generated by permutations of
indices on the same vertex. More precisely the action of S is
given by �m=�i=1

l mi�

S�1,. . .,�m1
;. . .;�m−ml+1,. . .,�m

�A�1,. . .,�m
�

=
1

�i
mi!

�
P

sgn��P�A�P�1�,. . .,�P�m�
, �A11�

where P denotes a permutation of �1, . . . ,m� and sgn� is the
sign created by permuting field variables according to the
permutation P, i.e.,


�1
. . . 
�m

= sgn��P�
�P�1�
· . . . · 
�P�m�

. �A12�

A diagrammatic representation of the first few terms of the
tree expansion generated by Eq. �A10� is given in Fig. 15.
Let us give the corresponding analytic expressions: If we set
n=0 in Eq. �A10�, then only the term with l=0 contributes,
and we obtain

Gc
�2� = − ZG = − GT, �A13�

which is Eq. �2.24� in matrix form. For n=1 the single term
with l=1, n1=1, m1

1=1 contributes on the right-hand side of
Eq. �A10�. Using ZG=GT the tree expansion of the con-
nected Green’s function with three external legs can be writ-
ten as

Gc,	1	2	3

�3� = �
�1

�
�2

�
�3

�G�	1�1
�G�	2�2

�G�	3�3
��1�2�3

�3� .

�A14�

Finally, consider the connected Green’s function with four
external legs, corresponding to n=2 in Eq. �A10�. In this
case the following three terms contribute:

COLLECTIVE FIELDS IN THE FUNCTIONAL… PHYSICAL REVIEW B 72, 035107 �2005�

035107-21



FIG. 15. Graphical representa-
tion of the relation between con-
nected Green’s functions and one-
line irreducible vertices up to the
four-point functions. The irreduc-
ible vertices are represented by
shaded oriented circles with the
appropriate number of legs; see
Fig. 1. The connected Green’s
functions are drawn as empty ori-
ented circles with a number indi-
cating the number of external legs.
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term l ni mj
i

1. 1 n1 = 1 m1
1 = 2

2. 1 n1 = 2 m1
1 = m2

1 = 1

3. 2 n1 = n2 = 1 m1
1 = m1

2 = 1

The corresponding analytic expression is

Gc,	1	2	3	4

�4� = − �
�1

¯ �
�4

�G�	1�1
�G�	2�2

�G�	3�3
�G�	4�4

��1�2�3�4

�4� − �
�1

¯ �
�6

�G�	1�1
�G�	2�2

�G�	3�3
�G�	4�4

���1�2�5

�3� �G��5�6
��6�3�4

�3� − �
�1

¯ �
�6

S	3;	4
��G�	1�1

�G�	2�2
�G�	3�3

�G�	4�4
� ��1�5�4

�3� �G��5�6
��6�2�3

�3� � .

�A15�

APPENDIX B: DYSON-SCHWINGER EQUATIONS
AND SKELETON DIAGRAMS

In this appendix we show how the skeleton diagrams for
the two-point functions and the three-legged vertex in Fig. 8
can be formally derived from the Dyson-Schwinger equa-
tions of motion. Although the skeleton graphs are usually
written down directly from topological considerations of the
structure of diagrammatic perturbation theory,34 it is instruc-
tive to see how the skeleton expansion of the irreducible
vertices can be derived formally within our functional inte-
gral approach.

The invariance of the generating functional G�J� of the
Green’s functions defined in Eq. �2.18� with respect to infini-
tesimal shifts in the integration variables 
� implies the
Dyson-Schwinger equations of motion,72


��J� −
�S

�
�
� �

�J�
��G�J�� = 0. �B1�

For our coupled Fermi-Bose system with Euclidean action

S��̄ ,� ,�� given by Eqs. �2.2� and �2.6�–�2.8� involving three
types of fields, Eq. �B1� is actually equivalent with the fol-
lowing three equations:


J−K̄� − �
��

�f
k̄

−1���� �

�JK̄��
�G − i��

K

��2�G

�jK+K̄��j̄K�

= 0,

�B2�


�j̄K� + �i� − �k��
�

�jK�
�G − i�

K̄

��2�G
�jK+K̄��J−K̄�

= 0,

�B3�


 jK� + �i� − �k��
�

�j̄K�

�G − i�
K̄

��2�G

�j̄K−K̄��J−K̄�

= 0.

�B4�

Expressing these equations in terms of the generating func-

tionals Gc�j̄ , j ,J� of the connected Green’s functions and the

corresponding generating functional ���̄ ,� ,�� of the irre-
ducible vertices defined in Eq. �2.42�, we obtain the Dyson-
Schwinger equations of motion in the following form:

��

��K̄�

− i�
K
��̄K+K̄,��K� +

��2�Gc

�j̄K��jK+K̄,�
� = 0, �B5�

��

��K�

− i�
K̄
���̄K+K̄,��K̄� +

��2�Gc

�jK+K̄,��J−K̄�
� = 0, �B6�

��

��̄K�

− i�
K̄
��K−K̄,��K̄� +

��2�Gc

�j̄K−K̄,��J−K̄�
� = 0. �B7�

The second functional derivatives of Gc can be expressed in
terms of the irreducible vertices using Eq. �A4�. Taking de-
rivatives of Eqs. �B5�–�B7� with respect to the fields and
then setting the fields equal to zero we obtain the desired
skeleton expansions of the irreducible vertices. Let us start
with the skeleton diagram for the self-energy shown in Fig.
8�a�. To derive this, we simply differentiate Eq. �B7� with
respect to �K��. Using


 ��2��

��K�� ��̄K�



fields=0

= �K,K����K� , �B8�

we obtain

�K,K����K� = i�
K̄

 ��3�Gc

��K�� �j̄K−K̄,� �J−K̄�



fields=0

. �B9�

From the l=1 term in the expansion �A4�, it is easy to show
that
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 ��3�Gc

��K�� �j̄K−K̄,� �J−K̄�



fields=0

= �K,K�F���K̄�

�G��K + K̄���2,1��K + K̄�;K�;K̄�� , �B10�

so that

���K� = i�
K̄

F���K̄�G��K + K̄���2,1��K + K̄�;K�;K̄�� ,

�B11�

which is the analytic expression for the skeleton graph
shown in Fig. 8�a�. Similarly, we obtain the skeleton expan-
sion of the irreducible polarization by differentiating Eq.
�B5� with respect to �−K̄�,

���K̄� = i�
K

 ��3�Gc

��−K̄� � j̄K,� �jK+K̄�



fields=0

= − i��
K

G��K�G��K + K̄���2,1��K + K̄�;K�;K̄�� ,

�B12�

which is shown diagrammatically in Fig. 8�b�. Finally, ap-

plying the operator ��2� /��̄K+K̄� ��K� to Eq. �B5� and subse-
quently setting the fields equal to zero we obtain the skeleton
expansion of the three-legged vertex shown in Fig. 8�c�,

��2,1��K + K̄�;K�;K̄�� = i − i��
K�

G��K��G��K� + K̄�

���4,0��K + K̄�,K��;K� + K̄�,K�� .

�B13�

Skeleton expansions for higher-order vertices can be ob-
tained analogously from the appropriate functional deriva-
tives of Eqs. �B5�–�B7�.

APPENDIX C: WARD IDENTITIES

In this appendix we give a self-contained derivation of the
Ward identities in Eqs. �4.5�–�4.7� within the framework of
our functional integral approach. Although the Ward identity
�4.5� for the three-legged vertex is well known,43–45,47 it
seems that the higher-order Ward identities given in Eqs.
�4.6� and �4.7� cannot be found anywhere in the literature.
Since we are interested in deriving infinitely many Ward
identities involving the vertices ��2,m� with two fermion legs
and an arbitrary number m of boson legs, it is convenient to
derive first a “master Ward identity” for the generating func-
tional for the irreducible vertices, from which we can obtain
all desired Ward identities for the vertices by taking appro-
priate functional derivatives.

Consider the generating functional of the Green’s function
of our mixed Fermi-Bose theory defined in Eq. �2.18�, which
in explicit notation is given by

G�j̄, j,J� =
1

Z0
� D��̄,�,��e−S��̄,�,��+�j̄,��+��̄,j�+�J*,��.

�C1�

If we rewrite the parts of the action involving the fermionic

fields �̄ and � in real space and imaginary time, the Euclid-
ean action reads �we use again the notation X= �� ,r� intro-
duced in Sec. IV C� as

S��̄,�,�� = S0��̄,�� + S0��� + S1��̄,�,��

S0��̄,�� = �
�
�

X

�̄��X������X� + �
�
� d�� dDr

�� dDr� �̄���,r����r − r������,r�� , �C2�

S1��̄,�,�� = i�
�
�

X

�̄��X����X����X� , �C3�

where we have defined the Fourier transform of the disper-
sion

���r� =� dDk

�2��D�k�eik·r. �C4�

Suppose now that we perform a local gauge transformation

on the fermion fields, defining new fields �� and �̄� via

���X� = ei���X�����X�, �̄��X� = e−i���X��̄���X� , �C5�

where ���X� is an arbitrary real function. It is easy to show
that, to linear order in ���X�, the action �C3� transforms as
follows:

S�e−i��̄�,ei���,�� = S��̄�,��,��

+ i�
�
�

X

�̄���X�������X������X�

�C6�

− i�
�
� d�� dDr� dDr� �̄����,r������,r� − ����,r���

����r − r�������,r�� .

Using this relation, we see that the invariance of the gener-
ating functional in Eq. �C1� with respect to the change of
integration variables defined by Eq. �C5� implies, to linear
order in ���X�,
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0 =
1

Z0
� D��̄,�,��e−S��̄,�,��+�j̄,��+��̄,j�n+�J,��

��− �
�
�

X

�̄��X�������X�����X�

+ �
�
� d�� dDr� dDr� �̄���,r������,r�

− ����,r������r − r������,r�� + �j̄,��� − ��̄�, j�� .

�C7�

Taking the functional derivative of this equation with respect
to ���X�, this implies in Fourier space,

0 = �
K
��i�̄ − �k+k̄,� + �k��

��2�G

� j̄K��jK+K̄�

+ j̄K+K̄�

�G

�j̄K�

− jK�

�G
�jK+K̄�

� . �C8�

Expressing this equation in terms of the generating func-
tional Gc=ln G of the connected Green’s functions and the

generating functional and ���̄ ,� ,�� of the irreducible verti-
ces as defined in Eq. �2.42�, we obtain

0 = �
K
��i�̄ − �k+k̄,� + �k��

��2�Gc

� j̄K� �jK+K̄�

+ �K�

��

��K+K̄�

− �̄K+K̄�

��

��̄K�
� . �C9�

Alternatively, using the Dyson-Schwinger equation �B5�, we
may rewrite this as

0 = i�̄� ��

��K̄�

− i�
K

�̄K+K̄��K��
− i�

K

��k+k̄,� − �k��
��2�Gc

�j̄K� �jK+K̄�

+ i�
K
��K�

��

��K+K̄�

− �̄K+K̄�

��

��̄K�

� . �C10�

Equations �C9� and �C10� are our “master Ward identities”
from which we can now obtain Ward identities for the verti-
ces by differentiation. For example, taking the derivative
� /��−K̄� of Eq. �C10�, we obtain

i�̄���K̄� − ��
c �K̄� = 0, �C11�

where we have defined

��
c �K̄� = − i��

K

��k+k̄,� − �k��G��K�G��K + K̄�

���2,1��K + K̄�;K�;K̄�� . �C12�

Equation �C11� is a relation between response functions,
which follows more directly from the equation of continuity.
If we are interested in vertices involving at least one fermi-
onic momentum and if the momentum transferred by the
interaction is small, our master Ward identities can be further
simplified. Then all fermionic momenta lie close to a given
point kF,� on the Fermi surface so that Eqs. �C9� and �C10�
become simpler if we assume asymptotic velocity conserva-
tion. This means that we replace under the integral sign,

�k+k̄,� − �k� → vF,� · k̄ . �C13�

This approximation amounts to the linearization of the en-
ergy dispersion relative to the point kF,� on the Fermi sur-
face. Using again Eq. �B5�, our master Ward identity be-
comes

0 = �i�̄ − vF,� · k̄�� ��

��K̄�

− i�
K

�̄K+K̄��K��
+ i�

K
��K�

��

��K+K̄�

− �̄K+K̄�

��

��̄K�

� . �C14�

Differentiating this simplified master Ward identity with re-
spect to the fields using the relation �B8� as well as


 ��3��

��K̄� ��K� ��̄K+K̄�



fields=0

= ��2,1��K + K̄�;K�;K̄�� ,

�C15�


 ��4��

��K̄1� ��K̄2� ��K� ��̄K+K̄1+K̄2�



fields=0

= ��2,2��K + K̄1 + K̄2�;K�;K̄1�,K̄2�� , �C16�

and so on, we obtain the Ward identities for the irreducible
vertices given in Eqs. �4.5�–�4.7�.

Of course, other Ward identities, e.g., the Ward identity
for ��4,1� discussed in Ref. 48, can also be obtained from Eq.
�C14�. Note that if the approximation �C13� is not made, the
master Ward identity �C14� should be replaced by the more
general master Ward identity �C10�, so that the Ward identi-
ties �4.5�–�4.7� for the vertices acquire correction terms. The
effect of these correction terms on the Ward identities for
��2,1� and ��4,1� has very recently been studied in a math-
ematically rigorous way by Benfatto and Mastropietro.48
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