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We study the temperature dependence of the conductance in clean one-dimensional wires fabricated by

cleaved-edge overgrowth in molecular beam epitaxy. At elevated temperatures, a conductance peculiarity
occurs at low electron densities. The linear conductance dwells at a value of ~70% of its plateau value over
a finite density range. We show that this so-called 0.7 structure arises as the electrons in the wire undergo a

transition from a degenerate into a nondegenerate liquid.
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One-dimensional (1D) ballistic wires posses unique elec-
trical properties and have been the subject of numerous stud-
ies. Conduction in such wires is often discussed in the con-
text of the Luttinger liquid model, which treats the
interactions among electrons exactly and thus is expected to
have a wide validity range. However, this model assumes
that the energy available for elementary excitations remains
within a narrow band about the Fermi energy Ey. It is thus
applicable only at low temperatures, much lower than the
Fermi temperature 7.=E/kg, where kg is Boltzmann’s con-
stant. Many of the properties of 1D wires at temperatures
comparable to or even larger than 7 can be captured by the
Landauer scattering approach. This method, however, ig-
nores the interactions among electrons altogether. In this
work we address the properties of 1D wires in this unusual
parameter regime 7> Tp.

The hallmark of ballistic electron transport in a 1D wire is
the quantization of its linear conductance. In a multimode
wire, the overall conductance is given by the conductance
quantum g,=2¢?/h, multiplied by the number of available
1D modes. Here e is the charge of an electron and 4 is
Planck’s constant. Such ballistic wires have been imple-
mented in a multitude of material systems to date, including
split-gate semiconductor quasi-1D quantum point contacts'
(QPCs) and wires,® carbon nanotubes,* and V-grooved® or
cleaved-edge-overgrowth AlGaAs heterostructures.®

With semiconductor-based wires, a voltage applied to a
nearby gate readily controls the 1D charge density, and hence
the number of occupied modes can be varied. Thus, the con-
ductance of such ballistic wires exhibits a series of quantized
conductance plateaus when plotted against the gate voltage.
This quantization of the linear conductance in ballistic wires
is a robust phenomenon—insensitive to the system details.
All that is required is the absence of backward scattering
inside the wire and adiabatic feeding of charge from the res-
ervoirs into the wire.

At elevated temperatures the conductance may deviate
from these integer values. Clearly, the temperature has to be
lower than the intermode energy spacing A in order to re-
solve each mode. With semiconductor wires, the separation
between the first and second modes can reach Th=A/kg
~ 150 K and thus temperatures lower than 7, can be rou-
tinely achieved, resulting in the aforementioned conductance
plateaus.

1098-0121/2005/72(3)/033319(4)/$23.00

033319-1

PACS number(s): 73.63.Nm, 73.23.Ad

In 1996, a surprising additional conductance step was no-
ticed in the QPC data.” At somewhat elevated temperatures
and with low 1D densities, the conductance dwells at a value
of ~0.7g, for a finite density range.””!” This so-called 0.7
structure is a weak feature, distinct from the main plateau
sequence. In QPC devices, it is observed at temperatures as
low as a few kelvin, much smaller than 7. Surprisingly,
when the temperature is lowered further the effect becomes
less pronounced and is absent in the lowest-temperature data
(T<0.1 K). The evolution of this structure with an applied
source-drain bias, magnetic field, and temperature has led to
a suggested link between this phenomenon, the spin degree
of freedom,”® and the Kondo effect.'®!® Alternatively, an
electron-phonon mechanism!® or Wigner crystallization?
were also suggested as possible origins of this phenomenon.

Here we describe the temperature dependence of the con-
ductance in a different 1D system. Using the cleaved-edge-
overgrowth (CEO) technique,® we fabricate long and ultra-
clean ballistic quantum wires with a length-to-diameter ratio
of ~100, far larger than in QPC devices. We find that CEO
wires share a 0.7-like structure with QPC devices. Our
unique wires allow us to measure the specific capacitance of
the device—which is found to be in excellent agreement with
the one estimated from the known geometry. Thus, we can
relate the applied gate voltage to the density in the wire and
show that the 0.7 structure occurs whenever the temperature
exceeds the Fermi temperature 7.

Previous works?"?? have proven CEO wires to be ultra-
clean, characterized by a long backscattering length that can
exceed 20 um. The coupling of such CEO wires to their
reservoirs, however, falls shy of ideal—leading to a some-
what larger contact resistance and a reduced two-terminal
conductance per channel. Thus, the low-temperature conduc-
tance value at the first plateau ranges between 70% and 90%
of the conductance quantum, depending on structure param-
eters (see Refs. 6, 21, and 22 for details). The wire itself,
however, is ballistic and resistance-free, as verified by four-
probe resistance measurements.??

Conductance versus gate voltage traces, measured at vari-
ous temperatures, are shown in Fig. 1. The 0.7 structure is
clearly seen in the data. Similar to QPCs data, this feature
becomes more pronounced at higher temperatures, with its
density range increasing with temperature. A close inspection
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FIG. 1. Conductance vs gate voltage at different temperatures.
The linear conductance of a 2-um-long CEO wire, measured with
an excitation of 30 4V at various temperatures, is plotted against
the gate voltage. The conductance, divided here by the quantum
conductance, dwells at a value of ~0.7 over a finite gate-voltage
range. This conductance anomaly extends over a wider density
range at higher temperatures (arrows).

of such traces shows that the value of the conductance at the
first plateau, g,, is by itself temperature dependent (not
shown). It increases from 0.85g, at T~0.3 K and saturates
to g,~ gy by T~ 10 K for this wire.>* This behavior, unique
to CEO wires, results from the temperature dependence of
the contact resistance.

In order to circumvent this temperature-dependent contact
resistance, we plot in Fig. 2 the conductance, normalized to
its plateau value, versus gate voltage at various temperatures.
As can be seen in this figure, the conductance peculiarity
always occurs at a conductance value of ~0.66g, regardless
of temperature. Apparently, the value of the contact resis-
tance itself is inconsequential.

To follow the evolution of this conductance feature with
temperature, we measure the gate voltage V" that marks the
transition between the main plateau and the 0.7 structure (see
Fig. 3). We thus define V" as the gate voltage where the
conductance equals 85% of its plateau value—halfway be-
tween 0.7 and 1—and follow its temperature dependence. As
will be shown below, it is worthwhile to evaluate the Fermi
energy at this gate voltage and discuss the temperature de-
pendence of this Fermi energy. When the gate voltage equals
V", the 1D density equals n"=(c/e)(V'= V"), where V" is the
gate voltage required to deplete the wire at low temperatures
(T=0.25 K in this experiment) and ¢ is the capacitance per
unit length between the gate and the wire. This density, in
turn, is related to the Fermi wave vector via k;:%ﬂ'n*, with
the factor % accounting for spin degeneracy. Thus, once the
specific capacitance is known, the Fermi energy at this gate
voltage can be readily calculated as E,=#2(k,)?/2m, where
m is the band mass.
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FIG. 2. Normalized conductance vs gate voltage at different
temperatures. The conductance, normalized to its value at the first
plateau g,, is plotted against the gate voltage. The temperature
ranges from 1 to 19 K with 2 K increments between traces. The
anomaly occurs at a conductance of 66—68 % of the plateau value,
regardless of temperature. Inset: Geometry of a CEO wire. A two-
dimensional electron gas (2DEG) is formed in a 25 nm GaAs quan-
tum well by modulation doping. The resultant 2DEG has a carrier
density n,=2.5% 10" cm™2, and mobility w=~4 X 10® cm?/V's. A
second modulation doping sequence is then grown onto a freshly
cleaved [011] facet to create the 1D wire along the cleaved edge. A
tungsten gate evaporated onto the top surface is utilized to deplete
the 2DEG and separate out the wire in front of it. The resultant two
separate 2DEG sheets are used as source and drain reservoirs.

To determine this capacitance, we performed nonlinear
transport measurements in the same wire, as shown in the
inset of Fig. 3. In a recent work,!” we used such data, in
conjunction with a simple model, to determine this specific
capacitance and show that the 0.7 structure occurs in the
low-temperature differential conductance when a bias as
large as four times the Fermi energy is applied across the
wire. Here we use the same method to measure this capaci-
tance, which is then used to establish the Fermi energy.

In Fig. 4 we plot E;, deduced from the measured gate
voltage V", against temperature for the two different wires
measured. As can be seen in this figure, this quantity is sim-
ply proportional to temperature. Moreover, the coefficient of
proportionality equals unity, namely, E.=kzT, as illustrated
by the solid line in the same figure. Thus, the crossover from
the conductance plateau into the 0.7 structure occurs as the
1D carriers are diluted to form a nondegenerate system.

To further analyze the data, we measure another charac-
teristic gate voltage V', which corresponds to the extent of
the 0.7 structure itself (see Fig. 3). Since the 0.7 structure in
our wires occurs when the conductance equals 66—68% of
the plateau value, we defined V' as the gate voltage where
the normalized conductance equals 0.69. In other words, V’
is defined such that the conductance anomaly occurs in the
density range 0=<n<n(Vy,,=V').*® We plot the correspond-
ing Fermi energy against temperature in the same figure.
Clearly, the 0.7 structure occurs deep in the nondegenerate
regime. We find that the density band matching 0=<E(n)
=<0.4kpT describes the range where the 0.7 structure occurs
fairly accurately, as can be seen in Fig. 4.

With free electrons in a reflection-free single-mode wire,
the well-known cancellation between the velocity and the
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FIG. 3. Characteristics of the 0.7 structure. The conductance at
T=3 K, normalized to its plateau value, is plotted against the gate
voltage. Two characteristic gate voltages are indicated: V" corre-
sponds to the transition between the plateau and the 0.7 structure,
and V' marks the high-density extent of this feature (see text). The
threshold gate voltage V™ is also indicated. Dotted line: the ex-
pected conductance within a free-electron model (see text). Inset:
Transconductance vs gate voltage and dc bias. The numerical de-
rivative of the differential conductance with respect to gate voltage
as a function of gate voltage and dc bias, in a gray-scale format.
Data were taken with an ac excitation of 30 uV at a bath tempera-
ture of 250 mK. The light lines separate regions of different con-
ductance values. The central dark region, where this derivative van-
ishes, corresponds to the first plateau. Superimposed on the data are
two curves (black lines): the upper curve uy=4(Eg/e)(1—VA/ER)
marks the onset of the second subband transport at high densities,
and the lower curve uy=—4E;/e marks the boundary between the
plateau and the 0.7 structure. These fitted curves, bounding the pla-
teau region, are used to deduce the specific capacitance (see Ref. 17
for details). The deduced values were ¢=18.0+0.5 pF/m for the
data shown and 19.0+0.5 pF/m for the second wire measured (data
included in Fig. 4).

density of states leads to a simple expression for the linear
conductance:
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Here u is the applied source-drain bias and f(&) is the Fermi
function. Thus, in this simple model, the conductance equals
the value of the Fermi function when evaluated at zero en-
ergy: f(0)=1/(1+e #*s8T) 27 The chemical potential wu is re-
lated to both temperature and the applied gate voltage via
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FIG. 4. Phase diagram of the 0.7 structure. The Fermi energy in
the wire at the transition between the plateau and the 0.7 structure,
E;:EF(ngesz) (open symbols) and the one marking the high-
density edge of this feature, Ez=Ep(Vgye=V") (filled symbols) are
plotted against temperature. Data were taken from two different
wires, both 2 um long (diamonds and circles). The measured gate
voltages were translated into Fermi energies, using the expression
for spin-degenerate free electrons in 1D (Ref. 25). The data appear
linear in this energy-temperature plane, attesting to the 1D nature of
our device. The line Ep=kgT is added onto the data (solid line). The
shaded area at the bottom of the figure corresponds to the 0.7 struc-
ture region—clearly in the nondegenerate regime. The measured
conductance dwells at g~ 0.7 down to very low 1D densities (Ref.
26), as illustrated by the dashed line.

n=[ode[v(e)f((e=p)/ kgD)]=(c/e)(Vyye—Vyy) Where 1(e)
=2/h\2m/ e is the density of states.

We have evaluated this chemical potential and added the
resultant conductance trace onto the data in Fig. 3. Evidently,
the fact that the conductance decreases significantly below
its plateau value as the gate voltage is reduced to V", where
Er=kgT, is not very surprising and is in fact expected from
this model. The surprising feature is the excess of conduc-
tance at lower densities. Similar to the nonlinear response at
low temperatures,'” here again the measured conductance is
too high to be accounted for by a free-electron model.”

To summarize, we have measured the temperature depen-
dence of the conductance in clean and long CEO wires and
found a 0.7-like structure. We show that this phenomenon
occurs when the temperature exceeds the Fermi energy by a
factor of ~2%. We also show that the 0.7 structure amounts
to an excess of measured conductance, not accounted for in a
model that ignores the electron-electron interactions.
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