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Numerical simulations were performed to predict the electron energy levels and wave functions in periodi-
cally nanocorrugated free-standing InAs films. The obtained data show that in films thinner than 4 nm the
lowest energy levels are due to the X-conduction-band valleys. In such films, the elastic strain gives rise to a
periodic potential consisting of quantum wells about 1 eV deep, resulting from the strain-induced shift of the
energy position of the X-valley minimum. The possibility of localization of electron states in the potential wells
is shown.
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The present-day semiconductor technology is rapidly pro-
gressing toward the fabrication of nanoscale devices. Re-
cently, a nanostructuring method was introduced, enabling
the fabrication of various semiconductor nanoshells from
strained pseudomorphic heterofilms detached from substrates
on which these heterofilms were initially grown.1,2 In fabri-
cation of the nanoshells, A3B5 semiconductor1,2 and Si/SiGe
�Refs. 2 and 3� were used. This method is based on the
tendency, displayed by detached films, to assume a shape
providing for the minimum possible elastic energy in the
final structure; as a result, the films roll in tubes1 or undergo
buckling to form corrugated structures.2 The proposed
method allows one to obtain shells of various complex
shapes with nonuniform distribution of strains in them.3 A
unique property of such 3D shells is sharp variation of the
strain over nanosizes. For instance, the strain � can vary
along the film by several percent, resulting in considerable
band-edge shifts of �Ec�ac��0.5 eV, where ac is the de-
formation potential, forming potential wells and barriers at
the nanometer scale and leading to quantum confinement.
The local detachment of a film from the substrate itself gives
rise to a potential well.

The purpose of the present study was to calculate the
energy spectrum and wave functions of electrons in a peri-
odically nanocorrugated thin-film structure of fundamental
and practical interest.2 An example of such a structure with
four spatial periods is schematically depicted in Fig. 1; the
number of the periods can be made infinitely large using
longer strips detached from the substrate. �The detachment is
achieved by selective removal of the substrate or a sacrificial
layer at the edge of the structure2�. The flat state of the re-
leased film is unstable, and the film buckles to form a corru-
gated shell. In this way or another, the elastic stress in the
released film relaxes, lowering the conduction-band edge and
forming a potential well for electrons.

In this nanostructuring method, single- or multi-layered
compressed films to be freed from substrates can be used.
The role of corrugation is most readily illustrated with the
case of a bifilm that comprises a conducting layer �the upper
layer in Fig. 2�a�� and an underlying insulating layer. Appar-
ently, the conducting layer is tensile stressed and com-
pressed, respectively, in regions 1 and 2 of the film. With a
small bending radius, an ultimately high strain can be
achieved, which causes the band edges to shift appreciably,

the band edges in regions 1 and 2 shifting in opposite direc-
tions. Thus, in the nanometer region the corrugated system
presents a space-periodic sequence of potential wells of
rather large depth.

The prediction of electronic levels in the nanocorrugated
structure can be reduced to solving the following problems:
�i� determination of the potential relief for electrons in the
elastically deformed nanostructure and �ii� solution of the
Schrödinger equation for electrons in the obtained potential.

In the present study, these calculations were performed
under the following simplifying assumptions:

1. The strains in the thin films �d�1 nm� were allowed
for in the framework of the continuum elasticity theory. This
assumption is justified by a comparison of strains in thin
films predicted in the atomic-elasticity approximation and in
the approximation of the continuum elasticity theory; the
comparison shows that the elastic theory can be used to pre-
dict strains even in very thin GaAs films �down to 2 MLs
�0.56 nm��.4 In addition, the experiment shows1 that the ra-
dius of nanotubes rolled up from free heterolayers can be
adequately predicted by a formula obtained in the continuum
theory5 for layers as thin as 4 MLs �1.1 nm�.

2. The Schrödinger equation for electrons in the corru-
gated structure was solved in the effective mass approxima-

FIG. 1. Schematic view of the nanocorrugated structure. Only
the shape of the corrugated film is illustrated. The x-z cross section
of the film is shown in Fig. 2�a�. The substrate is oriented normally
to the �001� direction. Note the difference between the scales along
the different axes.
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tion. In thin films, the translation symmetry across the film is
lacking; yet, the calculations performed by the pseudopoten-
tial method6 and by the empirical tight-binding method7

yield the position of electronic levels in GaAs films with
thickness down to 2–3 ML �0.7–0.8 nm�, which very closely
coincides with that of the levels predicted by the effective
mass approximation. The films in which the difference is
large �d�1 nm� are not considered here.

To determine the shape of a freed film and predict the
strains in it, one has to solve the problem of the theory of
elasticity for shells,8 which in the case of a heavily deformed
body reduces to the solution of complex nonlinear Föpple–
von Kármán differential equations. The latter equations can
be solved analytically only in several particular cases.9

It is known from the experiments with nanocorrugated
structures2 and from the theory of elasticity for macrocorru-
gated structures10 that the shape of the structures is close to a
sinusoid. The amplitude of the sinusoid is easy to estimate.
We assume that the elastic stress has already dropped to a
value such that inside the film �Fig. 2�a�� there is a neutral
surface where strains are zero. The length of the fully relaxed
film, measured along the neutral interface, is L�1+�f�. This
length geometrically defines the corrugation amplitude �here,
L is the length of the compressed film and �f is the lattice

mismatch in the structure�. As it is seen from Fig. 2, the
amplitude of the corrugation is large, amounting to about
2.4 nm. The chosen corrugation parameters fall into the
range of experimentally obtained values.2

With the known shape of the structure, following the
work11 and led by simple geometric considerations, we can
calculate the strain distribution in the structure. We introduce
a curvilinear coordinate system chosen with due regard for
the geometry of the structure �Fig. 2�a��. The coordinates s
and h are directed along the surface of the film and along the
normal to it, and the point h=0 is chosen at the middle of the
film. Nothing prevents the film from being deflected in the y
direction �Fig. 1� excluding for the region immediately adja-
cent to the undetached part of the film; we therefore assume
the strain �y in this direction to be zero. It is well known5,8

that the strain �s in a film in the direction along the surface
varies linearly across the film: �s=h /R, where h is the thick-
ness of the film and R is its curvature radius calculated by the
differential-geometry formulas. This strain may be rather
high. In the structure depicted in Fig. 1, the lattice mismatch
between the film and the substrate is �f =3%, and the corru-
gation period is b=40 nm. The minimum curvature radius
for this structure is Rmin=16 nm. For the film thickness of
d=8 ML �2.2 nm�, the strain �s amounts to 7%. The strain �h

in the h direction can be predicted using the Poisson relation
�h=−�� / �1−����s, where � is the Poisson ratio.

The strain distribution thus obtained makes it possible to
calculate the potential relief in the nanocorrugated structure.
Note that the relief for electrons in the � valley will differ
from that for electrons in the X valleys because the band
edges in these valleys shift by different values.12 As the film
thickness gradually decreases, the energy level in the X val-
ley will become the lowest quantum level because the effec-
tive mass in this valley is greater and the rise of the quanti-
zation levels in it is less pronounced than in the � valley.13 In
free GaAs films, the change of the succession of the valleys
occurs at the thickness of 8 MLs �2.2 nm�.14 Estimations
show that in InAs films thinner than 12 MLs �3.3 nm�, where
the energy gap between the � and X valleys amounts to
1 eV,15 the lowest level is the X valley electron level.

In strain-free InAs, the X-conduction-band valley is
known to be sixfold degenerate. In this valley, the constant-
energy surfaces are ellipsoids characterized by a heavy lon-
gitudinal mass ml=1.13m0 and light transverse mass mt
=0.16m0,15 where m0 is the free-electron mass. In the film
under consideration, grown on a �001� substrate, there are
two Xz valleys oriented across the film and four in-plane
oriented Xxy valleys. In the strained film, the strain-induced
shifts of the energy minima in the Xz and Xxy valleys are
�Ec

z =ac��s+�h+�y�+ 2
3�u��h− ���s+�y� / �2�� and �Ec

xy

=ac��s+�h+�y�− 1
3�u��h− ���s+�y� / �2��, respectively,12

where ac is the deformation potential for electrons, and �u is
the shear deformation potential. The first, hydrostatic, term
shifts both types of valleys by the same energy, whereas the
second, shear, term causes an energy splitting of the two
types of valleys. In the structure of interest, the upper film at
points 1 �see Fig. 2�a�� is in tension; here, �s�0, �y =0 and
�h�0 and, hence, the Xz valleys lie approximately 0.5 eV
above the Xxy valleys. The situation at points 2 is opposite;

FIG. 2. �a� x-z cross section of the structure from Fig. 1. The
middle surface is shown with a dotted line. Axes s, h used in the
calculation are also shown. Regions 1 are under tensile strain and
regions 2 are under compressive strain. �b� Confinement potential
for electron near the upper surface of the film �solid line� and lower
electron level �dotted� line.
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yet, the hydrostatic strain at these points raises the both types
of valleys to a higher-energy position compared to points 1
�Fig. 2�a��. Moreover, the quantization because of the trans-
verse electron confinement in the Xz valleys is defined by the
larger longitudinal mass ml compared to the Xxy valleys,
where the quantization due to confinement in the film-normal
direction is determined by the small transverse mass mt.
Thus, the lowest energy levels in our structure are the levels
due to the Xz valleys. Direct calculations confirm this con-
clusion. In what follows, we consider only the energy levels
for electrons in the Xz valleys.

With the above expressions for the strains taken into ac-
count, the shift of the Xz-valley edge in the structure of in-
terest is �Ec

z =�ac�1−2�� / �1−��− 1
3�u�1+�� / �1−���h /R.

This shift varies linearly across the film, the slope of the
strain-coordinate dependence being determined by the curva-
ture radius of the film. Figure 2�b� shows this dependence
near the upper surface of the film. The values of parameters
used for InAs were as follows: ac=−6.08 eV �Ref. 15� and
�u=4.5 eV.12 The film was assumed to consist of two layers
of identical thicknesses, a top InAs layer and a narrow layer
grown from a high energy-gap semiconductor or a dielectric,
with a 2 eV barrier at the heterointerface between the layers.
In the calculations, the film-vacuum interface was assumed
to act as an infinitely high barrier for electrons. At the inter-
face between the detached from the substrate and the unde-
tached parts of the film there is a 0.2 eV barrier for electrons.

The potential relief obtained defines the position of en-
ergy levels and the wave functions of electrons in the nano-
corrugated structure. We solve the Schrödinger equation in
the cross section of the structure �Fig. 2�a��. This approxima-
tion is well justified since the shape of the structure in the y
direction remains almost unchanged over a substantial dis-
tance 2,10 �Fig. 1�, and the shape of the potential well along
the y direction is close to a rectangle. The use of the two-
dimensional approximation for the Schrödinger equation im-
plies that we take into account only the lowest quantum state
with respect to the energy of the electron motion along this
direction. In the effective mass approximation, the
Schrödinger equation in the chosen curvilinear coordinate
system is16
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where Hs=1+h /R�s�, U is the potential energy, E is the elec-
tron level, and 	 is the electron wave function. The first term
in the Schrödinger equation is the kinetic-energy operator
written in the curvilinear coordinates with due allowance for
the effective-mass anisotropy in the Xz valleys. In the case
under consideration, the mass in the h direction is equal to
the longitudinal mass: mh=ml, and the mass in the s direc-
tion, to the transverse mass: ms=mt. The potential energy
takes into account the strain-induced shift of band edges and
the band discontinuity at the heterointerface. The
Schrödinger equation was transformed into a finite-
difference equation on a rectangular calculation grid in the
coordinates �s ,h�, whose solution was reduced to the solu-

tion of an eigenvalue problem for the obtained system of
linear equations.

The numerical solution of the Schrödinger equation
showed that the lower electronic state lies at an energy of
0.45 eV over the bottom of the potential well �Fig. 2�b��.
With the chosen parameters of the structure, there is no sig-
nificant tunneling-induced coupling between the potential
wells. The lower electronic states are essentially degenerate,
and the wave functions of electrons in this state can be taken
as localized in individual potential wells �Fig. 3�. Mean-
while, there is Coulombic interaction between the electrons
in individual wells, and such a nanostructure as a whole can
be considered as a kind of a quantum dot molecule.

Corrugated structures can also be fabricated from single-
layered films. In the latter case, the corrugation gives rise to
tunneling coupled potential wells in all regions of the struc-
ture adjacent to the convex surface of the film �Fig. 2�a��.
The numerical solution of the Schrödinger equation showed
that the wave function of the lowest state is delocalized,
being distributed among the different wells: the maxima of
the wave function coincide with the potential-energy
minima. Such a nanostructure can be regarded as a quantum
dot whose bottom has a spatially modulated potential relief.

The calculations were performed under the assumption
that the elastic stress in the freed part of the film has dropped
to a value so small that inside the film there is a neutral
interface. This assumption may not be valid;10 in this case, a
compressive strain will remain everywhere inside the film.
This strain adds to the above-considered strain to give rise to
some rise of the conduction-band edge over the entire struc-
ture. Yet, as our calculations show, the final results in this
case will remain qualitatively unchanged even with the re-
sidual compression equal to half the initial compression.

The effective mass approximation as applied to calcula-
tion of the energy levels may appear violated for thin films;
in such cases an electrons in a film should be treated as a free
electron in a quantum well rather than an electron in a
semiconductor.6,17 Our calculations carried out under the as-
sumption that the electron mass is equal to the free-electron

FIG. 3. The wave function of one of the lowest electron states.
Other states with the same energy are localized in other potential
wells that arise in the tensile-stressed regions of the upper film
�regions 1 in Fig. 2�a��. The total number of the degenerate states is
defined by the number of the corrugation periods along the x axis.
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mass yielded a stronger localization of electron states. To
summarize, the above-considered nanocorrugated structure
presents a thin-film quantum system with an energy spectrum
defined by the strains present in the structure.
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