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We theoretically study decoherence of two localized spins interacting via the Ruderman-Kittel-Kasuya-
Yosida �RKKY� interaction in one-, two-, and three-dimensional electron gas. We derive the kinetic equation
for the reduced density matrix of the localized spins and show that energy relaxation caused by singlet-triplet
transition is suppressed when the RKKY interaction is ferromagnetic. We also estimate the decoherence time
of the system consisting of two quantum dots embedded in a two-dimensional electron gas.
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Quantum computation and quantum information are
emerging research fields of physics, technology, and infor-
mation sciences.1 The elementary units in most quantum
computation and quantum information schemes are a quan-
tum bit and a quantum gate. Because of its scalability and
relatively long coherence time,2 a solid state device with lo-
calized spins is considered as one of the promising candi-
dates for these quantum devices.3 Kane4 proposed the system
of nuclear spins of phosphorus donors in a silicon hetero-
structure with direct exchange interaction between electrons
localized at the donors. Mozyrsky et al.5,6 proposed the qu-
bits of nuclear spins in the quantum-Hall system, in which
the gate operation is realized by the indirect exchange inter-
action via virtually excited spin waves. Recently Craig et
al.7,8 observed the Ruderman-Kittel-Kasuya-Yosida9

�RKKY� coupling of semiconductor quantum dots, which
proved that the RKKY interaction can be used as a quantum
gate consisting of localized spins in semiconductor quantum
dots. Several theoretical papers studying the RKKY interac-
tion in such semiconductor nanostructures have been
published.10–15

One of the major obstacles to realizing quantum compu-
tation is decoherence.16,17 Since the RKKY interaction is me-
diated by the electron gas, the particle-hole excitations act as
an environment �Fermion bath�.18–21 It is therefore important
to clarify the effects of the Fermion bath on the dynamics of
the qubits consisting of the localized spins.

In this paper, we study the dynamics of the localized spins
interacting via the RKKY interaction by using the kinetic
equation of the reduced density matrix. We find the term
intrinsic to the RKKY interaction appears in the kinetic equa-
tion, which is an oscillating function of the distance between
the localized spins with the same period as the RKKY inter-
action. We show that the energy relaxation due to the singlet-
triplet transition is strongly suppressed by this term. We also
discuss the physical realization of a quantum gate using the
RKKY interaction and estimate the decoherence time of the
system consisting of two quantum dots embedded in a two-
dimensional electron gas �2DEG�.

We consider the system consisting of two localized spins
embedded in a one-, two-, or three-dimensional electron gas.
The Hamiltonian, H=HS+Hc+Hint, comprises the localized
spin part, HS, the conduction electron part, Hc, and the s-d
interaction, Hint. We assume that there is no external mag-
netic field and we set HS=0. In the second quantization rep-
resentation, Hc and Hint are expressed as

Hc = �
k�

�kck�
† ck�, �1�

Hint =
J

2V
�

p=1,2
�
k,k�

ei�k−k��·Rp�Sp
−ck�↑

† ck↓ + Sp
+ck�↓

† ck↑ + Sp
z �ck�↑

† ck↑

− ck�↓
† ck↓�� , �2�

where ck�
† and ck� are creation and annihilation operators of

an electron with wave number vector k and spin �. Here �k is
an energy of conduction electrons, J is a coupling constant of
s-d interaction, and Rp �p=1,2� represents the position of
the localized spin Sp. We assume that the coupling constant J
is so small that we can treat Hint as a perturbation on Hc.

The dynamics of the two localized spins is described by
the reduced density matrix ��t�=trc��tot�t��, where �tot is the
density matrix for the total system and trc means trace over
the degrees of freedom of the conduction electrons. The re-
duced density matrix ��t� obeys the following kinetic
equation:22–25

d

dt
��t� = −

i

�
�HS,��t�� + �

0

t

dt���t − t����t�� . �3�

The self-energy ��t− t�� is a superoperator acting on ��t�. We
assume that at the initial time t=0 the system of the localized
spins and the system of the conduction electrons are decou-
pled, and the conduction electrons are in thermal equilib-
rium: �tot�0�=��0� � �c

eq, where �c
eq

=e−�Hc−�N�/kBT / trce
−�Hc−�N�/kBT.

We carry out a second-order perturbative calculation for
the self-energy ��t− t�� in Eq. �3�. We assume that the re-
duced density matrix ��t� varies slowly compared to the life-
time of particle-hole excitations, and we make the Markov
approximation in Eq. �3�. A straightforward calculation gives

d

dt
��t� = 	HRKKY + �

p=1,2
Dp + Dex
��t� , �4�

where HRKKY, Dp �p=1,2�, and Dex are the superoperators
defined as follows.

The first term of rhs in Eq. �4� is defined as
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HRKKY��t� = − i
JRKKY

�
�S1 · S2,��t�� , �5�

which represents the coherent time evolution of the two lo-
calized spins interacting via the RKKY interaction.9,26–28 The
effective coupling constant JRKKY, for a d-dimensional sys-
tem �d=1,2 ,3� is given by JRKKY=�d	dEFFd�2kFR�, where
R= �R1−R2� is the distance between two localized spins, EF
is the Fermi energy, and kF is the Fermi wave number. Here
�d, 	d, and the range function Fd�x� are given in Table I. The
range functions Fd�2kFR� for d=1, 2, and 3 are plotted by
dotted lines in Figs. 1�a�–1�c�, respectively. The RKKY in-
teraction is produced by virtually excited quantum states
within a wide energy window from the bottom of the energy
band to the Fermi surface. Therefore, the strength of the
RKKY interaction, JRKKY, is proportional to the Fermi en-
ergy EF and is the oscillating function of R with the period of
half of the Fermi wavelength, 
 /kF.

The second term on the rhs in Eq. �4� is defined as

�
p=1,2

Dp��t�

= −
�

�
�

p=1,2
	3

2
��t� − �Sp

+��t�Sp
− + Sp

−��t�Sp
+ + 2Sp

z��t�Sp
z �
 ,

�6�

where the coefficient � is expressed as �=�dkBT. This term
describes the usual decoherence of a localized spin Sp inter-
acting with the Fermion bath, which is known as the Kor-
ringa relaxation.29 Since thermally excited particle-hole pairs
cause the Korringa relaxation, � is proportional to the tem-
perature T. One can easily show that this term causes energy
relaxation due to transition between singlet and triplet states
and dephasing due to transition among three degenerate trip-
let states.

The last term of rhs in Eq. �4�, which is intrinsic to the
system with the RKKY interaction, is defined as

Dex��t� = −
2�ex

�
	�S1 · S2,��t�� −

1

2
�S1

+��t�S2
− + S1

−��t�S2
+

+ 2S1
z��t�S2

z + �spin 1 ↔ 2��
 . �7�

This term exists only when the two localized spins interact
with each other via conduction electrons. The coefficient �ex
is expressed as �ex=�dkBTGd�2kFR�. The range function
Gd�2kFR� is given in Table I, and plotted by solid lines in
Figs. 1�a�–1�c�. As we shall show later, this term suppresses
the energy relaxation caused by singlet-triplet transitions due
to the term Dp. The origin of this term is interference among
thermally exited particle-hole pairs near the Fermi surface.
Therefore, the range function Gd�2kFR� oscillates with the
same period as Fd�2kFR�. Reflecting the difference in physi-
cal mechanisms behind them, the amplitude of Gd�2kFR� de-
cays as 1/Rd−1, while that of Fd�2kFR� decays as slowly as
1/Rd. Especially for the one-dimensional electron gas, the
amplitude of the oscillation of Gd�2kFR� does not decay as R
increases.

Next, in order to capture the physical meaning of the term
Dex��t�, we examine the time evolution of the expectation
value �S1 ·S2=tr���t�S1 ·S2�, which is proportional to the en-
ergy expectation value of the RKKY interaction. By using

TABLE I. The coefficients �d and 	d, and the range functions Fd�x� and Gd�x� for d-dimensional electron gas �d=1,2 ,3�. si�x��
−�x

�dt sin t / t is the sine integral function. Jn is the Bessel function and Nn is the Neumann function of order n. z0=2.40 is the first zero point
of J0.

d �d 	d Fd�x� Gd�x�

1 m2J2

2
�4kF
2

2si�
�=5.6210−1 si�x�

si�
�
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2

2 m2J2

32
2�4

8



J1�z0�N1�z0�=1.1010−1 J0�x /2�N0�x /2�+J1�x /2�N1�x /2�

J1�z0�N1�z0�
J0

2�x /2�

3
m2J2kF
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3 =3.2310−2
�2
�3 x cos x−sin x

x4 2
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FIG. 1. The range functions for a one-dimensional system
F1�2kFR� and G1�2kFR� are plotted as a function of 2kFR in panel
�a�. Panels �b� and �c� are the same plot for two- and three-
dimensional systems, respectively.
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Eqs. �4�–�6�, we can show that it decays exponentially as
�S1 ·S2�exp�−4��−�ex�t /��. Then the characteristic time of
energy relaxation of the RKKY interaction is given by
�RKKY=� /4��−�ex�. Since the term Dex��t� is proportional
to �ex, we can say that the term Dex��t� tends to suppress
energy relaxation. Note that �ex does not exceed �. Espe-
cially when �ex=�, the singlet-triplet transitions due to the
term Dp do not occur and energy relaxation of the RKKY
interaction is completely suppressed. However, the transi-
tions among the triplet states are not suppressed and the
dephasing rate remains finite even if �ex=�. As shown in
Figs. 1�a�–1�c�, the range function Gd�2kFR� takes its maxi-
mal values when the Fd�2kFR� is negative. Consequently the
energy relaxation of the RKKY interaction is suppressed
when the RKKY interaction forms ferromagnetic coupling
�JRKKY�0�.

Figure 2�a� shows the time evolution of the diagonal ele-
ment �↑↓,↑↓�t� of the reduced density matrix. The initial state
is taken to be �↑↓ and the time scale is normalized by
h /JRKKY. The diagonal element �↑↓,↑↓�t� represents the occu-
pation probability of the state �↑↓. Without decoherence, �
=�ex=0, the quantum state of the two-spin system oscillates
between �↑↓ and �↓↑ coherently and �↑↓,↑↓�t� shows a clear
oscillation like a trigonometric function as indicated by the
thin solid line in Fig. 2�a�. In the case of �=0.05JRKKY and
�ex=0, where each spin decoheres independently, �↑↓,↑↓�t�
shows damped oscillation due to Dp �thick solid line�. The
dotted, dashed, and dotted-dashed lines in Fig. 2�a� show the
results for �ex=0.025, 0.045, and 0.05JRKKY, respectively.
The value of �ex can be controlled by changing the distance
between localized spins, R. One can see that the oscillation
amplitude of �↑↓,↑↓�t� decays more slowly as �ex increases
since the energy relaxation of the RKKY interaction is sup-
pressed by �ex. Although energy relaxation of the RKKY
interaction is completely suppressed when �ex=�, dephasing
due to the transition among the triplet states occurs as indi-
cated by the dotted-dashed line in Fig. 2�a�.

In Fig. 2�b� we plot the off-diagonal element �↑↓,↓↑�t� with
the initial state ��↑ ↓ − �↓ ↑ � /�2 �the singlet state, i.e., the
maximally entangled state of the localized spins�. Because
the singlet state is one of the energy eigenstates of the
RKKY interaction, �↑↓,↓↑�t� is the conserved quantity when
�=�ex=0. If � takes a finite value, the singlet state changes
to the mixed state and �↑↓,↓↑�t� decays exponentially to zero.
As shown in Fig. 2�b�, �↑↓,↓↑�t� decays more slowly as �ex
increases, which means that �ex suppresses decoherence of
the singlet state. Especially in the case of �=�ex, the singlet
state remains as it is forever and the off-diagonal element
�↑↓,↓↑�t� never decays although the localized spins always
interact with the Fermion bath of conduction electrons. One
can easily show that for the singlet state the contributions of
Dex��t� and Dp��t� in Eq. �4� cancel out when �=�ex.

Finally, we would like to discuss the physical realization
of a quantum gate using the RKKY interaction and estimate
the decoherence time. Let us consider the system consisting
of two quantum dots embedded in a 2DEG of GaAs/AlGaAs
heterostructure. We assume that the electron density of the
2DEG is n2D=7.31011 cm−2, the Fermi energy and the
Fermi wavelength are EF�26 meV and 2
 /kF�29.4 nm.
We also assume that the charging energy of the quantum dot
is U=1.9 meV, the Lorentzian broadening of the localized-
state energy with full width at half maximum �FWHM� is
�=295 �eV, and the temperature is T=100 mK.30,31 Each
quantum dot contains a single localized spin that acts as a
qubit. The coupling between localized spins, i.e., the quan-
tum gate operation is controlled by applying a gate voltage to
2DEG. For example, the �SWAP gate operation,1,32 which is
known as a universal 2-bit quantum gate operation, can be
carried out if the strength of the RKKY interaction JRKKY is
controlled such that �dtJRKKY�t� /�=
 /2. We suppose that
the interdot distance is R= z̃2 /kF�11 nm �z̃2=2.40 is the first
zero point of the Bessel function J0�, that is, �ex=0 and the
energy relaxation is not suppressed. The strength of the
RKKY interaction takes JRKKY�3.4 �eV and the operation
time defined as �op�
� /2JRKKY is �0.3 ns. Since �ex is
assumed to be zero, the decoherence time is determined only
by � and is estimated as �dec�� /��62 ns. Therefore, about
200 times coherent �SWAP operation can be achieved.

The decoherence of a localized spin due to phonon scat-
tering is suppressed in a small quantum dot and long coher-
ence time �on the order of milliseconds� of a single spin was
observed in self-assembled semiconductor quantum dots.2

Therefore, the decoherence due to the Fermion bath of con-
duction electrons is dominant in this system.

A more coherent quantum gate operation is available if
we locate the quantum dots very close to each other �kFR
�1�. In this case the value of �ex approaches � and therefore
we can take an advantage of the suppression of the energy
relaxation. Furthermore we can also obtain a very strong
ferromagnetic RKKY interaction.11 Experimentally, quantum
dot arrays with 3–10 nm diameter quantum dots have al-
ready been fabricated.33–35 We believe that the system we
consider can be realized by using such quantum dot arrays
with a few nm interdot distance.

In conclusion, we have derived the kinetic equation for
the system of two localized spins embedded in an electron

FIG. 2. �a� The time evolution of �↑↓,↑↓�t�. The initial state is
taken to be �↑↓ and the time is normalized by h /JRKKY. �b� The
same plot for �↑↓,↓↑�t� with the initial state ��↑ ↓ − �↓ ↑ � /�2. For
both panels, the thin solid line represents the result for �=�ex=0,
while all the other lines are for �=0.05JRKKY. The parameter �ex is
taken to be 0, 0.025, 0.045, and 0.05JRKKY for the thick solid,
dotted, dashed, and dotted-dashed lines, respectively.
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gas and have shown that particle-hole excitations in the elec-
tron gas cause not only the RKKY interaction but also deco-
herence of the two-spin system. We also show that the
strength of decoherence as well as the RKKY interaction
strongly depends on the distance between two spins, and
energy relaxation due to singlet-triplet transition is sup-
pressed when the RKKY interaction is ferromagnetic
�JRKKY�0�. We also estimate the decoherence time of the

system consisting of two quantum dots embedded in a two-
dimensional electron gas �2DEG� to be �dec�60 ns, within
which �200 coherent �SWAP operations can be achieved.
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