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An approach to the description of superconductors in thermal equilibrium is developed within a formally
exact density functional framework. The theory is formulated in terms of three “densities:” the ordinary
electron density, the superconducting order parameter, and the diagonal of the nuclear N-body density matrix.
The electron density and the order parameter are determined by Kohn-Sham equations that resemble the
Bogoliubov–de Gennes equations. The nuclear density matrix follows from a Schrödinger equation with an
effective N-body interaction. These equations are coupled to each other via exchange-correlation potentials
which are universal functionals of the three densities. Approximations of these exchange-correlation function-
als are derived using the diagrammatic techniques of many-body perturbation theory. The bare Coulomb
repulsion between the electrons and the electron-phonon interaction enter this perturbative treatment on the
same footing. In this way, a truly ab initio description is achieved which does not contain any empirical
parameters.
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I. INTRODUCTION

One of the great challenges of modern condensed-matter
theory is the prediction of material specific properties of su-
perconductors, such as the critical temperature Tc or the gap
at zero temperature �0. The model of Bardeen, Cooper, and
Schrieffer1 �BCS� successfully describes the universal fea-
tures of superconductors, i.e., those features that all �conven-
tional, weak-coupling� superconductors have in common,
like the universal value of the ratio 2�0 /kBTc. The great
achievement of BCS theory was the microscopic identifica-
tion of the superconducting order parameter which led, after
more than 50 years of struggling, to a microscopic under-
standing of the phenomenon of superconductivity.

BCS theory, however, cannot be considered a predictive
theory in the sense that it would allow the computation of
material-specific properties. Moreover, materials with strong
electron-phonon coupling, such as niobium or lead, are
poorly described by BCS theory. In these strong-coupling
materials, phonon retardation effects play a very important
role. A proper treatment of those effects was developed by
Eliashberg.2,3 His theory can be viewed as a GW
approximation4 in terms of the Nambu-Gorkov5 Green’s
functions. Eliashberg’s theory not only achieves a successful
description of the strong-coupling simple metals like Nb and
Pb, it also provides a convincing explanation of the super-
conducting features of more complex materials such as
MgB2.6

In spite of its tremendous success, Eliashberg theory, in its
practical implementation, has to be considered a semiphe-

nomenological theory. While the electron-phonon interaction
is perfectly accounted for, correlation effects due to the
electron-electron Coulomb repulsion are difficult to handle in
this theory. Those effects are condensed in a single parameter
�*, which represents a measure of the effective electronic
repulsion. Although �* could, in principle, be calculated by
diagrammatic techniques,3 first-principles estimates of �* are
extremely hard to make, and in practice, �* is treated as an
adjustable parameter, usually chosen such that the experi-
mental Tc is reproduced.

The goal of this work is to develop a true ab initio theory
for superconductivity which does not contain any adjustable
parameters. The crucial point is to treat the electron-phonon
interaction and the Coulombic electron-electron repulsion on
the same footing. This is achieved within a density functional
framework.

Density functional theory7–9 �DFT� enjoys enormous
popularity as an electronic-structure method in solid-state
physics, quantum chemistry, and materials science. DFT
combines good accuracy with moderate numerical effort and
is often the method of choice especially for large molecules
and solids with a big unit cell. DFT is based on the
Hohenberg-Kohn7 theorem which ensures a rigorous 1:1 cor-
respondence between the ground-state density and the exter-
nal potential. At finite temperature, the correspondence
holds10 between the density in thermal equilibrium and the
external potential. As a consequence, all physical observ-
ables of an interacting electron system become functionals of
the density. The practical implementation of DFT rests on the
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Kohn-Sham8 scheme which maps the interacting system of
interest on an auxiliary noninteracting system with the same
ground-state thermal density.

Traditional DFT, by its very nature, inevitably involves
the Born-Oppenheimer approximation: One is supposed to
calculate the electronic ground-state thermal density that cor-
responds 1:1 to the electrostatic potential of clamped nuclei.
To overcome this limitation Kreibich and Gross11 �KG� re-
cently presented a multicomponent DFT which treats both
electrons and nuclei quantum mechanically on the same foot-
ing. The KG theory involves two “densities:” the electronic
density n�r� referring to a body-fixed coordinate frame, and
the diagonal ��R� � of the nuclear N-body density matrix. The
exchange-correlation functional appearing in the resulting
Kohn-Sham equations depends on both “densities” and con-
tains, formally, all nonadiabatic couplings between the elec-
trons and the nuclei.

Hence, in principle, the KG framework should be able to
describe �conventional� superconductivity. In practice, how-
ever, it is not advisable to attempt such a description. The
situation is quite similar to the DFT treatment of magnetic
effects: By virtue of the Hohenberg-Kohn theorem, magnetic
effects can be described on the basis of the density alone. In
particular, the order parameter of spin magnetism, the spin
magnetization m�r�, is a functional of the density m=m�n�.
However, this functional has to be highly non-local and its
explicit form is unknown. Therefore, it is advisable to in-
clude the order parameter m�r� as an additional density in the
DFT formulation.12 This version of DFT is known as spin
DFT. It is the standard form of DFT that is employed in all
practical applications.

A similar idea was suggested in 1988 by Oliveira, Gross,
and Kohn13 �OGK� to treat superconductors in a DFT frame-
work. OGK proposed the inclusion of the order parameter
��r ,r�� that characterizes the superconducting phase as a ba-
sic density in the DFT formulation. OGK dealt with singlet
order parameters. A generalization to triplet order parameters
was given later.14

The complexities of the many-body problem were cast
into an exchange and correlation term, but in contrast to
ordinary density functional theory where a variety of func-
tionals has appeared over the past 30 years, very few
exchange-correlation functionals have been proposed for the
superconducting state. To our knowledge, only a local den-
sity approximation describing the purely electronic interac-
tions has been presented.15 However, the usefulness of the
OGK approach was demonstrated by Györffy and co-
workers in their study of niobium and YBa2Cu3O7 using a
semiphenomenological parametrization of the exchange-
correlation functional.17,18

The OGK formulation was triggered by the discovery of
high-Tc superconductors19 where an electronic pairing
mechanism was believed to be dominant. Hence, the OGK
description treats the Coulomb repulsion between electrons
formally exactly while the electron-phonon coupling only
enters through a given, nonretarded BCS-type electron-
electron interaction, i.e., strong electron-phonon coupling
cannot be dealt with.

In this work we develop a DFT for superconductors based
on the three densities n�r� ,��r ,r�� and ��R� �. The formalism

can thus be viewed as a superconducting generalization of
KG theory or as a strong-coupling generalization of OGK
formalism. It leads to a set of—formally exact—Kohn-Sham
equations for electrons and nuclei. These equations contain
exchange-correlation potentials which are universal function-
als of the three densities n ,�, and �. For the time being, we
do not study effects found in the presence of magnetic fields.
Those can be accommodated by generalizing the framework
to include the current density as an additional variable.20,21

The success of any density functional theory crucially de-
pends on the availability of accurate approximations for the
exchange-correlation functionals. The main body of this pa-
per is devoted to the construction of such approximate
exchange-correlation functionals. Diagrammatic many-body
perturbation theory is used for this purpose. In a second pa-
per �henceforth referred to as II�, these approximate func-
tionals are employed to calculate superconducting properties
of elemental metals.

The present paper is organized as follows. In Sec. II we
derive a multicomponent DFT for the superconducting state.
This theory leads to a set of Kohn-Sham equations that are
described in the following section. Section IV is devoted to
the development of Kohn-Sham perturbation theory. The re-
sulting exchange-correlation potentials are discussed in Sec.
V. A simple BCS-like model is described in Sec. VI. This
model is used, in Sec. VII, to analyze the approximate
exchange-correlation kernels entering the linearized DFT gap
equation. Finally, in Sec. VIII, the exchange-correlation con-
tributions to the nonlinear gap equation are discussed.

II. MULTICOMPONENT DFT FOR SUPERCONDUCTORS

It is clear that a balanced treatment of the electron-phonon
and Coulomb interactions has to start from the many-body
electron-nuclear Hamiltonian �atomic units are used through-
out this paper�

Ĥ = T̂e + Ûee + T̂ n + Ûnn + Ûen, �1�

where T̂e represents the electronic kinetic energy, Ûee the

electron-electron interaction, T̂ n the nuclear kinetic energy,

and Ûnn the Coulomb repulsion between the nuclei. The in-
teraction between the electrons and the nuclei is described by
the term

Ûen = − �
�
� d3r� d3R �̂�

†�r��̂†�R�
Z

�r − R�
�̂�R��̂��r� ,

�2�

where �̂�
†�r� and �̂†�R� are, respectively, electron and

nuclear creation operators. �For simplicity we assume the
nuclei to be identical, and we neglect the nuclear spin de-
grees of freedom. The extension of this framework to a more
general case is straightforward.� Note that there is no exter-
nal potential in the Hamiltonian.

To develop a multicomponent DFT for the electron-
nuclear system we have to proceed with care. The Hamil-
tonian �1� describes a translationally invariant and isotropic
system. Thus, both the electronic and nuclear one-particle
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densities are constant and therefore not useful to characterize
the system. This problem can be solved by adopting a body-
fixed reference frame.11,22 In this paper we are interested in
infinite solids where the nuclei perform small oscillations
around the equilibrium positions. Furthermore, we assume
that the solid is not rotating as a whole. Fortunately, in this
case, the body-fixed reference frame coincides with the nor-
mal Cartesian system commonly used to describe solids. The
situation is very different for finite systems, which have to be
handled by using appropriate internal coordinates.

In order to formulate a Hohenberg-Kohn type statement,
the Hamiltonian �1� is generalized to

Ĥ = T̂e + T̂ n + Ûen + Ûee + V̂ext
e + V̂ext

n + �̂ext − �N̂ . �3�

The external potential for the electrons is defined as

V̂ext
e = �

�
� d3r �̂�

†�r�vext
e �r��̂��r� . �4�

Since, at this level, the nuclei are taken into account explic-
itly, the lattice potential is not treated as an external field, but

is included via the interaction term Ûen. The term V̂ext
e is

introduced as a mathematical trick to prove the Hohenberg-
Kohn theorem, and will be taken to zero at the end of the

derivation. V̂ext
n is a multiplicative N-body operator with re-

spect to the nuclear coordinates

V̂ext
n =� d3R� vext

n �R� ��̂�R� � , �5�

where we have defined R� = �R1 ,R2 ,… ,RN	 ,d3R�
=d3R1d3R2¯d3RN, and

�̂�R� � = �̂†�R1� ¯ �̂†�RN��̂�RN� ¯ �̂�R1� �6�

is the diagonal part of the nuclear N-particle density matrix

operator. Note that the term V̂ext
n includes the interaction be-

tween the nuclei Ûnn �to which it reduces if no other external
nuclear potentials are present�. The term

�̂ext = −� d3r� d3r���ext
* �r,r���̂↑�r��̂↓�r�� + H.c.� �7�

describes an external pairing field, and usually vanishes un-
less our system is in the proximity of an adjacent supercon-
ductor. However, this term is required to break the gauge
invariance of the Hamiltonian, and the limit �ext→0 can
only be taken at the end of the derivation. Note that the term
�7� describes a singlet pairing field. The extension to triplet
superconductors is straightforward.14 Finally, � stands for

the chemical potential, and N̂ is the number operator for the
electrons �we treat the electronic degrees of freedom in a
grand-canonical ensemble�.

Our multicomponent formulation is based on three densi-
ties.

�i� The electronic density

n�r� = �
�


�̂�
†�r��̂��r�� �8�

is defined in the usual way. The bracket 
¯� denotes the

thermal average 
Â�=Tr�	̂0 Â	, with the grand canonical sta-

tistical density operator 	̂0=e−
Ĥ /Tr�e−
Ĥ	 in the supercon-
ducting state. We furthermore define the inverse temperature

=1/T.

�ii� The anomalous density

��r,r�� = 
�̂↑�r��̂↓�r��� �9�

is the order parameter characterizing the singlet supercon-
ducting state. This quantity is finite for superconductors be-
low the transition temperature and zero above this tempera-
ture.

�iii� To describe the nuclear degrees of freedom, we use
the diagonal part of the nuclear N-particle density matrix

��R� �= 
�̂�R� ��. Alternatively, one could define a multicompo-
nent DFT using the one-particle density for the nuclei

nn�R�= 
�̂†�R��̂�R��. However, in the following it will be
convenient to transform the nuclear degrees of freedom to
collective �phonon� coordinates. Using nn�R� would lead to a
one-body equation for noninteracting nuclei. Thus, the
nuclear Kohn-Sham equation would not lead to realistic
phonons with a proper dispersion relation. Only Einstein
phonons could be present in this system. This is also clear
from the fact that a system of noninteracting particles does
not exhibit collective modes. With our choice of ��R� �, the
nuclei obey an N-particle equation, very similar to the Born-
Oppenheimer equation, and where phonon coordinates can
be easily introduced.

As usual, the Hohenberg-Kohn theorem guarantees a one-
to-one mapping between the set of the densities
�n�r� ,��r ,r�� ,��R� �	 in thermal equilibrium and the set of
their conjugate potentials �vext

e �r� ,�ext�r ,r�� ,vext
n �R� �	. As a

consequence all observables are functionals of the set of den-
sities. Finally it assures that the grand-canonical potential

��n,�,�� = F�n,�,�� +� d3r n�r��vext
e �r� − ��

−� d3r� d3r����r,r���ext
* �r,r�� + H.c.�

+� d3R� ��R� �vext
n �R� � �10�

is minimized by the equilibrium densities. We use the nota-
tion A�f� to denote that A is a functional of f . The functional
F�n ,� ,�� is universal, in the sense that it does not depend on
the external potentials, and is defined by

F�n,�,�� = T e�n,�,�� + T n�n,�,�� + Uen�n,�,��

+ Uee�n,�,�� −
1



S�n,�,�� , �11�

where S stands for the entropy of the system
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S�n,�,�� = − Tr�	̂0�n,�,��ln�	̂0�n,�,���	 . �12�

The proof of the theorem follows closely the proof of the
Hohenberg-Kohn theorem at finite temperatures10 and will
not be presented here.

In standard DFT one normally defines a Kohn Sham sys-
tem, i.e., a noninteracting system chosen such that it has the
same ground-state density as the interacting one. In our for-
mulation, the Kohn-Sham system consists of noninteracting
�superconducting� electrons, and interacting nuclei. It is de-
scribed by the thermodynamic potential �cf. Eq. �10��

�s�n,�,�� = Fs�n,�,�� +� d3r n�r��vs
e�r� − �s�

−� d3r� d3r����r,r���s
*�r,r�� + H.c.�

+� d3R� ��R� �vs
n�R� � , �13�

where Fs is the counterpart of Eq. �11� for the Kohn-Sham
system, i.e.,

Fs�n,�,�� = Ts
e�n,�,�� + Ts

n�n,�,�� −
1



Ss�n,�,�� .

�14�

Here Ts
e�n ,� ,�� ,Ts

n�n ,� ,��, and Ss�n ,� ,�� are the elec-
tronic and nuclear kinetic energies and the entropy of the
Kohn-Sham system, respectively.

From Eq. �13� it is clear that the Kohn-Sham nuclei inter-
act with each other through the N-body potential vs

n�R� � while
they do not interact with the electrons.

By applying the Hohenberg-Kohn theorem to both the
interacting and the noninteracting systems, and requiring the
densities of the Kohn-Sham system to reproduce the densi-
ties of the fully interacting one, we can identify the expres-
sions for the effective Kohn-Sham potentials. As usual, these
include contributions from external fields, Hartree, and
exchange-correlation terms. The latter account for all the
many-body effects stemming from the electron-electron and
electron-nuclear interactions. To simplify the expressions, we
now set the auxiliary external potentials to zero.

The Kohn-Sham potential for the electrons vs
e�r� reads as

vs
e�n,�,���r� = − Z�

�
� d3R�

��R� �
�r − R��

+� d3r�
n�r��

�r − r��

+ vxc
e �n,�,���r� . �15�

The first term, the electron-nuclear Hartree potential, reduces
to the usual nuclear attraction potential if we assume that the
nuclei are classical and perfectly localized at their equilib-
rium positions. This term is usually treated as the external
potential in standard DFT. The last two contributions to vs

e�r�
are, respectively, the Hartree potential, which accounts for
the classical repulsion between the electrons, and the
exchange-correlation term.

The anomalous Kohn-Sham potential �s is given by

�s�n,�,���r,r�� = −
��r,r��
�r − r��

+ �xc�n,�,���r,r�� . �16�

Note that the first term, the so-called anomalous Hartree po-
tential, gives rise to a positive contribution to the energy.

Finally, the nuclear potential is

vs
n�n,�,���R� � = �

��


Z2

�R� − R
�
− Z�

�
� d3r

n�r�
�r − R��

+ vxc
n �n,�,���R� � . �17�

The first term stems from Ûnn, and describes the bare
nuclear-nuclear repulsion. The second is the nuclear-electron
Hartree term and is the counterpart of the first term in Eq.
�15�.

As in standard DFT, the exchange-correlation potentials
are defined as functional derivatives,

vxc
e �n,�,���r� =

Fxc�n,�,��
n�r�

, �18a�

�xc�n,�,���r,r�� = −
Fxc�n,�,��

�*�r,r��
, �18b�

vxc
n �n,�,���R� � =

Fxc�n,�,��
��R� �

. �18c�

The exchange-correlation free energy is defined through the
equation

F�n,�,�� = Fs�n,�,�� + Fxc�n,�,�� + Unn���

+ EH
ee�n,�� + EH

en�n,�� . �19�

There are two contributions to EH
ee, one stemming from the

electronic Hartree potential, and the other from the anoma-
lous Hartree potential,

EH
ee�n,�� =

1

2
� d3r� d3r�

n�r�n�r��
�r − r��

+� d3r� d3r�
���r,r���2

�r − r��
. �20�

Finally, EH
en denotes the electron-nuclear Hartree energy

EH
en�n,�� = − Z�

�
� d3r� d3R�

n�r���R� �
�r − R��

. �21�

III. THE KOHN-SHAM EQUATIONS

The problem of minimizing the Kohn-Sham grand ca-
nonical potential �13� can be transformed into a set of three
differential equations that have to be solved self-consistently.
Two of them are coupled and describe the electronic degrees
of freedom. Their algebraic structure is similar to the
Bogoliubov–de Gennes equations. The third is an equation
for the nuclei resembling the familiar nuclear Born-
Oppenheimer equation.
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A. Electronic equations

The Kohn-Sham Bogoliubov–de Gennes �KS-BdG� equa-
tions16 read

�−
�2

2
+ vs

e�r� − �ui�r� +� d3r��s�r,r��vi�r�� = Ẽiui�r� ,

�22a�

− �−
�2

2
+ vs

e�r� − �vi�r� +� d3r��s
*�r,r��ui�r�� = Ẽivi�r� ,

�22b�

where ui�r� and vi�r� are the particle and hole amplitudes.
This equation is very similar to the Kohn-Sham equations in
the OGK formalism.13 However, in our formulation the lat-
tice potential is not considered as an external potential but
enters via the electron-ion Hartree term. Furthermore, our
exchange-correlation potentials depend parametrically on the
nuclear density matrix, and therefore on the phonons.

Although these equations have the structure of static
equations, they contain, in principle, all retardation effects
through the exchange-correlation potentials.

A direct solution of the Kohn-Sham Bogoliubov–de
Gennes equations17 is faced with the problem that one needs
extremely high accuracy to resolve the superconducting en-
ergy gap, which is about three orders of magnitude smaller
than typical electronic energies. At the same time, one has to
cover the whole energy range of the electronic band struc-
ture. The so-called decoupling approximation23–25 relieves
the problem by separating these two energy scales.

The particle and hole amplitudes can be expanded in the
complete set of wave functions ��i	 of the normal-state
Kohn-Sham equation

�−
�2

2
+ vs

e�n,�,���r� − ��i�r� = �i�i�r� �23�

which can be solved by standard band-structure methods.
The decoupling approximation then implies the following
form for the particle and hole amplitudes, where only one
term of the expansion is retained:

ui�r� � ui�i�r�, vi�r� � vi�i�r� . �24�

In this way the eigenvalues in Eq. �22� become Ẽi= ±Ei,
where

Ei = ��i
2 + ��i�2, �25�

and �i=�i−�. This form of the eigenenergies allows the in-
terpretation of the matrix elements of the pair potential as the
gap function of the superconductor. The coefficients ui and vi
also have simple expressions within this approximation,

ui =
1
�2

sgn�Ẽi�ei�i�1 +
�i

Ẽi

, �26a�

vi =
1
�2
�1 −

�i

Ẽi

. �26b�

Finally, the matrix elements �i are defined as

�i =� d3r� d3r��i
*�r��s�r,r���i�r�� , �27�

and �i is the phase ei�i =�i / ��i�. Within the decoupling ap-
proximation, the normal and the anomalous densities can be
easily obtained from the particle and hole amplitudes,

n�r� = �
i
�1 −

�i

Ei
tanh�


2
Ei���i�r��2, �28a�

��r,r�� =
1

2�
i

�i

Ei
tanh�


2
Ei��i�r��i

*�r�� . �28b�

The validity and limitations of the decoupling approxima-
tion will be discussed in detail in II.

B. Nuclear equation

The Kohn-Sham equation for the nuclei has the form

�− �
�

��
2

2M
+ vs

n�R� ��l�R� � = El�l�R� � . �29�

This equation has the same structure as the usual nuclear
Born-Oppenheimer equation. We emphasize that the Kohn-
Sham equation �29� does not rely on any approximation and
is, in principle, exact. As already mentioned, we are inter-
ested in solids at relatively low temperature, where the nuclei
perform small-amplitude oscillations around their equilib-
rium positions. In this case, we can expand the vs

n�n ,� ,�� in
a Taylor series around the equilibrium positions, and trans-
form the nuclear degrees of freedom into collective �phonon�
coordinates. In harmonic order, the nuclear Kohn-Sham
Hamiltonian then reads

Ĥs
ph = �

�,q
��,q�b̂�,q

† b̂�,q +
1

2
 , �30�

where ��,q are the phonon eigenfrequencies, and b̂�,q de-
stroys a phonon from the branch � and wave vector q. Note
that the phonon eigenfrequencies are functionals of the set of
densities �n ,� ,�	, and can therefore be affected by the su-
perconducting order parameter. Within the harmonic ap-
proximation, the nuclear density matrix ��R� � is given by

��R� � = �
�,q

n
���,q��h�,q�Q��2, �31�

where n
��� denote the Bose occupation numbers and
h�,q�Q� are harmonic oscillator wave functions referring to
the collective coordinates Q.

C. Gap equation

In Fig. 1 we sketch the Kohn-Sham self-consistent proce-
dure within the decoupling approximation. We start by find-
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ing suitable approximations for the Kohn-Sham potentials to
start the cycle: for vs

e,0�n ,� ,�� we can use the Kohn-Sham
potential stemming from a standard DFT calculation for the
nonsuperconducting ground state, i.e., vs

GS�n�. This is a very
good approximation as the dependence of vs

e�n ,� ,�� on �
and � is certainly very weak for the usual superconductors at
low temperature; the starting pair potential �s

0�n ,� ,�� can be
approximated by a square well centered at the Fermi energy
with width of the order of the Debye frequency and height
computed from a BCS model; finally, for vs

n,0�n ,� ,�� we can
use the ground-state Born-Oppenheimer potential. The next
two steps of the self-consistent cycle can be performed in
parallel.

�1� Equation �23� is solved to obtain the wave functions
�i’s and the eigenenergies �i’s. These can then be used within
the decoupling approximation, Eq. �24�, to calculate the nor-
mal and anomalous densities through Eqs. �28�. We note that
the chemical potential � entering Eq. �23� has to be adjusted
at every iteration, such that the density n�r� integrates to the
correct particle number N.

�2� With vs
n�n ,� ,�� we solve the nuclear equation �29� by

expanding the nuclear potential to harmonic order to obtain
the phonon eigenfrequencies and eigenmodes. The nuclear
density matrix � then follows from Eq. �31�.

Finally, the set of densities �n ,� ,�	 is used to evaluate the
new Kohn-Sham potentials �vs

e ,�s ,vs
n	 from the definitions

�15�,�16�,�17�. At this point, if self-consistency is reached,
the cycle is stopped. Otherwise, the new potentials are used
to restart the cycle.

It is clear that, even within the decoupling approximation,
the task of solving the self-consistent cycle depicted in Fig. 1

is rather demanding. Furthermore, we are required to provide
�good� approximations for the three functionals
vs

e�n ,� ,�� ,�s�n ,� ,��, and vs
n�n ,� ,��. As our objective is to

study superconductivity, we will make two simplifying as-
sumptions. �i� vs

e�n ,� ,�� can be well approximated by the
ground-state functional used in standard density functional
theory vs

GS�n�. As the energy scale of the phonons and of the
superconducting gap is three orders of magnitude smaller
than electronic energy scales �like the Fermi energy� this is a
very reasonable assumption. �ii� The nuclear functional
vs

n�n ,� ,�� is approximated by the ground-state Born-
Oppenheimer energy surface. It is well known that calcula-
tions performed within the Born-Oppenheimer approxima-
tion yield phonon frequencies that are in excellent agreement
with experimental dispersions.26 We therefore expect this to
be an excellent approximation to the Kohn-Sham phonons.
However, we are neglecting the effect of the superconducting
pair potential on the phonon dispersion. This effect has been
measured experimentally,27 and it turns out to be quite small.
Note that these two approximations are equivalent to fixing
vs

e�n ,� ,�� and vs
n�n ,� ,�� to vs

e,0�n ,� ,�� and vs
n,0�n ,� ,��.

By inserting Eqs. �28� in Eq. �16� and by subsequently
inserting Eq. �16� on the right-hand side of Eq. �27�, we
obtain the DFT gap equation

�i = �Hxc i��,�i� , �32�

where �Hxc stands for the sum of the Hartree and exchange-
correlation contributions to the functional. Note that through
the exchange-correlation functional the right-hand side of
Eq. �32� becomes a highly complicated functional of � and
�i . The dependence on the gap function is totally different
from the usual mean-field gap equation �cf. Sec. VIII�.

After these simplifying approximations, a Kohn-Sham
calculation proceeds as follows. �i� Using a standard band-
structure code, the ground-state wave functions and band
structure are obtained. �ii� The Born-Oppenheimer phonon
frequencies and eigenmodes are obtained from
linear-response26 calculations, again using standard tools
widely available to the community. �iii� The gap equation
�32� is iterated until self-consistency is achieved. We can
now see how the different energy scales are separated: The
normal density, the anomalous density, and the phonon prop-
erties are obtained from three separate equations.

In the vicinity of the transition temperature, the anoma-
lous density will be vanishingly small. In this regime, the
gap equation can be linearized in �, leading to

�̆i = −
1

2�
j

FHxc i,j���
tanh��
/2�� j�

� j
�̆ j , �33�

where the anomalous Hartree exchange-correlation kernel of
the homogeneous integral equation reads

FHxc i,j��� = − � �Hxc i

� j
�

�=0
= � 2�EH

ee + Fxc�
�i

*� j
�

�=0

.

�34�

We emphasize that the linearized gap equation can only be
used to calculate the superconducting transition temperature.

FIG. 1. Schematic flow chart for the iterative Kohn-Sham
scheme within the decoupling approximation.
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In particular, the function �̆i that stems from the solution of
this equation does not have any physical interpretation.

We can gain further insight into Eq. �33� if we separate
the kernel FHxc i,j into a purely diagonal term Zi and a non-
diagonal part Ki,j

�̆i = − Zi����̆i −
1

2�
j

Ki,j���
tanh��
/2�� j�

� j
�̆ j . �35�

This equation has the same structure as the BCS gap equa-
tion with the kernel Ki,j replacing the model interaction of
BCS theory. On the other hand, Zi plays a similar role as the
renormalization term in the Eliashberg equations. This simi-
larity allows one to interpret the kernel Ki,j as an effective
interaction responsible for the binding of the Cooper pairs.
The function Ki,j is a quantity of central importance in the
density functional theory for superconductors. By studying
Ki,j for a specific material as a function of i and j one can
learn which orbitals are responsible for superconductivity
and, ultimately, by identifying those parts of the exchange-
correlation functional �phononic and/or Coulombic� that lead
to an effective attraction, one can trace the mechanism re-
sponsible for the superconducting state.

Note that Eq. �35� is considerably simpler than the Eliash-
berg equations as it does not dependent explicitly on the
frequency. However, phonon retardation effects are included
through the exchange-correlation terms. Furthermore, Eq.
�35� is not a mean-field equation as in BCS theory but con-
tains correlation effects. A linearized gap equation can also
be derived without the decoupling approximation,25,28 lead-
ing to a similar equation, but with a four-point kernel. From
this point of view, the decoupling approximation can be
viewed as a diagonal approximation to this four-point kernel,
neglecting the corresponding off-diagonal elements.

IV. KOHN-SHAM PERTURBATION THEORY

In the previous sections we showed how to develop a
density functional theory for the superconducting state. The
main equation of this theory, the gap equation �32�, allows,
in principle, the calculation of the superconducting gap for
any system. However, to solve this equation one needs ap-
proximations for �xc, the exchange-correlation contribution
to the Kohn-Sham pair potential. In the following, we will
develop such approximations by applying Kohn-Sham per-
turbation theory, as described by Görling and Levy,29 to su-
perconducting systems.25,30 This perturbation theory, that
will treat both the electron-electron and electron-phonon in-
teractions on the same footing, is a generalization of the
method used by Kurth et al. to calculate the exchange-
correlation energy of the uniform superconducting electron
gas.15

Our starting point is the Hamiltonian of the electron-
nuclear system as defined in Eq. �3�. This Hamiltonian is

then split into a suitably chosen reference Hamiltonian Ĥ0
and the remainder, which is treated as a perturbation. The
most appropriate reference system for this formalism is as
follows. �i� The nuclear Kohn-Sham Hamiltonian �29� rigor-
ously defines the nuclear equilibrium positions R� 0. When

expanded to harmonic order around these positions it can be

written as the phonon Hamiltonian Ĥph �30�. �ii� Next we
define a Born-Oppenheimer Kohn-Sham Hamiltonian via a
rigid-lattice potential given by the equilibrium coordinates
R� 0,

ĤBO
e = T̂ e + V̂latt,R� 0

e + V̂Hxc
e + �̂Hxc, �36�

where

V̂Hxc
e = �

�
� d3r �̂�

†�r��̂��r��� d3r�
n�r��

�r − r��
+ vxc

e �r� ,

�37�

while �̂Hxc includes the anomalous Hartree and exchange-
correlation contributions

�̂Hxc = −� d3r� d3r���̂↑�r��̂↓�r��

���*�r,r��
�r − r��

+ �xc
* �r,r�� + H.c.� . �38�

With the choice Ĥ0= Ĥph+ ĤBO
e , the interaction Hamil-

tonian reads

Ĥ1 = Ûee + ÛBO
e−ph − V̂Hxc

n − V̂Hxc
e − �̂Hxc. �39�

The Born-Oppenheimer electron-phonon coupling operator

ÛBO
e-ph is given by

ÛBO
e-ph = �

�
�
�,q
� d3r V�,q

BO�r��̂�
†�r��̂��r��̂�,q, �40�

where V�,q
BO�r� is basically the gradient of the electronic

Kohn-Sham potential with respect to the nuclear coordinates

and the phononic field operator is �̂�,q= b̂�,q+ b̂�,−q
† . Note that

now we have set the auxiliary external potentials V̂ext
e and

�̂ext to zero, and V̂ext
n to the bare internuclear interaction.

We believe that this is the most physical way to split the
Hamiltonian, since the electronic-structure calculation for
n�r�, in practice, is usually performed for fixed nuclear posi-
tions; the nuclear dynamics is absorbed in the exchange cor-
relation functionals. Furthermore, standard calculations for
the electron-phonon coupling, which are based on linear re-
sponse theory, involve the above coupling potentials V�,q

BO�r�.
Note that, besides the interaction terms Ûee and ÛBO

e-ph, the
perturbation includes the Hartree and exchange-correlation
potentials. In the Appendix we give some more details of this
construction.

We now develop a many-body perturbational approach,
which will ultimately lead to explicit expressions for the
exchange-correlation functionals. The construction of this
approach follows closely the standard many-body perturba-
tion theory described in many textbooks.31 Our objective is
to expand the difference ��=�−�s in a power series. From
this difference and with the definitions �10� and �13� it is
straightforward to derive an expression for the functional
Fxc.
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In standard perturbation theory �� is written as an ex-
pansion in powers of e2 and g2, where e �the electron charge�
and g �the electron-phonon coupling constant� measure, re-
spectively, the strength of the Coulomb and of the electron-
phonon interactions. In our approach, however, every order
in perturbation theory contains all orders in e2 and g2. This is

due to the special form of the perturbation Ĥ1 that involves
the exchange-correlation potentials which contain implicitly
all orders in the interactions. Therefore, for book-keeping

purposes, we multiply the perturbation Ĥ1 by a dimension-
less parameter �. In this way, the terms appearing in the
perturbative expansion can be labeled by powers of �.

The grand-canonical potential � can be written as

� = −
1



ln�Z� , �41�

where the partition function has the definition Z

=Tr�exp�−
Ĥ�	. From this expression it follows directly that

� − �s = −
1



ln� Z

Zs
� , �42�

where Zs is the partition function of the Kohn-Sham system.
It is then straightforward, using the standard machinery of
many-body perturbation theory, to write the ratio Z /Zs as a
series expansion in � which can be evaluated with the help
of Wick’s theorem. Moreover, the number of terms in the
series can be reduced by using a generalization of the linked-
cluster theorem.32 The final result reads

� − �s = −
1



� �all connected diagrams� . �43�

In this expression the sum runs over all connected Feynman
diagrams that are topologically distinct. �Alternatively, one
can expand diagrammatically the propagators and use the
Galitskii-Migdal formula to evaluate the energy.33 The two
approaches are equivalent.�

There are several Kohn-Sham propagators that enter the
Feynman diagrams. First we have the contraction that re-
duces to the usual Green’s function for systems that are not
superconducting

G���
s �r�,r���� = − 
T̂�̂��r���̂��

† �r�����s, �44�

where T̂ is the time-ordering operator, which orders the op-
erators from right to left in ascending imaginary time order,
and the average 
¯�s is done with respect to the Kohn-Sham
statistical density operator 	̂s. This Green’s function is repre-
sented in the Feynman diagrams by a line with two arrows
pointing in the same direction. Furthermore, due to the pres-
ence of pairing fields in the Kohn-Sham system �13�, the
following �anomalous� averages are nonvanishing for super-
conducting systems:

F���
s �r�,r���� = − 
T̂�̂��r���̂���r�����s, �45a�

F���
s † �r�,r���� = − 
T̂�̂�

†�r���̂��
† �r�����s. �45b�

In Feynman diagrams these propagators appear as lines with
two arrows pointing outward �for Fs� and as lines with two
arrows pointing inward �for Fs †�. �The Green’s function �44�
and the anomalous averages �45� can be conveniently as-
sembled into a matrix Green’s function in Nambu-Gorkov
space.5� Finally, as the perturbation includes the electron-

phonon interaction term Ĥe-ph, some diagrams contain the
phonon propagator �represented as a curly line�

D�,q
s ��,��� = 
T̂�̂�,q����̂�,q

† �����s. �46�

As usual in finite-temperature many-body theory, it is conve-
nient to work in imaginary frequency space. The time Fou-
rier transform of the Green’s function �45� is defined as

G���
s �r�,r���� =

1



�
�n

e−i�n��−���G���
s �r,r�;�n� , �47�

where �n= �2n+1�� /
 are the odd Matsubara frequencies.
The frequency-dependent anomalous propagators have a
similar definition. In Matsubara space the Kohn-Sham propa-
gators read, in terms of the Kohn-Sham particle and hole
amplitudes and of the Kohn-Sham eigenenergies,

G�,��
s �r,r�;�n� = �,���

i
�ui�r�ui

*�r��
i�n − Ei

+
vi�r�vi

*�r��
i�n + Ei

 ,

�48a�

F�,��
s �r,r�;�n� = �,−��sgn����

��
i
�vi

*�r�ui�r��
i�n + Ei

−
ui�r�vi

*�r��
i�n − Ei

 ,

�48b�

F�,��
s † �r,r�;�n� = �,−��sgn���

��
i
�ui

*�r�vi�r��
i�n + Ei

−
vi�r�ui

*�r��
i�n − Ei

 .

�48c�

On the other hand, the phonon propagator depends on the
even Matsubara frequencies �n=2n� /
,

D�,q
s ��n� = −

2��,q

�n
2 + ��,q

2 . �49�

In first order in � there is only one diagram contributing
to Fxc. This diagram, depicted in Fig. 2�a�, is of purely elec-
tronic origin and has the same form as the standard exchange
diagram. �The wavy line in Fig. 2�a� represents the Coulomb
interaction.� This term can be written as �for simplicity we
write all contributions to Fxc within the decoupling approxi-
mation�
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Fxc
�a� = −

1

4�
i,j

vi,j�1 −
�i

Ei
tanh�


2
Ei��1 −

� j

Ej
tanh�


2
Ej� ,

�50�

where the matrix elements of the Coulomb interaction are
defined as

vi,j =� d3r� d3r��i
*�r��i�r��

1

�r − r��
� j�r�� j

*�r�� . �51�

As the expectation value 
��,q�=0, the electron-phonon in-
teraction does not contribute to Fxc in first-order perturbation
theory in �. The first nonvanishing terms appear in second
order in � �first order in g2� and are depicted in Figs. 2�b�
and 2�c�. The first of these terms �Fig. 2�b�� is the counter-
part of the anomalous term that contributes to the electronic
Hartree energy �20�. Its analytic form can be written as

Fxc
�b� =

1

2�
�,q

�
ij

�g�,q
ij �2

�i� j
*

EiEj
�I�Ei,Ej,��,q� − I�Ei,− Ej,��,q�� ,

�52�

where we defined the matrix elements of the electron-phonon
coupling constant

g�,q
ij =� d3r �i

*�r�V�,q
BO�r�� j�r� , �53�

while the function I is

I�E,E�,�� =
1


2 �
�1�2

1

i�1 − E

1

i�2 − E�

− 2�

��1 − �2�2 + �2 .

�54�

The three fractions in the sum come from the denominators
of the two Green’s functions Gs and from the phonon propa-
gator Ds. It is possible to perform the frequency sums using
standard complex contour integration methods. The final re-
sult is

I�Ei,Ej,�� = f
�Ei�f
�Ej�n
���

�� e
Ei − e
�Ej+��

Ei − Ej − �
−

e
Ej − e
�Ei+��

Ei − Ej + �
 . �55�

A diagram analogous to the one depicted in Fig. 2�b� but
with the phonon propagator replaced by the bare Coulomb
interaction exists as well. This diagram is the anomalous
Hartree term which appears as the second term on the right-
hand side of Eq. �20�. Since this term is treated explicitly in
the electronic Kohn-Sham equations it is not part of the
exchange-correlation functional.

Note that expression �52� is so much more complicated
than the anomalous Hartree term simply because the phonon
propagator describes a retarded interaction. If we assumed a
retarded electronic interaction instead of the instantaneous
Coulomb potential 1 / �r−r�� the anomalous Hartree contribu-
tion would look very similar to �52�.

The second phononic term that contributes to Fxc is de-
picted in Fig. 2�c�. This Feynman diagram has the same
structure as the electronic exchange term �Fig. 2�a��. How-
ever, and again due to retardation effects, its analytic struc-
ture is more complicated than Eq. �50�, namely,

Fxc
�c� = −

1

2�
�,q

�
ij

�g�,q
ij �2��1 +

�i

Ei

� j

Ej
�I�Ei,Ej,��,q�

+ �1 −
�i

Ei

� j

Ej
�I�Ei,− Ej,��,q� . �56�

The self-energy diagrams contributing to Fxc
�b� and Fxc

�c� re-
semble the self-energy diagrams that appear in Eliashberg
theory.2,3 By virtue of Migdal’s theorem,34 vertex corrections
should be small and are therefore neglected, both in Eliash-
berg theory and in our treatment. There is, however, an im-
portant difference: in Eliashberg theory the propagators that
enter the self-energy diagrams are dressed propagators, while
in our case we have bare �Kohn-Sham� propagators. By us-
ing the bare propagators we neglect more diagrams than
those containing vertex corrections. We postpone a more de-
tailed discussion of this problem to the section on the
exchange-correlation kernels.

V. FUNCTIONAL DERIVATIVES AND THE CHAIN RULE

We have seen in Eq. �18b� how the anomalous exchange-
correlation potential is defined as the functional derivative of
the exchange-correlation free-energy functional with respect
to the anomalous density �. However, the contributions to
the exchange-correlation free-energy functional that stem
from Kohn-Sham perturbation theory are only known as ex-
plicit functionals of the Kohn-Sham orbitals �i�r�, the Kohn-
Sham single-particle energies ��i−��, and the pair potential
�i. Of course, the Hohenberg-Kohn theorem tells us that
these quantities are themselves functionals of the densities,
so the free energy is an implicit functional of the densities.
Furthermore, if one makes the additional approximation that
vxc

e does not depend on � then the Kohn-Sham orbitals �i�r�
and the eigenenergies �i are also independent of the anoma-
lous density. Fxc is then a function of the chemical potential
� and a functional of the �complex� pair potential �i

Fxc = Fxc��, ��i�2,�i� . �57�

For convenience, instead of working with �i and �i
*, we

prefer using the modulus squared of the pair potential and its
phase as independent variables. The anomalous exchange-
correlation potential can thus be evaluated using the chain
rule for functional derivatives

FIG. 2. Lowest-order electronic �a� and phononic �b�, �c� con-
tributions to Fxc.
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�xc i = −
Fxc

�

�

�i
* − �

j
� Fxc

�� j�2
�� j�2

�i
* +

Fxc

�� j�
�� j�
�i

*  .

�58�

The partial derivatives of Fxc can now be calculated directly.
The remaining functional derivatives are somehow harder to
obtain, but can be derived from the definitions of the densi-
ties, Eqs. �28�, and from the fact that the particle density and
the anomalous density are independent variables. This latter
condition can be expressed through the relation

n�x�
�*�r,r��

= 0. �59�

Moreover, we make use of the two trivial conditions

�i
*

� j
* = i,j,

�i

� j
* = 0. �60�

From the above conditions, and after some algebra, we arrive
at the expressions for the remaining functional derivatives,

�� j�2

�i
* =

2

Y j
0�Ej

2� ji,j − Y j
1�� j�2

�

�i
* , �61a�

�� j�
�i

* , = ii,j
Ei

�i
*tanh��
/2�Ei�

, �61b�

�

�i
* = − Zi

1��
j

Zj
0. �61c�

The functions Zi
0 and Zi

1 have the definitions

Zi
0 =

Ei

Yi
0

�
/2�tanh��
/2�Ei�
cosh2��
/2�Ei�

, Zi
1 =

Yi
1

Yi
0�i, �62�

and, finally, the two functions Yi
0 and Yi

1 read

Yi
0 =

�i
2

Ei
tanh�


2
Ei� +

�
/2���i�2

cosh2��
/2�Ei�
, �63a�

Yi
1 =

�i

Ei
tanh�


2
Ei� −

�
/2��i

cosh2��
/2�Ei�
. �63b�

There exists another method to obtain exchange-
correlation functionals using Kohn-Sham perturbation theory
without resorting to functional derivatives. This method fol-
lows the ideas of Sham and Schlüter,35 and provides a very
direct connection between many-body perturbation theory
and the normal and anomalous exchange-correlation func-
tionals. In the following we will give a brief account of the
Sham-Schlüter method for superconductors.

There is a simple connection between the electron density
n�r� and the interacting many-body Green’s function

n�r� = lim
�→0+

1



�
�n

�
�

ei��nG���r,r;�n� . �64�

The definition of the interacting Green’s function is similar
to Eq. �44�, but with the thermal average weighted by the

interacting statistical operator 	̂0. The infinitesimal � is used
to ensure the correct ordering of the field operators in Eq.
�44� so that Eq. �64� is satisfied. In the same way it is simple
to prove that the anomalous density obeys the relation

��r,r�� = − lim
�→0+

1



�
�n

ei��nF↑↓�r,r�;− �n� , �65�

where F is the interacting anomalous propagator. On the
other hand, we defined the Kohn-Sham system as the nonin-
teracting system whose both normal and anomalous densities
are equal to the densities of the interacting system. There-
fore, one can equally calculate the interacting densities from
the Kohn-Sham Green’s functions

n�r� = lim
�→0+

1



�
�n

�
�

ei��nG��
s �r,r;�n� , �66�

with an equation similar to Eq. �65� relating � and Fs. We
then expand perturbatively the interacting Green’s functions
in Eqs. �64� and �65�, and equate the two equations for n�r�,
and the two equations for ��r ,r��. As the perturbation �39�
includes the terms V̂xc

e and �̂xc, the resulting equations form
a system of two coupled integral equations that allow the
determination of vxc

e and �xc. Those integral equations are
the so-called Sham-Schlüter equations.

The two methods to obtain the exchange-correlation po-
tentials are conceptually quite different. The first uses the
definitions �18� to derive the exchange-correlation potentials
using a series of chain rules. The Sham-Schlüter approach is
closer to many-body perturbation theory, and provides a
natural relationship between the Green’s function and the
exchange-correlation potentials of DFT. However, both ap-
proaches lead to the same result if the free energy in the first
method is expanded up to the same order in perturbation
theory as the Green’s functions in the second method.

VI. A SIMPLE BCS-LIKE MODEL

We now introduce a simple model that will allow us to
study in detail the functionals developed in this article. For
simplicity, we assume that the pair potential has s-wave sym-
metry and behaves approximately like �i=���i�. This as-
sumption is satisfied by all traditional superconductors. In
this model, we can transform the gap equation into a one-
dimensional equation in energy space

���� = − Z������� −
1

2
�

−�

�

d��N����K��,���

�
tanh��
/2����

��
����� , �67�

where N��� is the density of states at the energy �. It is
possible to further simplify this equation by assuming a
BCS-like model for both K and Z. If we assume that the
kernel K and the renormalization term Z are constant in a
shell of width �c around the Fermi energy and zero outside
this region, Eq. �67� can be solved analytically for the tran-
sition temperature Tc
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Tc � exp� 1 + Z�0�
N�0�K�0� , �68�

where K�0� and Z�0� are the values of K�� ,��� and Z��� at
the Fermi surface. Equation �68� has exactly the same struc-
ture as McMillan’s formula,36,37 which is an approximate so-
lution of the Eliashberg equations. This latter formula reads

Tc =
�ln

1.20
exp�−

1.04�1 + ��
� − �*�1 + 0.62�� . �69�

The number �*, the Coulomb pseudopotential of Eliashberg
theory, measures the strength of the electron-electron inter-
action. This parameter is quite hard to calculate and is often
fitted to experimental data. As �* is normally positive, it
tends to decrease the superconducting transition temperature.
On the other hand, � is a measure of the electron-phonon
coupling strength

� = 2� d�
�2F���

�
. �70�

The behavior of Tc with � is very nonlinear. For small values
of � ,Tc grows exponentially; However, as � increases, the
superconducting transition temperature saturates. The param-
eter �ln is a weighted average of the phonon frequencies

�ln = exp� 2

�
� d� ln���

�2F���
�

 �71�

and is of the order of the Debye frequency of the material.
Finally, the Eliashberg spectral function is the electron-
phonon coupling constant averaged on the Fermi surface,

�2F��� =
1

N�0��ij �
�,q

�g�,q
ij � ��i� �� j� �� − ��,q� . �72�

It is widely accepted that McMillan’s formula gives a quite
accurate description of the transition temperature for simple,
BCS-like, superconductors. Therefore, by comparing expres-
sions �68� and �69� for the phonon-only case, i.e., �*=0, we
obtain that for BCS-like superconductors

N�0�K�0� � − �, Z�0� � � . �73�

This is an extremely important property of the exchange-
correlation kernel, which should be satisfied by any approxi-
mate functional.

VII. APPROXIMATIONS TO THE ANOMALOUS
HARTREE EXCHANGE-CORRELATION KERNEL

From the perturbative expansion of the exchange-
correlation free energy it is clear that we can split the free
energy into three parts. The first contains the purely elec-
tronic terms, i.e., the terms that do not contain explicitly the
electron-phonon coupling constant; the second, terms only
involving the electron-phonon coupling constant; and the
last, which we define as the total free energy minus the two
first parts, will have mixed contributions from the Coulomb
and electron-phonon interactions. The exchange-correlation

potentials and the exchange-correlation kernels can be split
in the same way.

In this section we develop exchange-correlation kernels to
be used in the linearized gap equation �35�. Functionals that
can be used in the nonlinear gap equation �32� are discussed
later. This section is divided into two parts. First we look at
the purely electron-phonon contributions to the exchange-
correlation kernel. Such functionals are developed using the
machinery of Kohn-Sham perturbation theory together with
the chain rule introduced earlier. In the second part, we turn
our attention to the purely electronic part of the kernel. Two
functionals will be presented: the first has the form of a local
density approximation �LDA�, while the second is a func-
tional that avoids the direct computation of the screened
Coulomb matrix elements. The mixed contributions appear-
ing in the perturbational expansion of the free energy are
neglected in the current treatment.

A. Electron-phonon contributions

In first order in g2 there are two terms stemming from the
electron-phonon interaction that contribute to the exchange-
correlation free energy: Fxc

�b� given by Eq. �52�, and Fxc
�c� given

by Eq. �56�. The exchange-correlation kernel derived from
Fxc

�b� is nondiagonal and has the form

Kij
ph =

2

tanh��
/2��i�tanh��
/2�� j�
�
�,q

�g�,q
ij �2

��I��i,� j,��,q� − I��i,− � j,��,q�� . �74�

To gain further insight into this term, we use a simplified
model: we approximate the electron-phonon coupling con-
stants by their average value at the Fermi surface and the
electronic energy dispersion is replaced by the free-electron
model. In Fig. 3 we depict the diagonal Kph�� ,�� for alumi-
num, niobium, and lead at zero temperature for this simpli-
fied model. As this contribution to the exchange-correlation
kernel exhibits particle-hole symmetry we only plot the re-
gion ��0. This term is sharply peaked at the Fermi energy
�note the logarithmic scale on the � axis�. Furthermore, the
width of the curves for each material is of the order of the

FIG. 3. The function −N�0�Kph�� ,�� for Al, Nb, and Pb, calcu-
lated at T=0 K.
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corresponding Debye frequency. The value of the kernel at
the Fermi energy can be calculated analytically,

N�0�Kph�0,0� = −� d� �2F���

�
2

�
�1 −

4


�
coth�
�

2
� +

8

�
��2 .

�75�

At zero temperature, the value of N�0�Kph�0,0� reduces to
−�, which is the value expected from the comparison to Mc-
Millan’s formula �cf. Eq. �73��. However, at higher tempera-
ture N�0�Kph�0,0� decreases monotonically.

The second phononic contribution to the exchange-
correlation kernel coming from the Kohn-Sham perturbation
theory �PT� originates from the diagram Fxc

�c�. It is a diagonal
term, which reads

Zi
ph,PT = −

2

�
j

�
/2�/cosh2��
/2�� j�

�� 1

�i
−


/2

sinh��
/2��i�cosh��
/2��i�


��
jl

�
�,q

�g�,q
jl �2I��� j,�l,��,q�

+
1

tanh��
/2��i�
�

j
�
�,q

�g�,q
ij �2� 1

�i
�I��i,� j,��,q�

− I��i,− � j,��,q�� − 2I���i,� j,��,q�� , �76�

where the function I� is defined as

I���i,� j,��,q� =
�

��i
I��i,� j,��,q� . �77�

If we try to apply the simplified model presented earlier we
find that Zi

ph,PT diverges logarithmically. This divergence can
be traced back to the substitution of g�,q

ij by its value at the
Fermi surface. This problem can be solved by retaining the
full dependence of the electron-phonon coupling constant on
the indices i and j :g�,q

ij then decays as a function of energy
thereby making the integrals present in Eq. �76� convergent.
A closer analysis of the expressions also reveals that the
divergent part of the integrands is antisymmetric around the
Fermi surface. Therefore, the divergent integrals would van-
ish in the case of particle-hole symmetry. It seems then rea-
sonable to neglect the antisymmetric part of the integrands,
retaining only the symmetric part. The new functional reads

Zi
ph,sym =

1

tanh��
/2��i�
�

j
�
�,q

�g�,q
i,j �2

��I���i,� j,�� + I���i,− � j,��� . �78�

In Fig. 4 this term is plotted for niobium for several tem-
peratures. It turns out that the function Zph,sym��i� is a smooth
function of the energy, and its value at the Fermi surface

��k=0� is approximately 2�. This is twice the value expected
from the comparison to McMillan’s formula �cf. Eq. �73��.
Furthermore, a careful analysis of Fig. 4 suggests that
Zph,sym��i� can be written as the sum of two terms: �i� one
broader and very weakly temperature dependent; �ii� a sec-
ond contribution whose width decreases significantly with
the temperature. Both terms contribute with approximately �
to the value of Zph,sym��i� at the Fermi surface. As the renor-
malization term Zph,sym��i� appears to be too large, one can
expect that transition temperatures calculated with this func-
tional will be too small. The situation should be worst for the
strong-coupling superconductors like niobium or lead, where
the renormalization is large. This is confirmed by Table I
where we list the transition temperatures obtained with the
phononic part of the functional. These numbers are com-
pared to solutions of Eliashberg’s equation where we ne-
glected the electron-electron repulsion.

We believe that the shortcomings of this functional can be
traced back to the following: Migdal’s theorem tells us that,
to a very good approximation, we can neglect in the pertur-
bative expansion diagrams including vertex corrections due
to the electron-phonon interaction. However, diagrams in-
cluding self-energy insertions of phononic origin should be
included to have a consistent description of the electron-
phonon interaction. Therefore the bare Green’s functions en-
tering in the diagrams depicted in Figs. 2�b� and 2�c� should
be replaced by dressed propagators. In a first step to improve
our functionals we dressed the propagators with a subset of
phonon self-energy insertions. We found that the nondiago-
nal term Kph is basically insensitive, while the term Zph,sym is
reduced by roughly 20%. This is almost half the correction
necessary to satisfy Eq. �73�. We expect that the other 30% is
accounted for by the remaining self-energy insertions. How-
ever, this approach is quite involved numerically, so we
choose a different path to improve our functional.

We know that the phonon renormalization term should
have the value � at the Fermi surface. Furthermore, this term
should have a width comparable to the Debye frequency. It is
clear that the broader contribution to Zphsym��i� obeys these
requirements. We therefore propose to separate the two parts
of Zph,sym��i� and use the part �i� as our renormalization term.

FIG. 4. The dependence of Zi
ph,sym on temperature for

niobium.
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We believe that this procedure is at least partially justified by
the results obtained by dressing the Green’s functions. The
functional corrected in this way reads

Zi
ph =

1

tanh��
/2��i�
�

j
�
�,q

�g�,q
ij �2�J��i,� j,��,q�

+ J��i,− � j,��,q�� , �79�

where the function J is defined by

J��,��,�� = J̃��,��,�� − J̃��,��,− �� . �80�

Finally we have

J̃��,��,�� = −
f
��� + n
���

� − �� − �
� f
���� − f
�� − ��

� − �� − �

− 
f
�� − ��f
�− �� + �� . �81�

The functional Zph is smooth both as a function of the energy
and as a function of the temperature. Furthermore, it has
approximately the value � at the Fermi surface. The func-
tional �79�, together with the phononic kernel �74�, is a cen-
tral result of our work. It is the functional that will be used in
the calculations of II. In Table I, we present the phonon-only
transition temperatures calculated with this functional. All
Tc’s are in quite good agreement with transition temperatures
calculated from Eliashberg’s equation. We emphasize that the
transition temperatures in Table I are given exclusively for
the purpose of testing and/or calibrating the approximations
made for the phononic part of the exchange-correlation func-
tional. Tc’s resulting from setting �*=0 in the Eliashberg
equations and setting the Coulomb terms to zero in the DFT
context have, of course, nothing to do with the Tc’s observed
in nature. For results including the Coulomb terms, we refer
the reader to II.

B. Electron-electron contributions

We now develop functionals that take into account the
Coulombic part of the interaction. There are two terms in the
energy functional that give contributions to the linearized
gap equation �35�. The first is the anomalous contribution to
the Hartree energy, given by Eq. �20�, and the second is the

exchange term Fxc
a depicted in Fig. 2�a�. The interaction that

enters these expressions is the bare Coulomb interaction
1/ �r−r��. However, electrons in a metal do not feel the bare
Coulomb interaction, but a much weaker interaction,
screened by the sea of electrons. To take this into account,
we take a step back, and propose an alternative form to the
energy functional based on the superconducting version of
the local density approximation.15 In this approach the
exchange-correlation energy of the inhomogeneous system is
written in terms of the exchange-correlation energy density
of the homogeneous superconducting electron gas,

Fxc
SCLDA�n�R�,��R,k�� =� d3R � fxc

hom�n,��k��� n=n�R�
�=�W�R, k�

,

�82�

where �W�R ,k� is the Wigner transform of the anomalous
density of the inhomogeneous system, given by

�W�R,k� =� d3s eiks��R +
s

2
, R −

s

2
� . �83�

It is easy to see that this definition reduces to the usual LDA
for nonsuperconducting systems in the limit �→0. More-
over, it is possible to prove that this is the only consistent
definition of a LDA for the superconducting state.38 As an
approximation to the exchange-correlation energy of the
electron-gas one could take the random-phase approximation
functional proposed in Ref. 15. However, this functional has
only been evaluated for a very simple class of pair potentials,
namely, Gaussians centered at the Fermi surface. We there-
fore propose an alternative and simpler form to the Coulom-
bic contribution to Fxc. For convenience, we approximate
together the anomalous Hartree and the exchange-correlation
contributions. Our approximation reads

fHxc
hom����n� − fxc

hom,NS�n� =� d3�r − r�����r − r���2vTF�r − r�� ,

�84�

where vTF�r−r�� is the Coulomb interaction screened by a
Thomas-Fermi model. In coordinate space the Thomas-
Fermi interaction reads

vTF�r − r�� =
e−kTF�r − r��

�r − r��
, �85�

with the Thomas-Fermi screening length kTF given by

TABLE I. Transition temperatures from numerical solutions of
the phonon-only DFT and Eliashberg equations. All temperatures
are in kelvin.

Al Nb Mo Ta V Pb

Kph+Zph,sym 5.59 15.7 4.14 8.48 23.2 8.12

Kph+Zph 7.10 23.0 5.23 11.7 34.2 12.8

Eliashberg 9.75 24.7 7.31 14.0 36.4 12.2
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kTF
2 = 4�N�0� . �86�

By inserting expression �84� in the definition of the LDA,
Eq. �82�, we can identify this approximation as a Thomas-
Fermi screened anomalous Hartree contribution to the free
energy.

The anomalous Hartree exchange-correlation kernel stem-
ming from this term is simply

Kij
TF = vij

TF, �87�

where the matrix elements of the Thomas-Fermi interaction
are defined by

vij
TF =� d3r� d3r��i

*�r��i�r��vTF�r − r��� j�r�� j
*�r��

�88�

where the �i’s are the Kohn-Sham orbitals of the inhomoge-
neous system at hand.

In II we will compare the results obtained with the above
approximation with further simplified expressions. In the
simplest model, the Kohn-Sham orbitals are taken to be
plane waves with a parabolic dispersion. In this case, the
kernel can be written in energy space �after averaging over
the angles� as

KTF��,��� =
�

kk�
ln� �k + k��2 + kTF

2

�k − k��2 + kTF
2  , �89�

with k=�2��−�� and k�=�2���−��. Using the BCS-like
two-well model one can extract the counterpart of the Cou-
lomb pseudopotential �* from Eliashberg theory. A crude
estimate for rs=2 gives a value around 0.1, which compares
well with the typical values of �* for simple metals ��*

=0.10–0.15�.37 It should be stressed again at this point that
the present method does not require �*. The estimates given
here are used to demonstrate to which values of �* our
ab initio Coulomb terms correspond.

While the replacement of the Kohn-Sham orbitals in Eq.
�88� by plane waves may be acceptable for simple metals, it
will be too crude for more complex materials. In those cases
it is still possible to avoid the direct computation of the
screened Coulomb matrix elements �88�, by going along the
lines described by Sham and Kohn.39 We briefly outline here
the main points of this classical paper, which deals with an
approximate way of getting an electron self-energy for the
normal state. We assume, as usual within the LDA, that our
system can be described around the point r by a homoge-
neous electron gas of density n�r�. The wave functions of
this electron gas can be locally expressed as plane waves of
momentum p�r� whose value is determined, in a semiclassi-

cal way, from the electron energy of the real system. In the
simplest form, the mapping can be obtained from Eqs. �4.5�
and �4.13� of Ref. 39 as

p2

2
= �i + �h„n�r�… , �90�

where �h�n� is the chemical potential of a noninteracting
homogeneous electron gas with density n. Furthermore, we
approximate �h(n�r�) by the constant �h�n�, where n is the
average density of the material. We suggest here to approxi-
mate the Coulomb interaction kernel between electrons at
energies �k and �k� by the corresponding quantities in the
free-electron gas. We then replace p2 /2→�i+�h=�i, and re-
write the interaction �89� as

Kij
SK =

�

2��i� j

ln��i + � j + 2��i� j + kTF
2 /2

�i + � j − 2��i� j + kTF
2 /2

� . �91�

In principle, one could consider not only p but also kTF as
locally dependent on the density n�r�. In our simplified ap-
proach, however, we fix the Thomas-Fermi screening length
to a constant value.

Equation �90� is conceived in terms of wave packets, and
is valid if n�r� does not vary too much on the scale of the
Fermi length, exactly as in the normal state LDA. One can
speculate, however, that when applied to the superconducting
state the relevant length scale becomes the coherence length,
normally much larger than the atomic scale. Therefore, we
may assume that local variations of the density on the atomic
scale will not affect the final superconducting properties.

It should be noted that this approximation, although de-
rived in the spirit of a LDA, is not a local density approxi-
mation, since it does not depend explicitly on the densities,
but implicitly via the single-particle energies �i.

VIII. FUNCTIONALS FOR THE NONLINEAR GAP
EQUATION

In this section we provide approximations to the
exchange-correlation kernel that can be used in the nonlinear
gap equation �32�. These functionals will obey one con-
straint, namely, that upon linearization they will reduce to the
functionals presented in the previous section. This assures
that the gap functions obtained from Eq. �32� and the transi-
tion temperatures calculated from Eq. �32� are consistent.
Furthermore, we require these functionals to be “well be-
haved,” i.e., without discontinuities or any other kind of
pathological behaviors.

The simplest way to derive an exchange-correlation func-
tional is to use the expressions derived through Kohn-Sham
perturbation theory in the definition �18b�. For example, the
first phononic contribution Fxc

�b� �Fig. 2�b�� yields the contri-
bution
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�xc i
ph,�b� =

1

2

Zi
1

�
j

Zj
0�

jl
�
�,q

�g�,q
jl �2

� j�l
* + � j

*�l

Ej
2El

� � j

Ej
�1 −

Y j
1

Y j
0� j�I�Ej,El,��,q� − I�Ej,− El,��,q��

− �� j +
Y j

1

Y j
0 �� j�2�I��Ej,El,��,q� − I��Ej,− El,��,q���

−
1

2�
j

�
�,q

�i

Yi
0Ej

�g�,q
ij �2�� �
/2��� j�i

* − � j
*�i�

tanh��
/2�Ei�cosh2��
/2�Ej�
+ 2

� j

�i

�i
2

Ei
�I�Ei,Ej,��,q� − I�Ei,− Ej,��,q��

+ �� j�i
* + � j

*�i��I��Ei,Ej,��,q� − I��Ei,− Ej,��,q��� . �92�

It can be seen here that the nonlinear gap equation �32�, in
general, does not have the simple structure of a BCS-like gap
equation and thus goes beyond the simple picture of an ef-
fective interaction mediating the pairing. However, this ap-
proach encompasses several problems. First, the resulting
functionals have extremely complicated analytical structures
and are very hard to interpret in simple physical terms. Fur-
thermore, these functionals contain several divergences and
pathological behaviors that have to be taken care of. For the
time being, we restrict ourselves to using the partially lin-
earized exchange-correlation potential, leading to the BCS-
type gap equation

�i = −
1

2�
j

FHxc i,j
tanh��
/2�Ej�

Ej
� j , �93�

where FHxc i,j are the linearized functionals defined in Eq.
�34� and derived in detail in the previous section. It turns out
that superconducting gap functions obtained with these func-
tionals are in rather good agreement with experimental re-
sults �see II�.

IX. CONCLUSIONS

In this work we have developed a truly ab initio approach
to superconductivity. No adjustable parameters appear in the
theory. The key feature is that the electron-phonon interac-
tion and the Coulombic electron-electron repulsion are
treated on the same footing. This is achieved within a
density-functional-type framework. Three densities, the ordi-
nary electronic density, the superconducting order parameter,
and the diagonal of the nuclear N-body density matrix, were
identified as suitable quantities to formulate the density func-
tional framework. The formalism leads to a set of Kohn-
Sham equations for the electrons and the nuclei. The elec-
tronic Kohn-Sham equations have the structure of
Bogoliubov–de Gennes equations but, in contrast to the lat-
ter, they incorporate normal and anomalous xc potentials.
Likewise, the Kohn-Sham equation describing the nuclear
motion contains, besides the bare nuclear Coulomb repul-
sion, an exchange-correlation interaction. The latter is an
N-body interaction, i.e., the nuclear Kohn-Sham equation is
an N-body Schrödinger equation. The exchange-correlation

potentials are functional derivatives of a universal functional
Fxc�n ,� ,�� which represents the exchange-correlation part
of the free energy. Approximations for this functional were
then derived by many-body perturbation theory. To this end,
the effective nuclear interaction was expanded to second or-
der in the displacements from the nuclear equilibrium posi-
tions. By introducing the usual collective �phonon� coordi-
nates, the nuclear Kohn-Sham equation is then transformed
into a set of harmonic oscillator equations describing inde-
pendent phonons. These noninteracting phonons, together
with noninteracting but superconducting �Kohn-Sham� elec-
trons, serve as the unperturbed system for a Görling-Levy-
type perturbative expansion of Fxc. The electron-phonon in-
teraction and the bare electronic Coulomb repulsion, as well
as some residual exchange-correlation potentials, are treated
as the perturbation. In this way, both Coulombic and
electron-phonon couplings are fully incorporated. The solu-
tion of the KS Bogoliubov–de Gennes equation �or the KS
gap equation together with the normal-state Schrödinger
equation� fully determines the Kohn-Sham system. There-
fore, within the usual approximation to calculate observables
from the Kohn-Sham system, one can apply the full variety
of expressions for physical quantities, known from phenom-
enological Bogoliubov–de Gennes theory, also in the present
framework. This approach was already successfully applied
within a semiphenomenological parametrization of the
exchange-correlation functional, e.g., to the specific heat18

and to the penetration depth40 of the cuprates. It should fur-
ther be emphasized that the formalism, developed in this
paper, is not restricted to perfect periodic systems. It was for
this purpose that we presented all formulas in terms of gen-
eral quantum numbers. The formalism can, in principle, be
applied as well to inhomogeneous systems, containing, e.g.,
impurities or surfaces, as to perfect periodic crystals.

In the succeeding paper �II� we will detail the numerical
implementation of this theory and present the first full-scale
applications to simple metals.
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APPENDIX: ON THE ELECTRON-PHONON COUPLING

In this appendix we discuss the electron-phonon coupling
potential which appears in the phononic exchange-
correlation terms. If we decomposed the Hamiltonian into
the ionic Kohn-Sham Hamiltonian and the electronic Kohn-
Sham Hamiltonian as the reference system and the rest as
perturbation, this perturbation would include the bare
electron-ion interaction. Clearly, the use of the bare vertex,
i.e., the gradient of the bare nuclear potential with respect to
the nuclear positions, would yield an unphysical electron-
phonon interaction. This bare vertex will be screened by the
conduction electrons. This screening could be taken care of
by a diagrammatical resummation.22

Here we will sketch a different approach which directly
generates the screened coupling potential. A natural coupling
potential in the context of DFT is the gradient with respect to
the nuclear positions of the effective Kohn-Sham potential
within the Born-Oppenheimer approximation. This is also
exactly the quantity that is obtained from the standard DFT
electron-phonon calculations based on linear response theory
with respect to small lattice distortions.

�R� vs,R� �r� = �R� vR�
latt,�r�

+� d3r�� d3r�fHxc�r,r��X�r�,r����R� vR�
latt�r��� .

�A1�

X�r ,r�� denotes the linear density-density response function
and

fHxc�r,r�� =


n�r��
�vH�n��r� + vxc�n��r�	 . �A2�

We are going to outline an approach that generates exactly
this gradient of the effective Kohn-Sham potential as the
coupling potential. The effective Kohn-Sham Hamiltonian
�29� for the nuclei gives rise to a set of equilibrium coordi-
nates and phonon eigenstates. It can then �up to harmonic
order� be written as Eq. �30�. The equilibrium positions R0

can be employed to define an electronic Born-Oppenheimer
�BO� Hamiltonian with a lattice potential referring to these
coordinates

ĤBO = T̂ e + Ûee + V̂R0

latt. �A3�

This BO Hamiltonian, without the electron-phonon coupling,
gives rise to the electronic density nR0

. We now add and
subtract all Hartree and exchange-correlation terms as well
as the BO lattice potential to the full Hamiltonian,

Ĥ = �T̂ n + Ûnn + V̂Hxc
n � + �T̂ e + V̂R0

latt + V̂Hxc
e + �̂Hxc

e � + Ûee

+ �Ûen − V̂R0

latt� − V̂Hxc
n − V̂Hxc

e − �̂Hxc
e . �A4�

The first three terms of this operator represent the nuclear
Kohn-Sham Hamiltonian. Assuming that the equilibrium
density n�r� entering the functional vHxc

e �n��r� will be close
to the equilibrium density nR0

�r� resulting from the BO
Hamiltonian �A3� we can expand the Hartree exchange-
correlation potential around the BO density,

vHxc
e �n��r� = vHxc

e �nR0
��r� +� d3r�fHxc�nR0

��r,r��n�r�� ,

�A5�

where the small density change n�r� is induced by the dif-
ference of the full electron-ion interaction and the BO poten-
tial. The density change can, in principle, be calculated via
linear response to that perturbation. We expect this density
change to be close to

n�r�� =� d3r�X�r�,r����R� vR�
latt�r��� . �A6�

If we keep only the BO part of the electronic Hartree
exchange-correlation potential, i.e., the term stemming from
nR0

�r�, in the electronic Kohn-Sham Hamiltonian, we can
combine the remainder with the electron-ion interaction, and
can identify �up to first order�

�
i

Z

�r − Ri�
− �

i

Z

�r − R0,i�
+� d3r�fHxc�nR0

��r,r��n�r��

� �R� vs,BO�r� . �A7�

This is the desired result, which allowed us to use the
electron-phonon couplings, determined by linear response
calculations, as the coupling potentials in our Kohn-Sham
perturbation theory.
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