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Spin-current noise and Bell inequalities in a realistic superconductor-quantum dot entangler
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Charge and spin current correlations are analyzed in a source of spin-entangled electrons built from a
superconductor and two quantum dots in parallel. In addition to the ideal (crossed Andreev) channel, parasitic
channels (direct Andreev and cotunneling) and spin flip processes are fully described in a density matrix
framework. The way they reduce both the efficiency and the fidelity of the entangler is quantitatively described
by analyzing the zero-frequency noise correlations of charge current as well as spin current in the two output
branches. Spin current noise is characterized by a spin Fano factor, equal to O (total current noise) and —1
(crossed correlations) for an ideal entangler. The violation of the Bell inequalities, as a test of nonlocality
(entanglement) of split pairs, is formulated in terms of the correlations of electron charge and spin numbers
counted in a specific time window 7. The efficiency of the test is analyzed, comparing 7 to the various time

scales in the entangler operation.
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I. INTRODUCTION

The production and the analysis of entangled states in
condensed matter devices have recently emerged as a main-
stream in nanoelectronics. Indeed, entanglement between
electrons, besides checking fundamental quantum properties
such as nonlocality, could be used for building logical gates
and quantum communication devices.! One may choose to
consider nanoscopic devices where electrons behave essen-
tially as free particles,” in a way similar to photons in quan-
tum optics. Alternatively, exploiting electron interactions
opens new possibilities. This allows, for instance, to use the
electron spin as a qubit in quantum dots,> owing to spin
relaxation/coherence times ranging in semiconductors from
fractions of us (bulk*) to fractions of ms (T, in quantum
dots®). Spin entanglement®® and teleportation’ scenarios
have been proposed within such a framework. A test of this
spin entanglement was previously proposed with the help of
a Bell diagnosis,'” for a normal metal-superconducting de-
vice described within the context of scattering theory, oper-
ating in the ideal crossed Andreev regime.!! However, in any
device several unwanted electronic transitions may spoil en-
tanglement and introduce decoherence. It is of key impor-
tance to check the device robustness against these parasitic
effects and to show how to diagnose them through transport
properties. Owing to the strategic role of entangled pairs in
quantum information, we focus here on the source of spin-
entangled electrons proposed by Recher et al.” Following a
detailed study of the average current due to the various
processes,'? the present work addresses noise correlations as
a diagnosis of the device operation.

The entangler of Ref. 7 is made from a superconductor
(S), adjacent to two small quantum dots in parallel, each
being connected to a normal lead featuring a quantum chan-
nel. The dots are assumed to filter electrons one by one in a
single orbital level, and Cooper pairs emitted from the super-
conductor are split in the two dots—the so-called crossed
Andreev channel (CA).'*!5 Ideally, the constituent electrons
then propagate in the two output leads as an entangled pair.
Parasitic quantum processes may also occur in the entangler;
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they include elastic cotunneling (CT)'*!® between the two
dots via S, and tunneling of a pair through the same lead by
a direct Andreev process (DA) (Fig. 1). The main (CA) chan-
nel as well as DA were studied in Ref. 7. Using perturbation
theory, the average current contributions to CA and DA were
separately calculated. In the same spirit, Ref. 17 used a beam
splitter on the entangler’s output, in order to detect the en-
tangled singlets by their noise bunching properties.'® In real-
ity, all these transport channels are mixed together. Instead of
analyzing them separately, the full electron flow should be
studied self-consistently and be eventually characterized by
its density matrix. The present work is based on a quantum
master equation scheme which treats all processes on an
equal footing'? and gives access to the full density matrix of
emitted electrons. It is used to compute the charge and spin
correlations in the current flowing through the two branches
of the entangler. In particular, spin current correlations,'”
even taken at zero frequency, are shown to quantify the en-
tangler’s efficiency and fidelity. Next, the violation of Bell
inequalities (BI) can be tested by computing the cross corr-
elators of charge and spin particle numbers in a given time
window.
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FIG. 1. Processes involved in the operation of the entangler.
Pairs are emitted by the superconductor (gray) towards the two
quantum dots, electrons are then collected by the leads L,R along
predefined spin polarizations +a, +b (fourth panel). The order of
elementary transitions involving virtual states is indicated: crossed
Andreev (CA) produces split pairs and triggers entanglement. CT
(cotunneling), direct Andreev (DA) as well as one-by one tunneling
through the same dot spoil entanglement. The three left panels de-
scribe coherent transitions, while the two right ones describe inco-
herent transitions.
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II. IDEAL REGIME AND THE OTHER TRANSPORT
PROCESSES

Transport is described by the processes connecting the
different states—identified by the charge number and spin of
the dots. Extra electrons n;, n, define the charge states (n,n,)
in the dots. The electronic processes at work in the device
include both coherent processes (CA, CT, and DA) and in-
coherent processes (transitions between the dots and the
leads) (see Fig. 1). In the ideal operation of this entangler,
the Coulomb blockade prevents double occupancy in each
dot, so that DA is forbidden. Also, the superconducting gap
is supposed to be very large, so that one-by-one tunneling
(last panel in Fig. 1) is also excluded. In addition, CT is
neglected in this ideal regime, owing to the energy difference
between the electron states on the two dots. Then, starting
from an empty orbital state [denoted (00)], crossed Andreev
(CA) reflection couples to a singlet state shared between the
two dots, (11,) with an amplitude y,T (y,<<1 is the geo-
metrical factor’'4!3). For a resonant CA transition, the dot
energy levels E; satisfy E;+E,=0. The two electrons are
collected into the leads (with chemical potentials u; z
<E,,E,) by transitions to states (01) or (10), then (00), with
rates I'; (i=1,2).

Let us now consider parasitic transport processes. If the
intradot Coulomb charging energy U is not very strong, a
coherent transition from (00) to a doubly occupied dot state
(20) or (02) can occur via a direct Andreev (DA) process.’
Notice that this occurs with an amplitude 7" larger than for
CA, since it is not affected by the geometrical reduction
factor vy,. Electrons are successively collected by a single
lead, with rates I'] then T';, eventually reaching the empty
state (00). This transport channel implies dot energies 2E;
+U. In addition, DA can also start from an initial state (10)
or (01), proceeding through states (21) [respectively (12)]
with energies 2E,+ E,+ U (respectively E|+2E,+ U). Further
collection into the leads either give states (20), (02), or sin-
glet and triplet states (11;,). The mixing of triplet states with
the desired singlets may cause decoherence in the source
operation. In another process, the two electrons from a Coo-
per pair can tunnel one by one towards the same lead,” in-
volving a singly occupied virtual state which costs an energy
at least equal to the superconducting gap Ay (Fig. 1). Con-
trary to the DA process, the dot is emptied before the quasi-
particle in S is annihilated. The state (10) [or (01)] is reached

by an incoherent process with a rate f,»~1",-Ti2/ Ai. Last, CT
involves a coherent transition of an electron from one dot to
the other via S, and mixes all the above processes:12 it
couples state (01) to (10), but also (20) [or (02)] to (11), (21)
to (12). CT has an amplitude y-T<T, of the same order of
magnitude as that of CA.

The density matrix equations involving populations (diag-
onal elements) and coherences (nondiagonal elements) in-
clude these processes altogether in a consistent and nonper-
turbative manner. Here one assumes weak couplings I'; x
<kzO of the dots to the output leads L, R (O is the tempera-
ture). On the other hand, the leads are biased such as |u; g|
>T, I'; &, ensuring irreversible collection of the electrons in
L, R. The density matrix equations have been derived and

PHYSICAL REVIEW B 72, 024544 (2005)

detailed in Refs. 12 and 13, where the average currents in
each branch have been computed. From these Bloch-like
equations, one can also calculate the conditional
probabilities—for a transition to a given state, assuming a
previous initial state—which enter the calculations of the
noise correlators.?%-2 Processes involving states with at most
two electrons on the double dots are represented on Fig. 6 of
Ref. 12, yet three-electron states are also included in the
calculations.

III. CHARGE AND SPIN CURRENT CORRELATIONS

Let us assume that the leads contain separate channels
perfectly filtering spin currents polarized along two pre-
defined and opposite directions. An understanding of the
charge and spin correlations can be obtained by considering
the spin-resolved zero-frequency noise:'” I, being the current
carried by electrons with spin o==+a (along a given spin
direction a), we define

57 0)= [ anaro.ar o, 1)

where i,j={L,R} and AI7() is the deviation from the aver-
age current component (/7 (¢))=17. We assume that the lead
resistances and couplings to the dots are not spin dependent.
Because the superconductor is emitting singlet pairs, it re-
sults that the average current in each lead is not spin-
polarized, e.g., I7=1;/2. By definition, the charge and spin
current noise correlation read

Sif'= 20 (S57+ 8779, 2)

S =2 (S77=877). (3)

The latter simply expresses the time correlations of the spin
current I;""=17—I;7. The average total charge current pass-
ing through the entangler can be written as

I=1L+IR7 (4)

where the currents in leads L and R can be separated in two
components as

IL=2ILL+ILR’ (5)

IR=21RR+ILR' (6)

Here I;;, Iy, and I}, respectively count pairs passing in unit
time through L, or R, or through (L,R) as split (entangled)
pairs. These current components can be written as

1
I p=—pdl, 7
LR 21’5 (7)
I L 1 (8)
LL= ZPL >

1
IRR=5PR1, 9)

with probabilities such that p; +pp+ps=1.
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It is crucial to notice here that all the electrons passing
through the entangler enter the two-dot system by pairs,
emitted in an Andreev process (CA, DA or one-by-one tun-
neling). Therefore, the spin current fluctuations due to elec-
trons of a given pair are correlated, since they track the pas-
sage of singlets. On the contrary, electrons emitted within
different pairs display no spin correlation whatsoever. It re-
sults that, while calculating the correlations of spin currents
at different times, the contributions of separate pairs drop
out, so that spin noise in the leads uniquely tracks the spin
correlations inside a pair. These correlations should be non-
ideal since they track what remains from the emitted singlets
after their passage through the two-dot system. This property
of probing single pairs strongly contrasts with the charge
current fluctuations which—in a sequential tunneling
process—correlate successive pairs due to the Pauli principle
and the Coulomb interaction in the dots. Therefore the spin
current noise is very well suited to study the spin correlations
inside pairs with zero-frequency noise. To illustrate this, it is
convenient to write the various spin noise correlations as
follows:

S =2el; —4ely; (1 - f,) = 2el(p,f, + 2ps).
S;QPR =2elp—4elrp(1 - fr) = 2€I(PRfR + %PS) s

Szl;?:S;QPL:_ZEILR(] —fs) =—elps(1—fs). (10)

Let us comment on the various terms in Eq. (10). The first
term in S;” corresponds to the autocorrelation of electron
wave packets'*?? and takes a Poisson value. The other terms
are negative and reflect the spin anticorrelation inside sin-
glets. The Fano-like reduction factors f;, f quantify this cor-
relation. For instance, blocking one lead (I'3=0, for in-
stance), all pairs pass through L (p,=1) in a sequential way.
In this case I=1;=21I;;. Moreover, since the dot filters elec-
trons one by one, one easily checks that f; =0, thus the spin
noise through L is zero. This “spin Fano factor” equal to zero
is a property of a S/N junction, characteristic of an unspoiled
Andreev process:'? at a superconductor/normal (S/N) metal
junction, zero spin noise is the fingerprint of charge carriers
being paired in a singlet state. On the other hand, if the
entangler operates ideally (only CA), then pg=1, f¢=0, and
SiP=el. This is somewhat similar to the behavior of a quan-
tum dot in the sequential regime, with a single orbital state
involved in transport and strong Coulomb charging energy,
yielding a spin Fano factor equal to one."

On the other hand, the crossed spin correlation is Sj,
=—el. This value corresponds to an effective spin Fano factor
—1 and serves as a reference value for an ideal operation of
the device. These Poisson-like Fano factors, confirmed—see
below—by the solution of the master equations, are valid for
any value of the couplings of the dots to the leads. This is in
contrast with the “charge” Fano factors in resonant quantum
dot devices which reach the value one only in the very asym-
metric limit, where correlations between successive charges
crossing the dots become negligible.

Summing all contributions in Eq. (10), the spin noise of
the total current is
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S =SV + Sip+ St + SE =2elFg, (11)
with the total spin Fano factor

Fs=pifi+prfr+psfs- (12)

Notice that in our definition the spin Fano factors measure
the zero-frequency spin current noise in units of the average
charge current (not the average spin current which is zero).

In the general case, when all (CA, DA, and CT) processes
come into play, pairs are both distributed (e.g., they exit
through LL, RR, and LR) and “mixed” together (electrons of
a pair may intercalate between electrons of another): for in-
stance, due to states with three electrons in the double dot,
two electrons of a split pair L,R can be separated by a time
interval during which one or more pairs pass through a single
dot [as illustrated by the sequence (00), (11), (10), (12), (11),
(10), (00)]. This variable delay between two spin-correlated
electrons is responsible for the factors f; g >0 which mea-
sure the degree of mixing.

This preliminary analysis suggests that parasitic processes
have two effects. First, they reduce the probability of split
(entangled) pairs over non-entangled ones, thus p, defines
the entangler efficiency. Secondly, they reduce the spin cor-
relation of a split pair, 1—f; defining the entangler fidelity
with respect to the singlet state. Notice that both efficiency
and fidelity are defined here with respect to a given measure-
ment probe, e.g., zero-frequency noise, or alternatively time-
resolved correlation in the present work.

IV. QUANTITATIVE ANALYSIS

We now study these trends quantitatively. Charge and spin
current noise correlations are calculated from the entangler
quantum master equations, derived in Ref. 12, where four-
electron states in the dot pair are neglected for simplicity. We
successively focus on the correlations of the total current
I; +1y, of the separate currents /;, Ir, and on the crossed
correlations between L and R.

A. Ideal regime

Consider the ideal operation (CA only) for different val-
ues of I" (assuming the Andreev amplitude to be equal to T
=1, and a geometrical factor y,=0.2). All electron pairs are
split and cross the device sequentially (one after the other).
The average (charge) current'? I [see Fig. 4(a)] displays a
maximum in the region I" ~ v, 7. This maximum can be eas-
ily explained by the balance between the entrance and exit
rates of the two electrons in the double dot. The total charge
noise through the entangler [see Fig. 5(b), and also Ref. 13],

Sch

for = SiL* Sk + St + Sirs (13)
displays a minimum in the same range of parameters, as
expected. Moreover, for large I'/T, it reaches the value 4el.
This doubling of the Fano factor with respect to the Poisson
value signals the passage of electron pairs.>* On the other
hand, the crossed charge noise correlation S¢% is positive
[Fig. 2(a)], in contrast to the partition noise of single elec-
trons, which is negative.?> This reflects the perfect charge
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FIG. 2. Spin current cross correlations, assuming CA to be reso-
nant: E;+E,=0 and I';=Tj. Ay is the largest energy scale, thus
one-by-one tunneling is negligible. 7=1 and y,=0.2 is assumed. In
(a) and (b), only CA and CT are taken into account, assuming U
—o0. Charge and spin cross correlations are plotted for 0<<I'<<2
and several values of E=|E,—E,|={0,0.2,0.5,1,5} (bottom to top).
The dotted line features the ideal case. (¢) and (d) correspond to
0<U<50 and E=5 (CA and DA, but no CT), for I';z
={0.01,1,5,10} (top to bottom).

correlation of split pairs.”> As a function of I'/T, S¢% also
displays a minimum [Fig. 2(a)] and becomes Poissonian in
the limit I"> y, T, where successive pairs are collected much
faster than emitted, and so are well-separated in time. Notice
that in the ideal operation one has

Sk =Si1.= Sir. (14)

Turning to the spin noise, one finds that the total spin
noise Sf;')’l is zero, as discussed above. Moreover, one verifies
that

SiL=Skr==Sig=el, (15)

thus diagnosing perfect spin correlations from the entangler.

B. General regime

Parasitic processes are next illustrated in the presence of
cotunneling alone (U is chosen as infinite), which introduces
a coupling between branches L, R. In this case, pairs are
distributed (LL, RR, and LR) but still sequentially (they pass
one after the other and do not mix): therefore all the f’s in
Eq. (1) are equal to zero. First, assuming I"; =I'y, the average
current as well as S which sums over all branches are not
modified.?> On the contrary, S¢% decreases [Fig. 2(a)] and can
even become negative when cotunneling has a strong effect:
due to branch coupling, charge cross correlations are lost and
partition noise may dominate over pair correlations. On the
other hand, spin noise gives

Sii == Sig=elp;. (16)

Therefore the spin Fano factor simply counts the split pairs
[Fig. 2(b)] and measures the entangler efficiency. One checks
that the total spin noise satisfies
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SH + Sk +285h=0, (17)
i.e., the whole entangler is a perfect Andreev source: what-
ever the origin of the pairs (LL, RR, or LR), they are well
separated and the spin correlations of successive electrons is
perfect. Notice that p, tends to one for large I'> y,-T where
CT has no time to occur and becomes irrelevant. In practice,
for large |E,—E,|/T>5, CT is merely suppressed. In sum-
mary, with CT alone we have a situation where the efficiency
of the entangler is reduced (and measured by the spin noise),
while its fidelity remains perfect. Yet, notice that further use
of these pairs in the output quantum channels would require
an additional device to collect split pairs LR and filter out the
others.

Next, double occupancy in the dots is allowed (process
DA). Fixing I'/T, the crossed charge noise is reduced and
can become negative at small U [Fig. 2(c)]. Spin noise cor-
relations also decrease as U/T decreases [Fig. 2(d)]. The
structures observed at small U for small I" are due to the
difference between the single electron levels E;, E,, and DA
transitions becoming resonant when E;~—U. The width of
the minimum increases for large I', due to two competing
processes. On one hand, the probability for having a split
pair (CA) in the two dots oscillates on a large time scale
(y4T)~'. On the other hand, the probability for a DA pro-
cesses is smaller, but it oscillates more rapidly'> [(U?
+47%)7Y2]. A high detection rate thus dynamically favors the
fast DA process, even though it is weaker. In the resonant
regime E;~-U, Szll can even approach 4el;, e.g., noise dou-
bling in branch L. Moreover, it is important to point out that
due to direct Andreev processes, the total spin noise is no
longer equal to zero. Actually, the occurrence of three-
electron states in the double dot has the effect of mixing the
pairs, reducing the fidelity, especially for small U and T'.

In summary, the analysis of this quite general case dem-
onstrates that optimal pair correlations are obtained if y,7
<I'<<U. Nevertheless, at fixed I'/ U, a too small y,T/I" ratio
is detrimental, as it favors LL and RR pairs by a dynamical
effect.

V. BELL INEQUALITY TEST

In quantum optics, entanglement is typically probed by a
Bell inequality (BI) test. It relies on the measurement®® of
number correlators. One may simplify the response of the
electronic circuit such as to measure not the instantaneous
current, but instead the particle number accumulated during a
time 7

N (t,7) = J Mdt’la(t’) (18)

(a==a, +b, see Fig. 1). The inequality which is derived as-
suming a product density matrix weighted by local hidden
variable reads!'

|G(a,b) - G(a,b’) + G(a’,b) + G(a’,b")| <2, (19a)

(INy(7) = N_(D]INy(7) = N_p(D])
(INo(7) + N_(DIINL(7) + N_o(D)])

In Ref. 11, the correlators (N,(7)Ng(7)) were related to zero-
frequency current noise correlators via an approximate rela-

G(a,b) = (19b)
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FIG. 3. The left part of the BI is compared to the limit 27> (one
assumes 7=1 and y,=0.2). (a) It is plotted for 0<I'; x <8, two
values of E (0, and 5 which simulates the ideal working regime),
and 77/h={0.2,0.5,1,5,10,20} (from the top to the bottom). To
characterize the BI test, each contribution of [AN|/ (AN +A*) is
plotted for (b) 7=0.2 and (c) 7=5. (d) Double occupancy is taken
into account, assuming E=5, I'; x={0.01,1,5,10, 100} (top to bot-
tom), and 7=0.2

tion. This approximation breaks down for short times. We
follow Ref. 27 and calculate the correlators from first prin-
ciples. The cross correlator for arbitrary spin directions of the
filters can be separated into a parallel and an antiparallel
component:

(NDNg(7)) = (Np{(D)Ng, (7))sin*(6,,5/2)
+ (N (DNgi(7)cos*(0,5/2),  (20)

with 6,4 the relative angle between the polarizations in L and
R. With the same choice of angles as considered in Ref. 11
the BI becomes

|ANT/(ANS: + A%)| < 172 1)
with
AN2];Q=<NLT(T)NR¢(T)>—<NLT(T)NR¢(T)> (22)
and
AN+ A* = (N (DN (7)) + (N (DNgi (D), (23)
where

At = IR (24)

is the reducible part of the charge correlator.

In the ideal case [see Fig. 3(a)], the BI violation is maxi-
mal for 7<<h/T (h is the Planck constant). Increasing 7,
thus the number of measured pairs, quantum spin correla-
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FIG. 4. (a) Average current ; (b) spin current noise (continuous)
and Bell correlation (dotted), as a function of I'/T, with U= ,E
=5 (CA only), and finite spin-flip time 7, in the dots. 7,T/h
={10,1,0.1,0.01} decreases from top to bottom.

tions show a minimum at I'~y,7, due to a decrease
of AN;’; <"/ A* [Figs. 3(b) and 3(c)]. BI violation is recovered
provided AN{i~7I dominates over A*=7I?, where
I~ YAT?/T for large I and /~T for small I'. This means that
pairs should be measured roughly one by one.!' Now, con-
sidering parasitic processes, CT tends to prevent BI violation
at small I', and for large enough 7 [Fig. 3(a)]. Finite U sen-
sibly decreases the quantum spin correlations [Fig. 3(d)]. The
minimum flattens as I" increases, as in Fig. 2(d) (dynamical
effect). Yet, comparing Figs. 2 and 3, one sees that the BI test
is much less affected by parasitic processes than the spin
noise. For instance, with I'=5 and U/T=40, the spin noise is
about 0.5, signaling a low efficiency, while the BI is violated
with 7=0.2. In fact, this window allows filtering of split CA
pairs, mostly dropping “wrong” DA pairs. Therefore, tuning
7 to an optimum value yields high fidelity of entanglement,
even if the efficiency of the entangler is low.

VI. SPIN-FLIP PROCESSES

Finally, let us address the effect of spin-flip scattering in
the dots, here simply described by a spin relaxation time 7.
As entanglement is concerned, this acts as a decoherence
source, as it induces some mixing of singlet states (11,) with
triplet states (11,). Spin-flip is easily incorporated into the
general density matrix equations,'? in a way similar to Ref.
19. Tt consists in defining occupation states (n;,,7n,,) and
adding into the density matrix equations the terms corre-
sponding to the decay of the spin densities n;,—n,_,. The
effect of spin relaxation is summarized on Fig. 4. First, sur-
prisingly enough, the average current is strongly quenched as
soon as the spin-flip rate is of the order of the CA amplitude
[Fig. 4(a)]. This can be explained as follows. CA is coherent
provided it involves a spin-conserving transition between de-
generate states. Spin-flip in the dot, if faster than the CA
resonance between states (00) and (11,), suppresses this
resonance, opening a new decay channel. Indeed, spin-flip
competes with CA in a way similar to charge decay toward
L, R. For 7,<h/T'<h/vy,T, the current behaves as Tif. For
the same reasons, spin-flip also decreases charge correlations
[Fig. 4(b)]. Secondly, as expected, spin-flip decreases the
spin noise correlations in leads L, R [Fig. 4(b)] by essentially
diminishing the fidelity 1—fs. In addition, Bell correlations
are also affected by spin-flip, but, as above, much less than
spin noise.
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FIG. 5. Various diagnosis of the entangler, plotted as function of
the pair tunnel amplitude T (in Kelvins), for y4,=0.01 and 0.2. (a)
The average current, assumed larger than 1 pA. (b) The total charge
noise. (c) The total spin noise. The spin-flip time decreases from
bottom to top, 7,{(ns)={100, 10, 1}. (d) The crossed spin noise. The
spin-flip time decreases from top to bottom, 7,{(ns)={100,10,1},
causing nearly no variation in panels a,b.

VII. DISCUSSION

Let us now discuss the relevance of the above analysis in
view of a future experimental realization of this entangler.
First, we summarize the required operation regime, from the

above as well as previous discussion:”!2

AS7 U7

E\-Ej| > 88 > py g kg®, 77 > T > T ycT
(25)

where u; » is the voltage drop between the superconductor
and the leads L, R, and J¢ is the separation between different
orbital states in the dots. We assume that the average currents
in both leads can be measured, as well as zero-frequency
(charge and spin) noise correlations. Niobium will be taken
for the superconductor (Ag~9.2K), and e~ 1 meV
~ 12 K for GaAs or InAs-based small quantum dots. A rea-
sonable value for U is 45 K, larger than Ag, which does not
change the above conclusions, for which U<<Ay is instead
assumed. A typical relaxation rate is I'; x~ 100 mK, larger
than kz®. One can then discuss the operation of the entan-
gler as a function of the CA amplitude, say the parameters 7
and y,. As an experimental constraint, we fix the value of the
current to a minimum of 1 pA, to make current correlations
measurable. The current is plotted in Fig. 5(a) in nanoAm-
peres as a function of the electronic amplitude 7, expressed
in Kelvins, for two values of vy,.

For optimum operation, the entangler should provide pairs
which are (i) well separated in time, (if) split as much as
possible in (L,R), and (iii) in the singlet state. As a first
probe, the total charge noise tests the temporal separation of
successive pairs, signaled by the doubling of shot noise,
S"=4el (Poisson result). We have numerically verified [see
Fig. 5(b)] that this criterion is fulfilled up to a few percent if
YaT<T'j g. It is compatible with our constraint on [ for T
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~0.1 K (y4=0.01) and T~0.01 K (y4=0.2).

As a second probe, the total spin noise also reflects the
“mixing” of pairs in time, being zero if pairs are well sepa-
rated (T<I" whatever vy, without spin-flip). Figure 5(c)
shows that this criterion is very well fulfilled (lower curve).
In addition, S}’ is sensitive to spin-flip. Therefore a combi-
nation of total charge and spin noise gives information on
pair mixing and spin-flip. Spin-flip tends to increase S;?, from
the ideal value 0, especially for large 7,.

As a third criterion, crossed spin correlations provide in-
formation on the fraction pg of split pairs (L,R). We find that
¥4=0.2 gives an excellent ratio (nearly 1 for T<I'; z). On
the contrary, for y,=0.01, this ratio drops to about 0.2, LL
and RR pairs being “dynamically” favored. Unless some fur-
ther processing of pairs is achieved, this is detrimental to the
entangler operation.

To summarize this analysis, a small value of vy, is prefer-
able for pair separation, but a large one is requested for the
singlet fidelity. Given these conflicting requirements, a good
compromise is obtained with large y,~0.2 but small T
~0.01 K. Concerning the spin-flip time, values of the order
of 10 h/T~50 ns are suitable.

VIII. CONCLUSION

We have analyzed in detail the operation of a realistic
superconductor-dot entangler. We have shown that zero-
frequency charge and spin current correlations allow a de-
tailed analysis of the efficiency and fidelity of the entangler
in terms of parasitic and spin flip processes. Spin Fano fac-
tors for spin current correlations appear as an optimum char-
acterization of the entangler operation. Due to the absence of
spin correlation of electrons emitted within different Andreev
processes, such spin Fano factors directly probe the spin cor-
relations within an entangled pair. Depending on the quantity
under interest, they are equal to 1 in the ideal operation
regime. In this sense, measuring the spin current noise is an
alternative to time-resolved measurements which should cap-
ture pairs one by one. Yet, for an absolute diagnosis of en-
tanglement, a time-resolved Bell inequality measurement is
necessary, within a narrow enough time window. Contrarily
to low-frequency measurements, this allows one to check the
entangler fidelity even in the presence of a low efficiency. As
a result of this work, we conclude that a satisfactory opera-
tion is within reach with realistic parameters. For detection
rates I'~ 100 mK, the shortest time window described for a
Bell test corresponds to 7~ 1 ns, a time scale which could be
accessible with fast electronics apparatus. Moreover, the geo-
metric parameter vy, appears to be crucial and should be
rather large. Encouraging results have recently been obtained
in two experiments which have observed crossed Andreev
reflections at distances not very small compared to the super-
conductor coherence length.”®
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