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We describe the properties of a mixture of fermionic and bosonic atoms, as they are tuned across a Feshbach
resonance associated with a fermionic molecular state. Provided the number of fermionic atoms exceeds the
number of bosonic atoms, we argue that there is a critical detuning at which the Bose-Einstein condensate
�BEC� is completely depleted. The phases on either side of this quantum phase transition can also be distin-
guished by the distinct Luttinger constraints on their Fermi surfaces. In both phases, the total volume enclosed
by all Fermi surfaces is constrained by the total number of fermions. However, in the phase without the BEC,
which has two Fermi surfaces, there is a second Luttinger constraint: the volume enclosed by one of the Fermi
surfaces is constrained by the total number of bosons, so that the volumes enclosed by the two Fermi surfaces
are separately conserved. The phase with the BEC may have one or two Fermi surfaces, but only their total
volume is conserved. We obtain the phase diagram as a function of atomic parameters and temperature, and
describe critical fluctuations in the vicinity of all transitions. We make quantitative predictions valid for the
case of a narrow Feshbach resonance, but we expect the qualitative features we describe to be more generally
applicable. As an aside, we point out intriguing connections between the BEC depletion transition and the
transition to the fractionalized Fermi liquid in Kondo lattice models.
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I. INTRODUCTION

The Feshbach resonance has emerged as a powerful tool
for studying ultracold atoms in regimes of strong interac-
tions. For two isolated atoms scattering off each other, the
Feshbach resonance is a singularity in their scattering length
due to the coupling of the atomic states to a molecular bound
state.1,2 The singularity �at �=0� occurs as a function of the
detuning �, which is a measure of the energy difference be-
tween the atomic and molecular states. The value of � can be
varied by an applied magnetic field, and this effectively al-
lows one to tune the strength of the atomic interactions.

For systems in the thermodynamic limit, with a finite den-
sity of atoms, there is no singularity at �=0. Nevertheless,
the vicinity of �=0 is a regime of interesting many-body
effects. For a Feshbach resonance between two identical fer-
mionic atoms, the many-body ground state changes from a
Bose-Einstein condensate �BEC� of molecules ���0� to a
Bardeen-Cooper-Schrieffer �BCS� superfluid descended from
a Fermi gas of atoms ���0�. It is important to note that there
is no true fundamental distinction between the BEC and BCS
states here, and so the two limits are connected by a smooth
crossover. Recent experiments3–5 on 6Li and 40K atoms have
succeeded in observing the BEC of molecules.

The consequences of the two-body Feshbach resonance
are very different for other atomic statistics. For a Feshbach
resonance between two identical bosonic atoms, it has been
argued recently6,7 that there is indeed a sharp singularity—
i.e., a quantum phase transition—in the many-body system

as a function of �. This singularity is not precisely at �=0,
but is shifted away from it; it is not directly a reflection of
the singularity in the scattering length of two isolated atoms,
but is a new many-body effect. Here, the two limiting states
are a BEC of molecules ���0� and a BEC of atoms ��
�0�. Unlike the fermionic case above, these two states can-
not be connected smoothly to each other. The fundamental
distinction between these states becomes apparent upon ex-
amining the quantum numbers of the vortices in the conden-
sate: the quantum of circulation differs by a factor of 2 in the
two limits, being determined, respectively, by the mass of a
molecule or of an atom.

In the present paper, we will consider the remaining case
of a mixture of two distinct types of atoms, one fermionic
and the other bosonic. Mixtures of fermionic 6Li and bosonic
7Li atoms were studied by Truscott et al.8 and Schreck et
al.,9 and they succeeded in achieving simultaneous quantum
degeneracy in both species of atoms. Recently, Feshbach
resonances have been observed between bosonic 23Na and
fermionic 6Li atoms by Stan et al.,10 and between bosonic
87Rb and fermionic 40K atoms by Inouye et al.11 So the time
is clearly appropriate to examine the many-body properties
of such mixed Bose and Fermi gases across a Feshbach reso-
nance, in which the fermionic molecule of the two unlike
atoms can also reach quantum degeneracy.

Our primary result is that such a mixture of fermionic and
bosonic atoms also has a quantum phase transition. Again
this transition is a many-body effect and does not occur pre-
cisely at �=0. We will map out the phase diagram as func-
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tions of �, temperature �T�, and the densities of the atoms
�see Figs. 1–3 and 6� and also describe the strong conse-
quences of thermal and quantum fluctuations in the vicinity
of the phase transition. It is also possible that the mixture
phase separates: this will be studied in the Appendix, where
we determine the region of instability to phase separation
�see Fig. 9�.

As in the Fermi-Fermi and Bose-Bose cases, the existence
of a quantum phase transition for the Bose-Fermi case can be
easily understood by characterizing the two limiting cases.
For ��0, there is a BEC of the bosonic atoms and a Fermi
surface of the fermionic atoms. In contrast, for ��0, there is
a Fermi surface of the fermionic molecules. If the number of
the fermionic �Nf� and bosonic �Nb� atoms are unequal to
each other, for ��0, there will also be some residual atoms
which are not in molecules, forming their own ground state:
for Nf�Nb the extra fermions will form a separate Fermi
surface of atoms, while for Nb�Nf the extra bosons will
form an atomic BEC. We note that for Nf�Nb scanning the
detuning � takes us between limits with and without an
atomic BEC. Consequently there must be a critical detuning
at which the atomic BEC is completely depleted, and all the
bosonic atoms have been absorbed into molecules.

A novel feature of this quantum phase transition is that it
can be entirely characterized in terms of the Luttinger con-
straints on the Fermi surfaces.

�i� Consider, first, the phase without the BEC with ��0.
Here, there are two Fermi surfaces, one with Fermi surface
excitations which are primarily the fermionic atoms, while
the other has Fermi surface excitations which are primarily
the fermionic molecules. We establish in Sec. V that this
phase obeys two Luttinger theorems: the atomic Fermi sur-
face encloses a volume associated with precisely Nf −Nb
states, while the molecular Fermi surface encloses precisely
Nb states.

�ii� Now consider the phase with the BEC. When the
BEC is small, this phase retains two Fermi surfaces, one
primarily atomic and the other primarily molecular. How-
ever, now the volumes enclosed by these Fermi surfaces are
not separately conserved; only the total volume enclosed by
both Fermi surfaces is required to contain Nf states. Eventu-
ally, for ��0, the molecular Fermi surface disappears en-
tirely, and only a single Fermi surface with Nf states remains.
The disappearance of the molecular Fermi surface �in the
presence of a BEC� is a second quantum transition whose
character we will also discuss briefly in Sec. VI.

This paper will determine the value of the critical � for
the BEC depletion transition and describe critical fluctua-
tions in its vicinity. At T=0, we will find in Sec. VI that this
critical point is generically in the universality class12,13 of the
density-driven superfluid-insulator transition with dynamic
exponent z=2. There is also an interesting quantum multi-
critical point for Nf =2Nb at which the BEC depletion quan-
tum transition has a different character: this we will also
describe. At T�0, the BEC depletion transition is in the
universality class of the � transition of 4He and so will dis-
play similar critical singularities: a peak in the specific heat
and anomalies in transport coefficients.

Our quantitative results are determined within a mean-
field picture, whose applicability is restricted to the case of a

“narrow” Feshbach resonance, where the relevant coupling is
sufficiently weak. We nonetheless expect our results to be at
least qualitatively applicable to the �experimentally more
common� “wide” Feshbach resonance.

We also find an additional T=0 quantum phase transition
involving the disappearance of the molecular Fermi surface.
As shown in Sec. VI, this is described by a z=2 critical
theory of free fermions.

While our work was in progress, we learnt of the work of
Yabu et al.14 who addressed some related issues, but only in
the limit of infinitesimal coupling between the atomic and
molecular degrees of freedom. We will note their limiting
results in Sec. III.

We now outline the contents of the body of the paper.
First, in Sec. II, we define the model Hamiltonian that will

be used throughout the rest of the paper. In Sec. III, we
consider the limit of vanishing coupling, where a purely clas-
sical analysis can be used.14

Section IV finds the phase structure for finite coupling,
treating quantum-mechanical effects using a mean-field ap-
proach. In Sec. V, we describe our results regarding Lutting-
er’s theorem for the system. In Sec. VI, the mean-field result
of Sec. IV is reproduced using a field-theoretical approach,
which further allows us to characterize the critical properties
of the transition.

In Secs. VII and VIII, two corrections are calculated to
the mean-field theory, which can be used to determine the
validity of this approximation. In Sec. VII, the two-loop cor-
rections to the free energy are found, while in Sec. VIII,
higher orders in the coupling are included, within a low-
density approximation.

In the Appendix , we consider the stability of the system
against separation into two regions with differing densities. It
is shown that the system is indeed stable for a broad range of
parameters.

II. BASIC DEFINITIONS

The system consists of bosonic atoms b and fermionic
atoms f which combine to form fermionic molecules �. The
energy, relative to the chemical potential 	, is for the atoms


k
f = �k

f − 	 f =
k2

2mf − 	 f , �2.1�


k
b = �k

b − 	b =
k2

2mb − 	b �2.2�

and for the molecule


k
� = �k

� − 	� =
k2

2m�
− 	� + � , �2.3�

including the detuning �. The masses obey m�=mf +mb and,
because of the interaction, the chemical potentials are related
by 	�=	 f +	b.

The grand Hamiltonian is
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H = �
k

�
k
f fk

†fk + 
k
bbk

†bk + 
k
��k

†�k� − g�
k,k�

��k+k�
† fkbk�

+ bk�
† fk

†�k+k�� + ��
k,k�,�

bk+�
† bk�−�

† bk�bk, �2.4�

where �k denotes �d3k / �2��3.
We assume throughout that the fermion spin is polarized

along some direction, so that both f and � are treated as
spinless. The fourth term �in g� causes the bosonic and fer-
mionic atoms to couple and form molecules, while the final
term �in �� is an interaction between pairs of bosons. We
omit the interaction between fermions because the exclusion
principle forbids s-wave scattering between identical fermi-
ons and we assume that the interaction between f and � will
be less important than the coupling g.

Taking the dimensions of momentum and energy to be
unity, dim�k�=dim�E�=1, we have dim���=−3/2 and the
same for the operators b and f . �Throughout, we shall mea-
sure temperature, energy, and frequency in the same units, so
that =kB=1.� The coupling constants have dimensions
dim�g�=−1/2 and dim���=−2.

At temperature T=1/��0, we have six dimensionless
parameters. First let Nb be the total density of bosonic atoms,
including those bound in molecules, and let Nf be the same
for fermionic atoms. �We consider a unit volume, so that
density is synonymous with number.� In the absence of any
fermions, the bosons would condense at a temperature

T0 =
2�

mb� Nb

�� 3
2��2/3

. �2.5�

We can take as dimensionless parameters T /T0=�0 /�,
Nf /Nb, mf /mb, � /T0, �2 /T0, and �2�mb�3T0, where

� =
g2

8�
	2mfmb

m�

3/2

. �2.6�

In what follows, it will not usually be necessary to take
account of the coupling between bosons given by the final
term of Eq. �2.4�. Except within the condensed phase, which
will be treated in Sec. IV, the only effect of � is a renormal-
ization of the boson mass, which we assume has already
been incorporated into the definition of mb.

Physical units

In order to relate these parameters to experimental values,
we may choose a unit of volume of 10−15 cm3, which gives
the unit of momentum as roughly 10−27 kg m/s. Taking the
unit of mass to be 6 amu, corresponding to a lithium-6 atom,
the unit of energy is roughly 7�10−10 eV or 8 	K.

For a Feshbach resonance, we assume the expression15

g =�2�abg�B�	

m
, �2.7�

where abg is the background scattering length, �B is the
width of the resonance, and �	 is the difference in magnetic
moments. Using the observed background scattering length

between lithium-6 and -7 of abg=2.0 nm,9 we may estimate
the coupling constant. Taking, for instance, �B=1 G, �	
=	B, the Bohr magneton, we find g�1 in our units. For a
boson density Nb=1015 cm−3 and mass mb=mf =6 amu, the
value g=1 gives a dimensionless coupling of �2 /T0=5
�10−4.

While the width of the resonance used here, �B=1 G, is
sufficiently large that �	�B�T0, it is nonetheless somewhat
smaller than typical experimental values. For our purposes, a
more relevant measure of the resonance “width” is the life-
time of the molecule state in the vacuum �for ��0�. This is
calculated in Sec. VIII, where we show that it is determined
by the constant �. Since the relevant energies are on the
order of T0, the condition for a narrow resonance is that
�2 /T0�1. For the numerical results throughout this paper,
we will always remain in this narrow limit, which is analyti-
cally more accessible. As noted above, we expect our results
to be at least qualitatively applicable even for the wider
Feshbach resonances observed experimentally.

Following Ref. 7, we take

� =
2�

mb abb, �2.8�

where for abb, the scattering length for the boson-boson in-
teraction, we use abb=0.27 nm,9 giving

�2�mb�3T0 = 2� 10−3. �2.9�

The detuning � appearing in the molecular dispersion re-
lation �2.3� is given by15

� = �	�B − B0� , �2.10�

where B0 is the magnetic field at resonance and B is the
applied field.

III. THE LIMIT g\0

The case of vanishing coupling, which can be addressed
with a classical approach, has been considered by Yabu et
al.14 �The results presented in this section produce Fig. 3 of
Ref. 14, which corresponds to our Fig. 3, below.�

For simplicity, we restrict the analysis to zero tempera-
ture, but similar arguments can be made for nonzero tem-
peratures. We call the two Fermi energies �0

f and �0
� and the

corresponding wave numbers k0
f and k0

�. At zero temperature,
all bosons are at �b=0 and fermionic atoms or molecules
must be added at their respective Fermi levels.

The atomic Fermi surface �FS� vanishes when all the fer-
mionic atoms are contained in molecules, so that

k0
� = �6�2Nf�1/3. �3.1�

�The number of states within a unit sphere in momentum
space is 1 /6�2.� For this arrangement to be favorable ener-
getically, the molecular Fermi energy �0

� must remain below
the lowest atomic energy level. The boundary of the phase
without an atomic FS is therefore where

1

2m�
�Nf�2/3 +

�

�6�2�2/3 = 0. �3.2�

Similarly, the molecular FS vanishes at the point when
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1

2mf �Nf�2/3 −
�

�6�2�2/3 = 0. �3.3�

The atomic �molecular� FS is therefore only absent for nega-
tive �positive� detuning �.

To find the boundary of the phase with a BEC, we must
consider the depletion of the condensate. Bosons will take
fermions and form molecules as long as their final energy is
lower—i.e., �0

���0
f +0. The phase boundary is therefore

where �0
f =�0

�, which gives

1

2mf �Nf − Nb�2/3 −
1

2m�
�Nb�2/3 =

�

�6�2�2/3 , �3.4�

where the wave numbers have been determined from Nb and
Nf, using the fact that there is no condensate.

It should be noted that, in this limit, the coupling to fer-
mionic atoms reduces the tendency of the bosons to con-
dense. �The same is true at nonzero temperature.�

IV. MEAN-FIELD THEORY

It is possible to go beyond the classical analysis used for
vanishing coupling by using mean-field theory. We will
present here two parallel developments, in this section and
Sec. VI, respectively. The first is based on single-particle
quantum mechanics, using the mixing between the fermionic
dispersion relations caused by the presence of a BEC. The
second uses a field-theoretic approach and considers pertur-
bative corrections to the bosonic propagator. The former has
the advantage of giving a somewhat clearer physical picture
and leading more directly to thermodynamic results �such as
the question of phase separation, considered in the Appen-
dix�, while the latter leads naturally to higher-order correc-
tions.

In the remainder of this section, we present the quantum-
mechanical approach, starting from the Hamiltonian �2.4�.
First, in Sec. IV A, we make a mean-field approximation and
diagonalize the new Hamiltonian. We then find the condition
that a BEC should be energetically favorable, within this
approximation.

Since the Hamiltonian is defined in the grand canonical
ensemble, we must then relate the chemical potentials to the
particle numbers, in Sec. IV B. Within the mean-field ap-
proximation, it is sufficient to find this relation to order zero
in the coupling, neglecting two-loop corrections to the free
energy.16 Later, in Sec. VII, we determine the higher-order
corrections.

In Sec. IV C, we restrict our attention to the case of zero
temperature, where transitions occur between states with dif-
ferent numbers of Fermi surfaces. We identify the positions
of these transitions and present the full phase diagram for
T=0.

A. Mean-field Hamiltonian

Replacing the boson field bk in Eq. �2.4� by a real constant
� gives

Hmf =� d3k

�2��3 �
k
f fk

†fk + 
k
��k

†�k − g���k
†fk + fk

†�k��

− 	b�2 + ��4, �4.1�

which can be diagonalized to

Hmf =� d3k

�2��3 �
k
FFk

†Fk + 
k
��k

†�k� − 	b�2 + ��4.

�4.2�

The dispersion relation for the mixed fermions F, � is


k
F,� =

1

2
�
k

f + 
k
�� ±

1

2
��
k

f − 
k
��2 + 4g2�2, �4.3�

with the choice that 
k
F�
k

� for all k.
Since the mixing will cause the dispersion relations to

separate, the total energy of the fermions is lowered by non-
zero �. This quantum-mechanical effect, in contrast to the
purely classical effect described in Sec. III, therefore acts to
favor condensation.

We must analyze the energetics to determine the point at
which a condensate becomes favorable. The grand free en-
ergy � is minimized at temperature 1/� by a Fermi-Dirac
distribution of each fermionic species x �x� F ,���. Ignor-
ing the thermal distribution of bosons, which does not de-
pend on �, the total free energy is

���� = − 	b�2 + ��4 + �
x�F,��

Rx��� , �4.4�

where

Rx��� = −
1

�
� d3k

�2��3 ln�1 + e−�
k
x
� . �4.5�

The phase transition to a state with nonzero � occurs
when the quadratic coefficient changes sign—i.e., when

��
1

2
�d2�

d�2 �
�=0

= 0. �4.6�

Specifically, for negative �, nonzero � is energetically fa-
vored, so that the condensed phase is stable. Using Eqs.
�4.3�–�4.5�, we find

� = − 	b + g2� d3k

�2��3

nF�
k
f� − nF�
k

��

k

f − 
k
� , �4.7�

where nF is the Fermi-Dirac distribution function. The inte-
gral equation �=0 may be solved numerically.

B. Particle numbers

Since experiments are necessarily performed at fixed par-
ticle number, the expressions for the numbers in terms of the
chemical potentials must be found. Particles of the species b,
f , and � are not independently conserved, so the relevant
quantities are Nf and Nb, the total numbers of fermionic and
bosonic atoms, respectively �including those contained in
molecules�.

As mentioned above, it is sufficient within mean-field
theory to determine these numbers to order zero in the cou-
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pling. Since the species F and � each contain one atomic
fermion, we have

Nf =� d3k

�2��3 �nF�
k
�� + nF�
k

F�� . �4.8�

The number of bosons is �with nB the Bose-Einstein distri-
bution function�

Nb = �2 +� d3k

�2��3 �nB�
k
b� + nF�
k

��cos2 �k + nF�
k
F�sin2 �k� ,

�4.9�

where the first term represents the condensate, the first term
in the integrand is the thermal distribution of the bosons, and
�k is the mixing angle.27

When �=0, such as along the boundary to the phase with-
out a BEC, the expression for the number of bosons simpli-
fies to

Nb =� d3k

�2��3 �nB�
k
b� + nF�
k

��� . �4.10�

To locate this phase boundary for fixed particle numbers, we
must find the values of 	 f and 	b which give the required
numbers and also satisfy �=0. �Of course, a third parameter
must be tuned to its critical value to satisfy these three con-
ditions simultaneously.�

Results from such a procedure are displayed in Fig. 1,
which shows the boundary for Nf /Nb=1.11 as a function of
the detuning � and temperature T=1/�. The masses of the
atoms are equal, mf =mb, and the solid line has dimensionless
coupling �2 /T0=2.5�10−4. For comparison, the case of van-
ishing coupling, treated in Sec. III, is also shown with a
dashed line. Both curves reach the value T=T0, as in the case
of free bosons, for �→�, when molecules cannot be formed.

In Fig. 2 the same phase boundary is shown on a graph of
fermion number versus detuning, for three different tempera-
ture values. The solid line is at zero temperature, T=0, while

the two dashed lines have nonzero temperatures. The cou-
pling is �2 /T0=2.5�10−4 and the masses are equal, mf =mb.
As expected, Bose condensation is favored by lower tem-
peratures, as in the case of an isolated Bose gas.

It remains to be shown that the system is stable against
separation into regions with different densities. It is shown in
the Appendix that it is indeed stable for a large range of
parameter values.

C. Zero-temperature phases

At T=0, the Fermi-Dirac distribution function is replaced
by a unit step and all bosons occupy the lowest-energy state.
As noted by Yabu et al.,14 the phase diagram can be further
divided into a region with two Fermi surfaces and a region
with a single Fermi surface. �We ignore the trivial case with-
out any Fermi surfaces, which requires Nf =0.�

Except when the atomic numbers precisely match, Nf
=Nb, the case of a single surface can only occur when there
is a BEC. In this case, �, the expectation value of b, is given
by the minimum of the free energy � given in Eq. �4.4�, so
that we must solve

− 2	b� + 4��3 + �
x�F,��

dRx

d�
= 0 �4.11�

�excluding the root �=0�.
Following the choice that 
k

F�
k
� in Eq. �4.3�, the second

Fermi surface disappears when 
k=0
F =0, making the Fermi

wave number for F fermions vanish. For this to be the case,
we require 	 f�0, 	���, and

g� = �	 f�	� − �� , �4.12�

which should be solved simultaneously with Eq. �4.11�.
These expressions, along with the results in Sec. IV B for

the particle numbers, allow the complete zero-temperature
phase diagram to be plotted. In Fig. 3, the phase boundaries
are shown on a graph of fermion number against detuning,
for equal atomic masses mf =mb. The three sets of boundaries
have couplings �a� �2 /T0=10−6, �b� �2 /T0=2.5�10−4, and

FIG. 1. Phase boundary with detuning � and temperature T, for
fixed particle numbers Nf /Nb=1.11. The dashed line has vanishing
coupling and has been found with a purely classical analysis. The
solid line has dimensionless coupling �2 /T0=2.5�10−4 and has
been determined using the mean-field theory of Sec. IV. For both,
the condensed phase is on the left-hand side �for lower T� and
labeled by �b��0.

FIG. 2. Phase boundary with fermion number Nf and detuning
�, for three different temperatures. The coupling is �2 /T0=2.5
�10−4 and the masses are equal, mf =mb. The two phases are la-
beled as in Fig. 1, with the condensed phase favored for higher
detuning, lower fermion number, and lower temperature.
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�c� �2 /T0=2.0�10−2. �Since the dimensionless coupling de-
pends on the fourth power of the coupling g appearing in the
Hamiltonian, these large changes in �2 /T0 in fact correspond
to changes in g of only factors of 4 and 3, respectively. All of
these coupling values are within the narrow resonance re-
gime.� Throughout, we take �2�mb�3T0=2�10−3.

The boundaries divide the diagram into three regions, de-
pending on the presence of a condensate and the number of
Fermi surfaces. In the region labeled “2 FS, no BEC,” the
discriminant � is positive, so there is no BEC and two Fermi
surfaces. In the region labeled “2 FS+BEC,” � is negative
and there is a condensate, as well as two Fermi surfaces. The
lowermost region of the diagram, labeled “1 FS+BEC,” has
a condensate and only a single Fermi surface.

In the limit of vanishing coupling �as in Ref. 14 and Sec.
III�, the boundary between the regions with one and two
Fermi surfaces extends down to the line Nf =0. The region
with a single Fermi surface is then divided into two, with the
left-hand side having a Fermi surface of molecules and the
right-hand side a Fermi surface of atoms. Including the
quantum-mechanical effects, these two regions are no longer
distinct, with the single Fermi surface crossing over from
having a molecular character on one side �lower �� to having
an atomic character on the other �higher ��.

This crossover is illustrated in Fig. 4, where the effective
mass m� at the Fermi surface is plotted. The fermion number
is set at Nf =0.1Nb and the coupling is �2 /T0=2.5�10−4, so
that the system is within the phase with a single Fermi sur-
face �of � fermions�. The effective mass is defined as

m� = 	�d2
k
�

dk2 �
k0
�

−1

. �4.13�

For ��0, the Fermi surface has an essentially molecular
character and m��m�, while for ��0, it is atom like, with
m��mf.

In Fig. 5, the Fermi wave numbers of the two fermionic
species are plotted, for coupling �2 /T0=2.5�10−4 and two
different fermion numbers Nf /Nb=3/2 �solid lines� and
Nf /Nb=1/2 �dashed lines�. In both the phase without a con-
densate �solid lines for � /T0�0.25� and the phase with a
single Fermi surface �solid lines for � /T0�2.9, dashed lines
for � /T0�−0.65 and � /T0�1.3� the wave numbers are con-
stant, due to the fixed particle numbers. Only in the phase
with two Fermi surfaces and a BEC do the Fermi wave vec-
tors change with detuning. �At the fermion number used in
Fig. 4, the system stays in the phase with a single Fermi
surface throughout and k0

�=kf, k0
F=0 for all detunings.�

We now turn our attention to the line dividing the phases
2 FS, no BEC, and 1 FS+BEC in Fig. 3. This boundary is
horizontal and starts at the point where the three phases

FIG. 3. The phase diagram at T=0 with dimensionless couplings
�a� �2 /T0=10−6, �b� �2 /T0=2.5�10−4, and �c� �2 /T0=2.0�10−2.
The atomic masses have been taken to be equal, mf =mb, and the
coupling between bosons is given by �2�mb�3T0=2�10−3. The
three distinct phases have, respectively, no Bose-Einstein conden-
sate and two Fermi surfaces �labeled “2 FS, no BEC”�, a condensate
and two Fermi surfaces �“2 FS+BEC”�, and a condensate and a
single Fermi surface �“1 FS+BEC”�. The dotted line indicates the
fermion number at which Fig. 4 is plotted.

FIG. 4. The effective mass m� at the Fermi surface, with fer-
mion number Nf =0.1Nb, coupling �2 /T0=2.5�10−4, and equal
atomic masses mf =mb. As can be seen from the dotted line in Fig.
3, these parameters give a phase with a single Fermi surface. This
surface changes from having a molecular character, with m��m�,
to having an atomic character, m��mf.

FIG. 5. The Fermi wave numbers for the two mixed species of
fermions, � and F, with coupling �2 /T0=2.5�10−4 and equal
atomic masses mf =mb. The solid lines have fermion number
Nf /Nb=3/2, while the dashed lines have Nf /Nb=1/2. As can be
seen in Fig. 3, the solid line goes between all three phases �at
� /T0�0.25 and � /T0�2.9�, while the dashed line goes from the
phase with a single Fermi surface to that having two and back again
�at � /T0�−0.65 and � /T0�1.3�. The wave numbers are measured
in units of kf, the Fermi wave number for free fermions with num-
ber Nf.
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meet; in Sec. V A, we will prove that this is at exactly Nb
=Nf. At this transition, two changes occur: both the second
Fermi surface vanishes and the BEC appears, as the line is
crossed from above. Physically, this results from the fact that
molecules are highly energetically favored in this region, so
that as many molecules as possible are formed, and the re-
sidual atoms form their ground state. For Nf�Nb, these at-
oms are fermionic and form a Fermi surface, while for Nf
�Nb, they are bosonic and form a condensate. Precisely at
Nf =Nb, there are no residual atoms, so that there is no con-
densate and only a molecular Fermi surface.

This situation is illustrated by Fig. 6, which shows the
same phase diagram as Fig. 3, but with the chemical poten-
tial for the fermionic atoms, 	 f, on the vertical axis.
Throughout the plot 	�-�—and hence the Fermi wave num-
ber for the molecules, k0

�—is held fixed. In the region where
	 f�0, the essential features are unchanged, with the same
three phases as shown in Fig. 3. The boundary between the
phases 2 FS, no BEC, and 1 FS+BEC, however, is seen to
extend into an entire phase, labeled “1 FS, no BEC.” In this
region, there is no condensate and 	 f is negative, so that
there is only one Fermi surface, of molecules. This entire
phase therefore has Nf =Nb and collapses onto a single line in
Fig. 3. Moreover, because k0

� is constant, Nf and Nb are both
fixed in this phase. The situation in the shaded region of Fig.
6 resembles that in the Mott insulator lobes in the phase
diagram of the boson Hubbard model �see Ref. 12 and Chap.
10 of Ref. 13�; at fixed 	�, the density of particles is insen-
sitive to the variation in the chemical potential 	 f.

V. LUTTINGER’S THEOREM

All the ground states in our phase diagram in Fig. 3 con-
tain Fermi surfaces. In Fig. 5 we presented the evolution of

the Fermi wave vectors of these Fermi surfaces in our mean-
field calculation. In the present section we will discuss gen-
eral constraints that must be satisfied by these Fermi wave
vectors which are valid to all orders in the interactions.
�Throughout this section, we shall be concerned only with
T=0.�

We will base our arguments upon the existence of the
Luttinger-Ward functional17 �LW, satisfying

� = ���LW�G��
�G�

�
G�=G

, �5.1�

where G� is a dummy variable, G is the actual full �thermal�
Green function, and � is the full self-energy. �Throughout
this section, we will mostly be concerned with the full Green
functions, which we shall denote with the symbol G. When
we make reference to the free Green function, this will be
denoted G0.�

Following Ref. 18, it possible to construct the Luttinger-
Ward functional nonperturbatively, starting from the partition
function Z of the system. It can be shown straightforwardly
that, treating the Green function as a matrix in its momentum
�and frequency� indices, any unitary transformation of the
free Green function, G0→UG0U−1, that leaves Z invariant
also leaves �LW invariant.

A standard proof of Luttinger’s theorem19 for a system of
interacting fermions makes use of the invariance of Z under
a shift in the frequency appearing in the free propagator, �
→�+�. In our case �LW is a functional of the three Green
functions, one for each species, and Z is invariant under a
simultaneous shift in two of the three frequencies—i.e.,

�LW�G��i�1�,Gf�i�2�,Gb�i���

=�LW�G��i�1�,Gf�i�2 − i��,Gb�i� + i���

=�LW�G��i�1 + i��,Gf�i�2�,Gb�i� + i��� �5.2�

for any � and �.
To proceed further, it is useful to set 	b=	�−	 f and con-

sider derivatives of the grand energy with respect to 	 f and
	�. The derivative with respect to 	 f yields

�f†f� − �b†b� = Nf − Nb. �5.3�

Each term on the left-hand side can be rewritten in terms of
the full Green functions, giving

Nf − Nb = −� d3k d�

�2��4 ei�0+
�Gk

f�i�� + Gk
b�i��� . �5.4�

�The change of sign of the f term results from the anticom-
mutation of fermion operators.�

From now on the manipulations are standard.19 We make
use of the identity

G�i�� = iG�i��
�

��
��i�� −

�

��
ln G�i�� , �5.5�

which results from the Dyson equation. The first equation of
�5.2� gives, together with Eq. �5.1�,

FIG. 6. The phase diagram with the fermion chemical potential
	 f plotted on the vertical axis and the detuning � on the horizontal
axis. Both have been scaled to 	�-�, which is held fixed throughout
the plot. The boundary between 2 FS, no BEC, and 1 FS+BEC in
Fig. 3 expands into a new phase, labeled “1 FS, no BEC,” within
which there are only molecules, whose density is constant �both Nf

and Nb remain fixed in the shaded region�. The atomic masses are
equal, mf =mb, and the couplings are �2 /T0=2.5�10−4 and
�2�mb�3T0=2�10−3. �Since the boson density is not fixed in this
plot, the value of T0 appropriate to the phase 1 FS, no BEC has been
used to define the dimensionless couplings.�
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� d3k d�

�2��4 ��
k

b

�i��
�

��
Gk

b�i�� + �
k

f

�i��
�

��
Gk

f�i��� = 0.

�5.6�

Combining these two with Eq. �5.4� and integrating by parts
gives

Nf − Nb = i� d3k d�

�2��4 ei�0+ �

��
�ln Gk

f�i�� + ln Gk
b�i���

�5.7�

�with the boundary terms vanishing because G�i���1/ ���
for ���→��.

The integral over � can be treated as a contour integration
and closed above, due to the factor ei�0+

. Changing the inte-
gration variable to z= i� replaces this by an integral sur-
rounding the left half-plane. Since both full Green functions
Gk

b,f�z� have all their nonanalyticities and zeros on the line of
real z, we can write this as

Nf − Nb = i� d3k

�2��3�
−�

0 dz

2�

�

�z
�ln Gk

f�z + i0+�

+ ln Gk
b�z + i0+� − ln Gk

f�z + i0−� − ln Gk
b�z + i0−�� .

�5.8�

The integral of z can be performed trivially to give

Nf − Nb = i� d3k

�2��4�ln
Gk

f�i0+�
Gk

f�i0−�
+ ln

Gk
b�i0+�

Gk
b�i0−�� . �5.9�

Using the analyticity properties of the Green functions,
this gives

Nf − Nb =� d3k

�2��3���− 
k
f + �k�

f� +��− 
k
b + �k�

b�� ,

�5.10�

where � is the unit step function and �� is the real part of
the self-energy evaluated for �=0.

First, we consider the phase with no BEC. Here there are
necessarily two Fermi surfaces, and, as we will now show,
the volumes of the two Fermi surfaces are separately con-
strained, independently of the interactions.

By definition, the absence of a BEC requires that there be
no bosonic quasiparticle excitations at or above the chemical
potential, so that the second term in the brackets in Eq.
�5.10� vanishes. �Note that this does not imply that �b†b�
=0, which is not the case beyond mean-field order.� This
leaves the statement of Luttinger’s theorem for this case:

Nf − Nb =� d3k

�2��3��− 
k
f + �k�

f� . �5.11�

The right-hand side of this expression is interpreted as the
�reciprocal-space� volume of the atomic Fermi surface.

A similar result follows by taking the derivative of the
grand energy with respect to 	�, which gives

��†�� + �b†b� = Nb. �5.12�

Going through the same manipulations as above leads to

Nb =� d3k

�2��3���− 
k
� + �k�

�� −��− 
k
b + �k�

b�� ,

�5.13�

corresponding to Eq. �5.10�. Since we are in the phase with
no BEC, this gives

Nb =� d3k

�2��3��− 
k
� + �k�

�� . �5.14�

We have therefore proved that there are two statements of
Luttinger’s theorem in the phase with two Fermi surfaces
and no BEC. One, Eq. �5.11�, states that the volume of the
atomic Fermi surface is fixed by the difference in the num-
bers of atomic fermions and bosons, while the other, Eq.
�5.14�, states that the volume of the molecular Fermi surface
is fixed by the total number of bosonic atoms.

Now let us extend our considerations to the phases with a
BEC. In Fig. 3 we observe that these phases may have either
one or two Fermi surfaces. Here we show that Luttinger’s
theorem only demands that the total volume enclosed within
both Fermi surfaces is determined by Nf; the volumes of the
two Fermi surfaces �if present� are not constrained sepa-
rately.

In the presence of a BEC, it is no longer the case that the
second term in the brackets vanishes in Eqs. �5.10� and
�5.13�. Instead, if we add these two equations, we arrive at

Nf =� d3k

�2��3��− 
k
f + �k�

f� +� d3k

�2��3��− 
k
� + �k�

�� .

�5.15�

The two terms in this expression give the volumes of the two
Fermi surfaces. We see that their sum is constrained to equal
the number of fermionic atoms.

A. Multicritical point

A simple application of our statements of Luttinger’s
theorem can be used to show that the multicritical point,
where the three phases meet in Fig. 3 �and where four phases
meet in Fig. 6�, occurs at precisely Nb=Nf.

First, according to Eq. �5.11�, the volume of the atomic
Fermi surface is given by Nf −Nb, as long as there is no BEC.
This is therefore the case on the line dividing the phases with
and without condensates, since the condensate vanishes as
this line is approached from below. Second, the line that
divides the regions with one and two Fermi surfaces is the
point where the atomic Fermi surface vanishes. Where the
two lines meet, we see both that Eq. �5.11� is satisfied and
that its right-hand side vanishes. We therefore have Nb=Nf.

VI. QUANTUM PHASE TRANSITIONS

We now present an alternative analysis using the language
of field theory. In Sec. VI A, we reproduce the result that Eq.
�4.7� determines the presence of the condensate. Then, in
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Sec. VI B, we determine the boson propagator near the BEC
depletion transition. In Sec. VI C, we describe the critical
field theories for the various transitions.

The dimensionless Euclidean action corresponding to the
Hamiltonian �2.4� is

S =
1

�
�

q

f̄q q
f fq +

1

�
�

p

b̄p p
bbp +

1

�
�

q

�̄q q
��q

−
g

�2�
p,q

��̄qfq−pbp + b̄p f̄q−p�p� . �6.1�

The symbol p stands for k and �n and likewise q for � and
�m, where the Matsubara frequencies �n ��m� are even �odd�.
The summations over p �q� represent sums over �n ��m� and
integrals over the momentum k ���. We have also defined

 p = �Gp�−1 = − i�n + 
k, �6.2�

the inverse of the free Green function Gp, and similarly  q.
�In this section and the following, we will use the symbol G
to denote the free Green function, contrary to the notation of
Sec. V.�

We have omitted from the action the coupling term be-
tween pairs of bosons, since we will be interested in the
region near the phase transition, where this term is not im-
portant.

Integrating out both of the fermions and expanding the

resulting coupling term to quadratic order in b and b̄, we find
that the effective action for the bosons is

Seff
�2��b, b̄� =

1

�
�

p

b̄p p
bbp +

g2

�2�
p,q

Gq
f Gq+p
� b̄pbp. �6.3�

A. Mean-field approximation

By replacing b by a real constant �, we should arrive at
the results of Sec. IV. In this approximation, we have

Seff
�2��b, b̄� = − 	b�2 +

g2

�
�2�

q

Gq
f Gq
�, �6.4�

so that the coefficient is

� = − 	b + g2� d3�

�2��3

1

�
�
�m

G�
f �i�m�G�

��i�m� . �6.5�

The phase transition will occur when the coefficient � van-
ishes.

We can represent Eq. �6.5� by

�6.6�

which appears as a self-energy diagram in the boson propa-
gator, drawn as a dashed line. �The two solid lines represent
fermion propagators.�

The Matsubara sum can be performed by replacing it by a
contour integration, giving

� = − 	b + g2� d3�

�2��3

nF�
�
f � − nF�
�

��

�

f − 
�
� , �6.7�

in agreement with Eq. �4.7�.

B. Boson propagator

By retaining the frequency dependence of the boson field,

but again keeping only terms quadratic in b and b̄, we can
determine the form of the long-wavelength, low-frequency
excitations.

The effective boson propagator is, from Eq. �6.3�, the re-
ciprocal of

 ̃k
b�i�n� �  ̃p

b �  p
b +

g2

�
�

q

Gq
f Gq+p
�

= − i�n + 
k
b

+ g2� d3�

�2��3

1

�
�
�m

1

− i�m + 
�
f

1

− i��m + �n� + 
�+k
� ,

�6.8�

which replaces Eq. �6.5�. For k=0, this gives

 ̃0
b�i�n� = − i�n − 	b + g2� d3�

�2��3

nF�
�
f � − nF�
�

��

�

f − 
�
� + i�n

,

�6.9�

where the result

nF�a − i�n� = nF�a� , �6.10�

for �n a boson Matsubara frequency, has been used. For
small �n, we can expand to give

 ̃0
b�i�n� � � − i�n�1 − g2� d3�

�2��3

nF�
�
f � − nF�
�

��
�
�

f − 
�
��2 �

− �n
2g2� d3�

�2��3

nF�
�
f � − nF�
�

��
�
�

f − 
�
��3 . �6.11�

�Note that, as required, the coefficient of �n
2 is in fact posi-

tive.�
The effective boson propagator �for k=0� is then

G̃0
b�i�n� =

Z

− i�n + 
̃0
b��n�

, �6.12�

with

Z = �1 − g2� d3�

�2��3

nF�
�
f � − nF�
�

��
�
�

f − 
�
��2 �−1

�6.13�

and


̃0
b��n� = Z�� − �n

2g2� d3�

�2��3

nF�
�
f � − nF�
�

��
�
�

f − 
�
��3 � .

�6.14�

The integrals in the expressions for both Z and 
̃0
b��n�

diverge at zero temperature if Nf =2Nb so that the two Fermi
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wave numbers coincide. For any other parameters the inte-
grals are finite, and the effective propagator has the form
�6.12�. As we discuss in the following subsection, this dis-
tinction leads to different field theories for the BEC depletion
quantum transition for these cases.

C. Critical field theories

First, we consider the BEC depletion quantum transition.
This is the transition between the 2 FS+BEC phase and the 2
FS, no BEC phase in Fig. 3. The same theory also applies to
the transition between the 1 FS+BEC phase and the 1 FS, no
BEC phase in Fig. 6. The low-momentum modes of the b
boson field clearly constitute an order parameter for this tran-
sition. The effective action for the renormalized b field near
the critical point can be derived by integrating out the fermi-
onic degrees of freedom, as already outlined in Sec. VI B.

For Nf �2Nb, the integration of the fermionic excitations
is entirely free of infrared singularities: the differences in the
two Fermi wave vectors implies that there are no low-
momentum fermionic particle-hole excitations at low ener-
gies. The resulting action for b contains only terms which are
analytic in frequency and momentum, and has the following
familiar form:

Sc�b� =� d3r� d!�b†�b

�!
−

1

2m̃bb†�2b + s�b�2 +
u

2
�b�4� .

�6.15�

Note that the b field has been rescaled by a factor �Z from
the b field in Sec. VI B and that its mass has been replaced
by the renormalized mass m̃b. The action Sc�b� describes a
quantum phase transition with dynamic exponent z=2 driven
by tuning the coupling s. This transition has been discussed
previously in Ref. 12 and in Chap. 11 of Ref. 13. The upper
critical dimension is d=2, above which the quartic coupling
u is formally irrelevant. Nevertheless, the coupling u is im-
portant for the T�0 crossovers in the vicinity of the quan-
tum critical point: these are as presented in Ref. 13.

For Nf =2Nb, there are low-energy fermionic particle-hole
excitations at zero momentum, and so the above procedure
has to be reconsidered. Now there are nonanalytic terms in
the effective action for b, but these have a structure similar to
that found by Hertz20 for the onset of ferromagnetism in a
Fermi liquid. Evaluating Eq. �6.8� for this case following
Hertz, we now find the effective action

Sc�b� =� d3k� d��b�k,���2�k2 + c
���
k
�

+� d3r� d!�s�b�2 +
u

2
�b�4� . �6.16�

The bare −i� term in the boson propagator is not included
above because it is less relevant than the nonanalytic term
generated from the Fermi surface excitations. The critical
properties of the z=3 critical theory in Eq. �6.16� have been
described earlier by Hertz and the T�0 crossovers by
Millis21 �see also Chap. 12 of Ref. 13�.

Next, we consider the critical theory of the 2 FS+BEC to
1 FS+BEC transition in Fig. 3. The same theory also applies

to the 2 FS, no BEC to 1 FS, no BEC transition in Fig. 6.
Here, a Fermi surface disappears as its Fermi wave vector
vanishes. The critical theory is then the z=2 dilute Fermi gas
theory already discussed in Chap. 11 of Ref. 13. All interac-
tions are irrelevant for the critical properties, and the
quantum-critical crossovers are merely those of a free Fermi
gas.

Finally, consider the multicritical point, noted in Sec.
V A, where all phases in Figs. 3 and 6 meet. Here, both the
b bosons and f fermions are critical. The critical theory is
merely the direct sum of the z=2 dilute Bose and Fermi
theories mentioned above. All interactions between the criti-
cal f and b modes are formally irrelevant in three spatial
dimensions.

VII. GAUSSIAN CORRECTIONS

In order to test the validity of the approximations made,
we shall calculate two different corrections to the mean-field
results of the preceding sections. First, in this section, we
find the corrections to the grand free energy � to order g2.
These will result in corrections to the expressions found in
Sec. IV B relating the chemical potentials to the particle
numbers. Subsequently, in Sec. VIII, we will find a new ex-
pression for � by replacing the mean-field theory with a
low-density approximation.

In the remainder of this section, we will use  ̃b from Eq.
�6.8� to determine the corrections to the grand free energy �.
We will show that these are negligible, provided that the
dimensionless coupling �2 /T0 is sufficiently small. We there-
fore require a narrow Feshbach resonance for the results to
be quantitatively accurate.

By integrating the effective action over the boson field,
we arrive at an expression for the partition function including
Gaussian corrections,

Z�2� =
�det f��det ��

�det ̃b�
. �7.1�

The grand free energy is then given by

� =�0
f +�0

� +
1

�
�

p

ln	 p
b +

g2

�
�

q

Gq
f Gq+p
� 
 , �7.2�

using Eq. �6.8�, where

�0
x = ±

1

�
�

q

ln q
x �7.3�

is the grand free energy for the species x in the absence of
coupling. �The plus �minus� sign applies to bosons �fermi-
ons�.�

Taking a factor of  p
b out of the logarithm gives �0

b, so
that the correction to � is

� −�0 =
1

�
�

p

ln	1 +
g2

�
�

q

Gq
f Gq+p
� Gp

b
 . �7.4�

This is the full expression for the Gaussian corrections; to
estimate the size of these corrections, we will calculate the
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result to order g2. Dropping terms of higher order gives a
correction to the free energy � of

�� =
g2

�2�
p,q

Gq
f Gq+p
� Gp

b , �7.5�

which can be represented diagrammatically as

�7.6�

Reinstating explicit momentum integrals and frequency
sums, we have

�� =
g2

�2 �
�n,�m

� d3k

�2��3

d3�

�2��3Gb��n,k�Gf��m,��

�G���m + �n,� + k� . �7.7�

Both Matsubara sums can be performed using contour inte-
gration, to give

�� = g2� d3k

�2��3 � d3�

�2��3

�
�nF�
�−k

f � − nF�
�
����nB�
k

b� − nB�
�
� − 
�−k

f ��

k

b + 
�−k
f − 
�

� ,

�7.8�

after a change of variables, �→�−k.

A. Renormalization of the detuning

As it stands, the integral over k is in fact divergent. As �k�
tends to infinity �with ��� finite�, the second Bose factor
nB�
�

�−
�−k
f � tends to −1. In the first set of brackets, nF�
�

��
remains finite, so the integrand tends to �1/k2 and the inte-
gral over k is linearly divergent.

This divergence can be understood by considering the
self-energy diagram

�7.9�

which gives a correction to the detuning � linear in the cutoff
momentum,

� = �0 − g2� d3k

�2��3

2mfmb

m�
1

k2 , �7.10�

where �0 is the “bare” detuning that appears explicitly in the
action.

We use this expression to write �0, which appears within
 � in Eq. �7.1�, in terms of �, and then keep terms only of
order g2. The renormalized expression for �� is then given
by

�� = g2� d3k

�2��3 � d3�

�2��3

�� �nF�
�−k
f � − nF�
�

����nB�
k
b� − nB�
�

� − 
�−k
f ��


k
b + 
�−k

f − 
�
�

+
2mfmb

m�
nF�
�

��
k2 � , �7.11�

where the dispersion relation 
� now involves the renormal-
ized �physical� detuning �. �We have retained the same sym-
bols for the new, renormalized quantities.�

This expression can be simplified somewhat by perform-
ing a further change of variable, taking k→k+ �mb /m���,
and also making use of the result

nF�x�nB�y − x� + nF�y�nB�x − y� = − nF�x�nF�y� .

�7.12�

We have finally

�� = g2� d3k

�2��3 � d3�

�2��3

1
m�

2mfmb k
2 − �

�nF�
 f�nB�
b�

− nF�
��nB�
b� + nF�
 f�nF�
�� − nF�
��
2mfmb

m�
�

k2� ,

�7.13�

in which the energies 
�, 
 f, and 
b should be evaluated at the
following momenta:


� � 
���� , �7.14�


 f � 
 f	k −
mf

m�
�
 , �7.15�


b � 
b	k +
mb

m�
�
 . �7.16�

Note that there is no singularity in the integral over k in Eq.
�7.13�, since the numerator also vanishes at the point where

�k� =��
2mfmb

m�
�7.17�

�for ��0�.
The expression for �� must be differentiated with respect

to the chemical potentials to give the correction to the num-
ber of each species of particle. The resulting integral can
then be performed numerically.

The results of such a calculation are shown in Fig. 7,
where we plot the corrections to the particle numbers. These
have been divided by the total numbers evaluated using the
results of Sec. IV B. The atomic masses have been taken to
be equal, as in Fig. 1, and, at each temperature value, the
detuning takes on its critical value.

We have taken for the dimensionless coupling �2 /T0
=2.5�10−4, as in Fig. 1, so that this corresponds to a narrow
Feshbach resonance. Since the correction everywhere is less
than 5% of the total numbers, we expect that the mean-field
results provide a good approximation for this case. The mag-

DEPLETION OF THE BOSE-EINSTEIN CONDENSATE… PHYSICAL REVIEW B 72, 024534 �2005�

024534-11



nitude of the correction scales with g2"�, so that the quan-
titative predictions become less reliable for a broader reso-
nance.

VIII. LOW-DENSITY APPROXIMATION

In this section, we develop a low-density approximation
involving all orders in the coupling g.

A. Diagrammatic description

In the mean-field approximation, we have included in the
boson self-energy such diagrams as

�8.1�

whose amplitude is proportional to the density of atoms in
the system. �A fermionic atom must be present in the system
initially, in order to couple with the boson.� Diagrams in-
volving further loops with bosonic or fermionic atoms, such
as

�8.2�

are proportional to higher powers of the density.
There is, however, a correction to the molecular propaga-

tor of order zero in density coming from the process shown
in Eq. �7.9�, which can take place in the vacuum. To make a
consistent low-density approximation, we must therefore

correct the molecular propagator using a Dyson equation

�8.3�

where only the term in the bubble diagram �7.9� of order
zero in density is to be included.

The boson self-energy diagram

�8.4�

should now be used to give a low-density approximation for
the phase transition.

B. Calculations

The Dyson equation �8.3� gives the relation between the
reciprocals of the bare and full Green functions:

 ̃q
� = q

� −
g2

�
�

p

Gq−p
f Gp

b; �8.5�

compare Eq. �6.8�. �The sign difference results from the fer-
mion loop in Eq. �6.6�.�

Including only corrections to order zero in density, by
dropping the Bose-Einstein and Fermi-Dirac factors, gives

 ̃q
� = q

� − g2� d3k

�2��3	 1


k
b + 
�−k

f − i�m

−
2mfmb

m�k2 
 ,

�8.6�

where q��� ,�m�. �The second term in the parentheses
comes from renormalizing the detuning �, as in Sec. VII A
above.� The integral can be performed analytically, to give

 ̃q
� = q

� + 2��
�
� − � − i�m, �8.7�

where �, defined in Eq. �2.6�, has been used.
This function can be continued to one that is analytic

everywhere except along the real axis, by replacing i�m by z.
In terms of z, the full Green function is

G̃�
��z� =

− 1

z − 
�
� − 2��
�

� − � − z
. �8.8�

Along the real axis, the square root has a branch cut for z
�
�

�−� which corresponds to the continuum of free-atom

excitations. For ��0, G̃� has a single pole at the real value

z0 = 
�
� − 2�2	1 −�1 −

�

�2
 , �8.9�

corresponding to the renormalized molecule. For ��0, there
are no poles, since the molecule has a finite lifetime, decay-
ing into two atoms.

FIG. 7. Two-loop corrections to particle numbers, shown as a
fraction of the total particle numbers to lowest order. The masses of
the particles and their total numbers are the same as in Fig. 1,
Nf /Nb=1.11. The dimensionless coupling is �2 /T0=2.5�10−4. At
each temperature, the corrections have been evaluated taking the
detuning at its critical value, from Fig. 1.
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C. Spectral representation

These analytical properties are best summarized using the

spectral representation for G̃�,

G̃�
��z� = �

−�

�

dx
#�
��x�

x − z
. �8.10�

The “spectral density” is given by

#�
��x� =��x − 
�

� + ��
2�

�

�x − 
�
� + �

�x − 
�
��2 + 4�2�x − 
�

� + ��

+��− ��
�1 − �

�2 − 1

�1 − �

�2

���x − 
�
� − 2�2	�1 −

�

�2 − 1
� , �8.11�

where � is the unit step function and � is the Dirac delta
function.

1. Weak-coupling limit

It should be noted that, in the limit of small coupling, �
→0, the first term of Eq. �8.11� involves the Lorentzian rep-
resentation of the Dirac delta function,

lim
$→0

$

��t2 + $2�
= ��t� . �8.12�

For � small enough, the first term of Eq. �8.11� has weight
only near x=
�

�, where x−
�
�+� can be replaced by �. The

limit of vanishing � is therefore given by

lim
�→0

2�

�

�x − 
�
� + �

�x − 
�
��2 + 4�2�x − 
�

� + ��
= ��x − 
�

�� , �8.13�

so that the spectral density becomes, in this limit,

#�
��x� →��x − 
�

� + ����x − 
�
�� +��− ����x − 
�

��

= ��x − 
�
�� , �8.14�

which is precisely the result for the bare molecule, used in
Sec. VI.

D. Effective action for bosons

Using the modified spectral density for the molecule, Eq.
�8.11�, we can compute the quadratic term in the effective
action for the boson field. Following Sec. VI A, the modified
coefficient is

�̃ = − 	b + g2� d3�

�2��3

1

�
�
�m

G�
f �i�m�G̃�

��i�m� . �8.15�

We can now use the spectral representation for both Green
functions and then perform the Matsubara sum. Since the
spectral density for the f atom has the form

#�
f �x� = ��x − 
�

f � , �8.16�

the low-density approximation to the discriminant is given
by

�̃ = − 	b + g2� d3�

�2��3�
−�

�

dx #�
��x�

nF�x� − nF�
�
f �

x − 
�
f ,

�8.17�

with #�
��x� given by Eq. �8.11�, above. This integral can be

performed numerically.

Since �̃ provides a correction to �, we must find some
measure by which to determine the significance of this cor-
rection. A comparison with � is obviously not possible, since
this vanishes everywhere along the mean-field curve in Fig.
1. Instead, we shall find a lowest-order correction to the criti-
cal detuning by evaluating

��� ��̃ − ���	 ��

��


�,Nf,Nb

. �8.18�

�Finding the curve �̃=0 exactly would require a much larger

computational effort, since �̃ takes considerably more time
to evaluate than �. Instead, �� provides the first step of a

solution of �̃=0 by Newton’s iterative method.�
The partial derivative on the right-hand side of Eq. �8.18�

is given by

	 ��

��



Nf,Nb

= 	 ��

��


	f,	b

+ 	 ��

�	 f

	b,�

	 �	 f

��



Nf,Nb

+ 	 ��

�	b

	f,�

	 �	b

��



Nf,Nb

, �8.19�

where all the derivatives are to be taken at constant �. To
lowest order in the coupling, this can be replaced by

	 ��

��



Nf,Nb

= 	 �	b

��



Nf,Nb

+ O�g2� , �8.20�

using Eq. �4.7�. The quantity on the right-hand side is the
increase in the boson chemical potential needed to compen-
sate an increase in the detuning and keep the particle num-
bers unchanged. This can be evaluated using the expressions
given in Sec. IV B.

The results of such a calculation are shown in Fig. 8. The
solid line is the phase boundary shown in Fig. 1, using the
same parameters. The dashed line is the same curve with the
quantity �� from Eq. �8.18� added. �For clarity, we have
multiplied �� by a factor of 3.� The small magnitude of the
correction suggests that the results presented in Secs. IV and
VI are valid, for the parameters chosen. In this case, it is
therefore unnecessary to use a low-density approximation;
the mean-field result is sufficient.

IX. CONCLUSIONS

From a theoretical perspective, the main contribution of
this paper is a description of a quantum phase transition with
an intimate connection to the Luttinger theorem. On one side
of the transition �see Fig. 3�, in the 2 FS, no BEC phase,
there are two Fermi surfaces with a separate Luttinger theo-
rem for each Fermi surface. Remarkably, one Fermi surface
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is constrained by the total number of bosons, Nb, while the
other is controlled by Nf −Nb, where Nf is total number of
fermions. These two Luttinger theorems are consequences of
two number operators that commute with the Hamiltonian:
the operator f†f −b†b in Eq. �5.3� and the operator f†f +�†�
in Eq. �5.12�. On the other side of the quantum-critical point
is the 2 FS+BEC phase. Here a Bose-Einstein condensate is
present, and the condensate effectively thwarts one of the
Luttinger constraints. The single remaining Luttinger theo-
rem demands only that the total volume enclosed by both
Fermi surfaces be constrained by Nf. We presented a theory
for this transition, along with phase diagrams as a function of
system parameters.

It is intriguing to note a connection between the above
quantum phase transition and a seemingly disconnected, re-
cent analysis of a quantum phase transition in a Kondo lat-
tice model of the heavy fermion compounds.22 This was a
model of electrons occupying localized f orbitals �the f%
electrons, where % is a spin index� interacting with the itin-
erant electrons in the conduction band �the c% electrons�. A
boson b was introduced to represent the hybridization be-
tween the orbitals. The connection between the Kondo lattice
model and the model of the present paper now becomes clear
once we identify the c% electrons with the molecular fermi-
onic state � and the f% electrons with the f fermions. The
Kondo lattice model also has two number constraints analo-
gous to Eq. �5.3� and Eq. �5.12�, with one crucial difference:
the first constraint is local rather than global and applies
separately on each lattice site. With this mapping, the heavy
Fermi liquid FL state of Ref. 22 can be identified with the
2 FS+BEC and the 1 FS+BEC phases. Further, the FL*

phase of Ref. 22 is the analog of the present 2 FS, no BEC
phase. The FL* phase also has two Luttinger theorems, one
fixing the volume of the conduction band Fermi surface of
electronic quasiparticles and the other the volume of the
“spinon” Fermi surface. The presence of a local rather than a
global constraint implies that there is an additional gauge

force that affects the spinon Fermi surface and the quantum
critical fluctuations of the Kondo lattice. Such gauge forces
are absent in our present considerations of Bose-Fermi mix-
tures, but apart from this absence, there is a remarkable simi-
larity to the FL-FL* transition in Kondo lattice models.

On the experimental front, an obvious signature of the
quantum phase transition in the Bose-Fermi mixtures is in
the evolution of the Bose-Einstein condensate. It would be
interesting to scan the detuning and look for the disappear-
ance of the condensate fraction at the lowest temperatures.
The corresponding “superfluid-normal” transition should
also survive at T�0, where its signatures are similar to the �
transition in 4He.

A more dramatic, but experimentally less accessible, sig-
nature of the transition lies in the values of the Fermi wave
vectors, as sketched in Fig. 5. Measuring the Fermi wave
vectors would allow detection of a Fermi surface constrained
by the number of bosons and its eventual evolution across
the transition to a Fermi surface constrained by the total
number of fermions.

Finally, it should be noted that we have not addressed here
the alternative of a paired state of fermions. Since we have
dealt with spin-polarized fermions, s-wave pairing between
the atoms is excluded, but p-wave pairing remains a
possibility.23,24 There is also the more novel possibility for
pairing between the fermionic atoms f and the molecules �,
which could be favorable when the two Fermi wave numbers
are approximately equal. This would then lead to condensa-
tion of a composite boson comprised of two fermionic atoms
and one bosonic atom. We intend to investigate this possibil-
ity further in future work.
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APPENDIX: STABILITY AGAINST PHASE SEPARATION

This section uses the mean-field results of Sec. IV. The
temperature will be taken as zero throughout.

Compressibility matrix

To establish the stability of the system against separation
into two coexisting fluids, we evaluate the compressibility
matrix, defined by

K��� = −
�2�

�	� � 	�
, �A1�

for �,�� f ,b�.
We now define the �canonical� free energy F�Nf ,Nb� by a

Legendre transformation,

F�Nf,Nb� =��	 f,	�� + 	 fNf + 	bNb, �A2�

where Nf and Nb are the total number of Fermi and Bose
atoms, respectively. �Note that the full fermion and boson

FIG. 8. The phase boundary, without �solid line� and with
�dashed line� the correction to the detuning of Sec. VIII. The solid
line is the phase boundary as in Fig. 1, using the same parameters
�and dimensionless coupling �2 /T0=2.5�10−4�. The dashed line
includes the correction ��, from Eq. �8.18�, found using a low-
density approximation. For clarity, this correction has been exag-
gerated by a factor of 3. Since the correction is negligible for these
parameters, the mean-field results of Secs. IV and VI are sufficient.
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numbers, which are conserved by the Hamiltonian, are used.�
The compressibility matrix K� is then the inverse of the Hes-
sian of F, so that complete stability against phase separation
requires that K� be positive semidefinite.

It is in fact easier to work with the matrix K��, given by
the same expression �A1�, but with � ,�� f ,��. This
amounts to a simple �but not orthogonal� change of basis; it
is sufficient �and necessary� for K� to be positive semidefi-
nite that K be the same.

We begin with Eqs. �4.4� and �4.5� and use Eq. �4.11� to
determine the implicit dependence of � on the chemical po-
tentials. We must then take second derivatives with respect to
the two chemical potentials to find the compressibility ma-
trix. In the presence of a condensate, this leads to an expres-
sion

K�� = K��
�0� +

r�r�

�̃
, �A3�

where K��
�0� is the matrix of second derivatives, evaluated at

fixed �, and r� is a function whose form will not concern us
here.

The denominator of the second term is

�̃ = � + g4�
k0

F

k0
� dn�k�

Wk
3 −

1

2
g4�zF + z�� , �A4�

where

zx = � m�mfdn/dk

k�
k
f + 
k

���mf
k
f + m�
k

��
�

k=k0
x

�A5�

and

Wk = ��
k
f − 
k

��2 + 4g2�2. �A6�

When �̃ goes through zero, the determinant of K diverges, so
that the Hessian of F becomes singular, signifying that one
of its eigenvalues vanishes. This marks the onset of instabil-

ity; we conclude that stability requires that �̃�0.
When there is no condensate—i.e., in the phase labeled “2

FS, no BEC” in Fig. 3—it is found that the system is always
stable.

Physical interpretation

The obvious physical interpretation of �̃ is that it repre-
sents the resultant interaction between the bosons, coming
partly from the explicit term � in the Hamiltonian �2.4� and
partly from the interaction induced by coupling to the fermi-
ons. This induced interaction can alternatively be found di-
rectly by continuing the expansion �6.3� to fourth order in b

and b̄.
A resultant interaction of the form �A4� is familiar from

the case where the molecular degrees of freedom are not
included explicitly in the Hamiltonian.25,26 This corresponds
to our model for ��0, when only virtual molecules are
formed and the coupling term �†fb in the Hamiltonian �2.4�
can be replaced by a boson-fermion scattering of the form

f†b†bf . The induced interaction then comes from the diagram

�A7�

which gives a term proportional to the density of states at the
Fermi surface �at T=0�.

In this case, the induced interaction is always attractive,
as can be shown by a simple physical argument. For experi-
mentally accessible parameters, however, it is not strong
enough to overcome the intrinsic repulsion between the
bosons, so that the phase is stable.25 In our notation, the
boson-fermion scattering is suppressed by a factor of 1 /�, so
that the induced interaction falls off as 1 /�2. For ��0, a
similar picture is obtained, with the atomic and molecular
fermions exchanging roles.

In the case of intermediate �, the induced interaction is no
longer so heavily suppressed, but it is also no longer the case
that it is always attractive. The physical picture is clarified in
this case by rewriting the action Eq. �6.1� in terms of the
fermions F and � introduced in Sec. IV A. These fermions
are defined so that there is no coupling term in the action
linear in �= �b�; instead, the lowest-order interactions have

the form F̄�2F and F̄�4F, and the same for �. The former
reproduces exactly the diagram �A7� above, with f replaced
by F and �: physically this is a boson-fermion scattering
inducing an attractive interaction between the bosons, as de-
scribed above. This accounts for the final term in Eq. �A4�.
Note that the exclusion principle requires the momenta of the
two fermion lines to be exactly at the Fermi surface, leading
to zx being evaluated at k0

x.

The term F̄�4F produces the diagram

�A8�

which also represents an induced boson-boson interaction
and accounts for the integral in Eq. �A4�. Since Wk�0, it is
always repulsive and represents the fact that the fermion en-
ergy is lowered by a uniform distribution of bosons.

Results

The sign of the resultant interaction �̃ must be calculated
numerically to determine whether the system is indeed
stable. Using the parameters from Fig. 3, stability is found
everywhere within the plot for cases �a� and �b�. In case �c�,
where the coupling g is larger relative to �, there is a region
of the diagram where the phase is not stable; this is shown in
Fig. 9.

For large ��� the attractive coupling from the diagram �A7�
is suppressed by a factor 1 /�2 as described above, so that the
system becomes stable. �The region for large negative � is
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not visible on this plot.� For intermediate values of ���, the
induced coupling becomes larger than the intrinsic coupling,
�, and it is the competition between the two diagrams �A7�
and �A8� that determines the stability.

Stability is therefore favored by a higher Nf /Nb, since this
increases k0

� and hence the phase space for the diagram �A8�.
The other diagram �A7�, increases more slowly with k0

� since
the internal fermion lines are restricted to be at the Fermi
surface. For intermediate ��� and very small Nf /Nb, on the
order of 10−3, the instrinsic interaction once more dominates
the induced and the system is stable. This region is too small
to be seen in Fig. 9.

An analysis similar to that carried out in Ref. 25 could be
performed to determine the stabilities of the alternative,
mixed phases. It should be noted, however, that, as can be
seen in Fig. 9, the boundaries between the three phases are
not disturbed at the parameters we have considered.

Furthermore, the analysis above shows that increasing the
coupling g �or equivalently �2 /T0� beyond the value used in
Fig. 9 would increase the value of ��� required for stability at
small Nf /Nb �i.e., extend the unstable region to larger ����,
but would not decrease the stability at intermediate ���. This
follows from the fact that the latter is determined by the
competition between the two diagrams �A7� and �A8�, whose
relative magnitude does not depend on g. We therefore ex-
pect that, for a broad Feshbach resonance, there remains a
large region of stability for intermediate values of ���, similar
to that in Fig. 9.
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