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We present new results for the properties of phases and phase transitions in spin-triplet ferromagnetic
superconductors. The superconductivity of the mixed phase of coexistence of ferromagnetism and unconven-
tional superconductivity is triggered by the presence of spontaneous magnetization. The mixed phase is stable
but the other superconducting phases that usually exist in unconventional superconductors are either unstable
or for particular values of the parameters of the theory some of them are metastable at relatively low tempera-
tures in a quite narrow domain of the phase diagram. Phase transitions from the normal phase to the phase of
coexistence is of first order while the phase transition from the ferromagnetic phase to the coexistence phase
can be either of first or second order depending on the concrete substance. Cooper pair and crystal anisotropies
determine a more precise outline of the phase diagram shape and reduce the degeneration of ground states of
the system but they do not change drastically phase stability domains and thermodynamic properties of the
respective phases. The results are discussed in view of application to metallic ferromagnets as UGe2, ZrZn2,
URhGe.
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I. INTRODUCTION

In 2000, experiments1 at low temperatures �T�1 K� and
high pressure �P�1 GPa� demonstrated the existence of
spin triplet superconducting states in the metallic compound
UGe2. The superconductivity is triggered by the spontaneous
magnetization of the ferromagnetic phase that occurs at
much higher temperatures. It coexists with the superconduct-
ing phase in the whole domain of its existence below T
�1 K; see also experiments from Refs. 2 and 3, and the
discussion in Ref. 4. The same phenomenon of existence of
superconductivity at low temperatures and high pressure in
the domain of the �T , P� phase diagram where the ferromag-
netic order is present was observed in other ferromagnetic
metallic compounds �ZrZn2 �Ref. 5� and URhGe �Ref. 6��
soon after the discovery1 of superconductivity in UGe2.

In contrast to other superconducting materials, as ternary
and Chevrel compounds, where the influence of magnetic
order on superconductivity is also substantial �see, e.g., Refs.
7–10�, in these ferromagnetic substances the phase transition
temperature �Tf� to the ferromagnetic state is much higher
than the phase transition temperature �TFS� from ferromag-
netic to a mixed state of coexistence of ferromagnetism and
superconductivity. For example, in UGe2, TFS=0.8 K while
the critical temperature of the phase transition from paramag-
netic to ferromagnetic state in the same material is Tf
=35 K.1,2 It can be assumed that in these substances the ma-
terial parameter Ts defined as the usual critical temperature
of the second order phase transition from normal to uniform
�Meissner� superconducting state in a zero external magnetic
field is much lower than the phase transition temperature TFS.
The above mentioned experiments on the compounds UGe2,
URhGe, and ZrZn2 do not give any evidence for the exis-

tence of a standard normal-to-superconducting phase transi-
tion in a zero external magnetic field.

It seems that the superconductivity in the metallic com-
pounds mentioned above always coexists with the ferromag-
netic order and is enhanced by it. In these systems, as
claimed in Ref. 1, the superconductivity probably arises from
the same electrons that create the band magnetism and can be
most naturally understood rather as a triplet than spin-singlet
pairing phenomenon. Metallic compounds UGe2, URhGe,
and ZrZn2, are itinerant ferromagnets. An unconventional su-
perconductivity is also suggested11 as a possible outcome of
recent experiments in Fe,12 in which a superconducting
phase has been discovered at temperatures below 2 K and
pressures between 15 and 30 GPa. There both vortex and
Meissner superconductivity phases12 are found in the high-
pressure crystal modification of Fe with a hexagonal close-
packed lattice for which the strong ferromagnetism of the
usual bcc iron crystal probably disappears.11 It can be hardly
claimed that in hexagonal Fe the ferromagnetism and super-
conductivity coexist but the clear evidence for a supercon-
ductivity is also a remarkable achievement.

The reasonable question whether these examples of super-
conductivity and coexistence of superconductivity and ferro-
magnetism are bulk or surface effects can be stated. The
earlier experiments performed before 2004 do not answer
this question. Recent experiments13 show that surface super-
conductivity appears in ZrZn2 and its presence depends es-
sentially on the way of preparation of the sample. But in our
study it is important that bulk superconductivity can be con-
sidered well established in this substance.

A phenomenological theory that explains the coexistence
of ferromagnetism and unconventional spin-triplet supercon-
ductivity of Landau-Ginzburg-type has been developed re-
cently in Refs. 14 and 15, where possible low-order cou-
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plings between the superconducting and ferromagnetic order
parameters are derived with the help of general symmetry
group arguments. On this basis several important features of
the superconducting vortex state of unconventional ferro-
magnetic superconductors were established.14,15

In our paper we shall follow the approach from Refs. 14
and 15 to investigate the conditions for the occurrence of the
Meissner phase and to demonstrate that the presence of fer-
romagnetic order enhances the p-wave superconductivity.
We also establish the phase diagram of ferromagnetic super-
conductors in a zero external magnetic field and show that
the phase transition to the superconducting state can be either
of first or second order depending on the particular sub-
stance. We confirm the predictions made in Refs. 14 and 15
about the symmetry of the ordered phases.

Our investigation is based on the mean-field
approximation16 as well as on known results about the pos-
sible phases in nonmagnetic superconductors with triplet
�p-wave� pairing.17–20 We extend our preceding results21–23

and show that taking into account the anisotropy of the spin-
triplet Cooper pairs modifies but does not drastically change
the thermodynamic properties of the coexistence phase, es-
pecially in the temperature domain above the superconduct-
ing critical temperature Ts. The effect of crystal anisotropy is
similar but we shall not make an overall thermodynamic
analysis of this problem because we have to consider con-
crete systems and crystal structures 17,20 for which there is no
enough information from experiment to make conclusions
about the parameters of the theory. Our results confirm the
general concept that the anisotropy reduces the degree of
ground state degeneration, and depending on the symmetry
of the crystal, picks up a crystal direction for the ordering.

There exists a formal similarity between the phase dia-
gram we obtain and the phase diagram of certain improper
ferroelectrics.24–29 We shall make use of the concept in the
theory of improper ferroelectrics, where the trigger of the
primary order parameter by a secondary order parameter �the
electric polarization� has been initially introduced and ex-
ploited; see Ref. 27–29. The mechanism of the M-triggered
superconductivity in itinerant ferromagnets is formally iden-
tical to the mechanism of appearance of structural order trig-
gered by the electric polarization in improper ferroelectrics.

Our aim is to establish the uniform phases which are de-
scribed by the GL free energy presented in Sec. II. We in-
vestigate a quite general GL model in a situation of a lack of
concrete information about the values of the parameters of
this model for concrete compounds �UGe2, URhGe, ZrZn2�
where the ferromagnetic superconductivity has been discov-
ered. On the one hand the lack of information makes impos-
sible a detailed comparison of the theory to available experi-
mental data but on the other hand our results are not bound
to one or more concrete substances and can be applied to any
unconventional ferromagnetic superconductor. In Sec. III the
M-trigger effect will be described when only a linear cou-
pling of the magnetization M to the superconducting order
parameter � is considered in a model of ferromagnetic su-
perconductors where the spatial dependence of order param-
eters and all anisotropy effects are ignored. In Sec. IV we
analyze the influence of quadratic coupling of magnetization
to the superconducting order parameter on the thermodynam-

ics of the ferromagnetic superconductors. The application of
our results to experimental �T , P� phase diagrams is dis-
cussed in Sec. IV C. In Sec. V the anisotropy effects are
outlined. In Sec. VI we summarize and discuss our findings.

II. GINZBURG-LANDAU FREE ENERGY

The general GL free energy functional, we shall use in our
analysis, is

F��,M� =� d3xf��,M� , �1�

where the free energy density f�� ,M� �hereafter called “free
energy”� of a spin-triplet ferromagnetic superconductor is a
sum of five terms,14,15,17 namely,

f��,M� = fS��� + fF��M� + f I��,M� +
B2

8�
− B . M . �2�

In Eq. �2� �= �� j ; j=1,2 ,3� is a three-dimensional complex
vector describing the superconducting order and B= �H
+4�M�= � �A is the magnetic induction; H is the external
magnetic field, A= �Aj ; j=1,2 ,3� is the magnetic vector po-
tential. The last two terms on r.h.s. of Eq. �2� are related with
the magnetic energy which includes both diamagnetic and
paramagnetic effects in the superconductor; see, e.g., Refs. 7
and 30.

The term fS��� in Eq. �2� describes the superconductivity
for H=M	0. It can be written in the form

fS��� = fgrad��� + as
�
2 +
bs

2

�
4 +

us

2

�2
2 +

vs

2 �
j=1

3


� j
4.

�3�

Here

fgrad��� = K1�Di� j�*�Di� j� + K2��Di�i�*�Dj� j�

+ �Di� j�*�Dj�i�� + K3�Di�i�*�Di�i� , �4�

where a summation over the indices i , j=1,2 ,3 is assumed
and the symbol

Dj = − i�
�

�xi
+

2
e

c

Aj �5�

of covariant differentiation is introduced. In Eq. �3�, bs�0
and as=�s�T−Ts�, where �s is a positive material parameter
and Ts is the critical temperature of the standard second order
phase transition which may occur at H=M=0; H= 
H
, and
M= 
M
. The parameters us and vs describe the anisotropy of
the spin-triplet Cooper pair and the crystal anisotropy,
respectively.17,18 Parameters Kj, �j=1,2 ,3� in Eq. �4� are re-
lated with the effective mass tensor of anisotropic Cooper
pairs.17

The superconducting part �3� of the free energy f�� ,M� is
derived from symmetry group arguments and is independent
of particular microscopic models; see, e.g., Refs. 17 and 20.
According to classifications17,20 the p-wave superconductiv-
ity in the cubic point group Oh can be realized through one-,
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two-, and three-dimensional representations of the order pa-
rameter. The expressions �3�-�5� incorporate all three pos-
sible cases. The coefficients bs, us, and vs in Eq. �3� are
different for weak and strong spin-orbit couplings but in our
investigation they are considered as undetermined material
parameters which depend on the particular substance.

The free energy of a standard isotropic ferromagnet is
given by the term fF��M� in Eq. �2�,

fF��M� = cf�
j=1

3


� jM j
2 + af�Tf��M
2 +

bf

2
M4, �6�

where � j =� /�xj and bf �0. The quantity af�Tf��=� f�T−Tf��
is expressed by the material parameter � f �0 and the tem-
perature Tf� which is different from the critical temperature Tf
of the ferromagnet and this point will be discussed below.
We have already added a negative term �−2�M2� to the total
free energy f�� ,M� and that is obvious by setting H=0 in
Eq. �2�. The negative energy �−2�M2� should be added to
fF��M�. In this way one obtains the total free energy fF�M� of
the ferromagnet in a zero external magnetic field that is
given by a modification of Eq. �6� according to the rule

fF�af� = fF��af�Tf�� → af�Tf�� , �7�

where af =� f�T−Tf� and

Tf = Tf� +
2�

� f
�8�

is the critical temperature of a standard ferromagnetic phase
transition of second order. This scheme was used in studies
of rare earth ternary compounds.7,30–32 Alternatively,33 one
may use from the beginning the total ferromagnetic free en-
ergy fF�af ,M� as given by Eqs. �6�–�8� but in this case the
magnetic energy included in the last two terms on the r.h.s.
of Eq. �2� should be replaced with H2 /8�. Both approaches
are equivalent.

The term

f I��,M� = i�0M�� � �*� + �M2
�
2 �9�

in Eq. �2� describes the interaction between the ferromag-
netic order parameter M and the superconducting order pa-
rameter �.14,15 The �0-term is the most substantial for the
description of experimentally found ferromagnetic
superconductors15 while the �M2
�
2-term makes the model
more realistic in the strong coupling limit as it gives the
opportunity to enlarge the phase diagram including both
positive and negative values of the parameter as. In this way
the domain of the stable ferromagnetic order is extended
down to zero temperatures for a wide range of values of
material parameters and the pressure P, a situation that cor-
responds to the experiments in ferromagnetic superconduct-
ors.

In Eq. �9� the coupling constant �0�0 can be represented
in the form �0=4�J, where J�0 is the ferromagnetic ex-
change parameter.15 In general, the parameter � for ferro-
magnetic superconductors may take both positive and nega-
tive values. The values of the material parameters �Ts, Tf, �s,
� f, bs, us, vs, bf, Kj, �0, and �� depend on the choice of the

concrete substance and on thermodynamic parameters as
temperature T and pressure P.

It is not easy to investigate straightforwardly the total free
energy �2�. In Ref. 15 the authors used the criterion34 for the
stability of vortex state near the phase transition line Tc2�H�
�see also, Ref. 35� and applied it with respect to the magne-
tization M when H=0 for small values of 
�
 near the phase
transition line Tc2�M�. We are interested in the uniform
phases when the order parameters � and M do not depend on
the spatial vector x�V �V is the volume of the supercon-
ductor�. Therefore, we present a detailed investigation of the
coexistence of Meissner superconductivity and ferromag-
netic order and, in particular, we show that the main proper-
ties of the uniform phases can be described when the crystal
anisotropy is ignored. We claim that some of the main fea-
tures of the uniform phases in unconventional ferromagnetic
superconductors can be reliably outlined even when the Coo-
per pair anisotropy is neglected.

The magnetization M can be always assumed uniform
outside a quite close vicinity of the magnetic phase transition
when the superconducting order parameter � is also uniform,
i.e., vortex phases are not present in the respective tempera-
ture domain. These conditions are directly satisfied in type I
superconductors but in type II superconductors the tempera-
ture should be sufficiently low and the external magnetic
field should be zero. Nevertheless, in type II superconductors
these requirements for the appearance of uniform supercon-
ducting states may turn insufficient in materials having very
high values of the spontaneous magnetization. In this case
the uniform �Meissner� superconductivity and, hence, its co-
existence with uniform ferromagnetic order may not occur
even at zero temperature. Up to now type I unconventional
ferromagnetic superconductors are not found experimentally.
The predominant amount of experimental data for UGe2,
URhGe, and ZrZn2 do not give the possibility to conclude
definitely either about the absence or the presence of uniform
superconducting states at low and ultralow temperatures but
recently, an experimental evidence of uniform coexistence of
superconductivity and ferromagnetism in UGe2 has been
reported.36.

If real materials can be modelled by the general GL free
energy �1�–�9�, their ground state properties will be de-
scribed by uniform states. The problem about the availability
of such states in real materials at finite temperatures is quite
subtle at the present stage of experimental research. We shall
assume that uniform phases can exist in some unconven-
tional ferromagnetic superconductors, moreover these phases
are solutions of the GL equations corresponding to the free
energy �1�–�9�. These arguments completely justify our
study.

In case of a strong easy axis type of magnetic anisotropy,
as is in UGe2,1 the overall complexity of mean-field analysis
of the free energy f�� ,M� can be avoided by doing an Ising-
type description: M= �0,0 ,M�, where M= ± 
M
 is the mag-
netization along the z-axis. Because of the thermodynamic
equivalence of up and down physical states �±M� the analy-
sis can be done only for M	0. But this approach can be
also supported without attracting crystal anisotropy argu-
ments. When the symmetry of magnetic order is continuous,
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the symmetry of the total free energy f�� ,M� with respect to
M comes into play and we can avoid the consideration of
equivalent thermodynamic states that occur as a result of the
respective symmetry breaking at the phase transition point
but have no effect on thermodynamics of the system. In the
isotropic system one may again choose the magnetization
vector to point in the same direction as z-axis �
M
=Mz

=M� and this will not influence the generality of thermody-
namic analysis. Here we prefer an alternative description for
which the ferromagnetic state can occur as two thermody-
namically equivalent up and down domains with magnetiza-
tions M and �−M�, respectively.

We shall make the mean-field analysis of the uniform
phases and the possible phase transitions between such
phases in a zero external magnetic field �H=0� when the
crystal anisotropy is neglected �vs	0�. The calculations will
be more easy to understand if we use notations that reduce
the number of parameters in f�� ,M� by introducing

b = �bs + us + vs� . �10�

Then we redefine the order parameters and all other param-
eters in the following way:


 j = b1/4� j = � je
i�j, M = bf

1/4M ,

r =
as

�b
, t =

af

�bf

, w =
us

b
, v =

vs

b
,

� =
�0

b1/2bf
1/4 , �1 =

�

�bbf�1/2 . �11�

With the help of Eqs. �10� and �11� and using the unifor-
mity of � and M we write the free energy density f�� ,M�
=F�� ,M� /V, in the form

f��,M� = r�2 + 1
2�4 + 2��1�2M sin��2 − �1� + �1�2M2

+ tM2 + 1
2 M4 − 2w��1

2�2
2 sin2��2 − �1�

+ �1
2�3

2 sin2��1 − �3� + �2
2�3

2 sin2��2 − �3��

− v��1
2�2

2 + �1
2�3

2 + �2
2�3

2� . �12�

In the above expression the order parameters � and M are
defined per unit volume.

The equilibrium phases are obtained from the equations of
state

�f�0�
��

= 0, �13�

where = ���= �M ,�1 , . . . ,�3 ,�1 , . . . ,�3� and 0 denotes

an equilibrium phase. The stability matrix F̃ of the phases 0
is given by

F̂�0� = �F���0�� =
�2f�0�
����

. �14�

An alternative treatment can be done in terms of real �� j��
and imaginary �� j�� parts of the complex numbers � j =� j�
+ i� j�. The calculation with moduli � j and phase angles � j of

� j is more simple but in cases of strongly degenerate phases
some of the angles � j remain unspecified. Then an alternative
analysis with the help of the components � j� and � j� should
be done.

The thermodynamic stability of the phases that are solu-
tions of Eqs. �13� is checked with the help of the matrix �14�.
An additional stability analysis is done by the comparison of
free energies of phases that satisfy �13� and render the sta-
bility matrix �14� positive in one and the same domain of
parameters �r , t ,� ,�1 ,w ,v�. This step is important because
the complicated form of the free energy generates a great
number of solutions of Eqs. �13� and we have to sift out the
stable from metastable phases that correspond either to glo-
bal or local minima of the free energy, respectively.16

Some solutions of Eqs. �13� have a marginal stability, i.e.,
their stability matrix �14� is neither positively nor negatively
definite. This is often a result of the degeneration of phases
with broken continuous symmetry. If the reason for the lack
of a clear positive definiteness of the stability matrix is pre-
cisely the mentioned degeneration of the ground state, one
may reliably conclude that the respective phase is stable. If
there is another reason, the analysis of the matrix �14� will be
insufficient to determine the respective stability property.
These cases are quite rare and occur for particular values of
the parameters �r , t ,� , . . . �.

III. SIMPLE CASE OF M-TRIGGERED
SUPERCONDUCTIVITY

We shall consider the Walker–Samokhin model15 when
only the M�1�2-coupling between the order parameters �
and M is taken into account ���0,�1=0� and the anisotro-
pies �w=v=0� are ignored. The uniform phases and the
phase diagram in this case were investigated in Refs. 21–23.
Here we summarize the main results in order to make a clear
comparison with the new results presented in Secs. IV and V.
Our main aim is the description of a trigger effect which
consists of the appearance of a “compelled superconductiv-
ity” caused by the presence of ferromagnetic order �here, this
is a standard uniform ferromagnetic order�; see also Refs.
21–23 where this effect has been already established and
briefly discussed. As mentioned in the Introduction, a similar
trigger effect is known in the physics of improper ferroelec-
trics. We shall set �3	0 and use the notation �	��= ��2

−�1�.

A. Phases

The possible �stable, metastable, and unstable� phases are
given in Table I together with the respective existence and
stability conditions. The normal or disordered phase, denoted
in Table I by N, always exists �for all temperatures T	0�
and is stable for t�0, r�0. The superconducting phase de-
noted in Table I by SC1 is unstable. The same is valid for the
phase of coexistence of ferromagnetism and superconductiv-
ity denoted in Table I by CO2. The N-phase, the ferromag-
netic phase �FM�, the superconducting phases �SC1-3� and
two of the phases of coexistence �CO1-3� are generic phases
because they appear also in the decoupled case ��	0�.
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When the M�1�2-coupling is not present, the phases SC1-3
are identical and represented by the order parameter � with
components � j that participate on equal footing. The asterisk
attached to the stability condition of the second superconduc-
tivity phase �SC2� indicates that our analysis is insufficient to
determine whether this phase corresponds to a minimum of
the free energy. It will be shown that the phase SC2, two
other purely superconducting phases and the coexistence
phase CO1, have no chance to become stable for ��0. This
is so, because the phase of coexistence of superconductivity
and ferromagnetism �FS in Table I�, that does not occur for
�=0, is stable and has a lower free energy in their domain of
stability. A second domain �M �0� of the FS phase exists
and is denoted in Table I by FS*. Here we shall describe only
the first domain FS. The domain FS* is considered in the
same way.

The cubic equation for magnetization of FS-phase �see
Table I� is shown in Fig. 1 for �=1.2 and t=−0.2. For any
��0 and t, the stable FS thermodynamic states are given by
r�M��rm=r�Mm� for M �Mm�0, where Mm corresponds to
the maximum of the function r�M�. The dependence of
Mm�t� and M0�t�= �−t+�2 /2�1/2=�3Mm�t� on t is drawn in
Fig. 2 for �=1.2. Functions rm�t�=4Mm

3 �t� /� for t��2 /2

�depicted by the line of circles in Fig. 3� and

re�t� = �
t
1/2, �15�

for t�0 define the borderlines of stability and existence of
FS.

B. Phase diagram

We have outlined the domain in the �t ,r� plane where the
FS phase exists and is a minimum of the free energy. For r
�0 the cubic equation for M �see Table I� and the existence
and stability conditions are satisfied for any M 	0 provided
t	�2. For t��2 the condition M 	M0 have to be fulfilled,
here the value M0= �−t+�2 /2�1/2 of M is obtained from
r�M0�=0. Thus for r=0 the N-phase is stable for t	�2 /2,
and FS is stable for t��2 /2. For r�0, the requirement for
the stability of FS leads to the inequalities

max r

�
,Mm� � M � M0, �16�

where Mm= �M0 /�3� and M0 should be the positive solution
of the cubic equation of state from Table I; Mm�0 gives a

TABLE I. Phases and their existence and stability properties ��= ��2−�1� ,k=0, ±1, . . . �.

Phase Order parameter Existence conditions Stability domain

N � j =M =0 always t�0, r�0

FM � j =0, M2=−t t�0 r�0, r�re�t�
SC1 �1=M =0, �2=−r r�0 unstable

SC2 �2=−r, �=�k, M =0 r�0 �t�0�*

SC3 �1=�2=M =0, �3
2=−r r�0 r�0, t�0

CO1 �1=�2=0, �3
2=−r, M2=−t r�0, t�0 r�0, t�0

CO2 �1=0, �2=−r, �=�2=�k, M2=−t r�0, t�0 unstable

FS 2�1
2=2�2

2=�2=−r+�M, �3=0 �M �r 3M2� �−t+�2 /2�
�=2��k−1/4�, �r= ��2−2t�M −2M3 M �0

FS* 2�1
2=2�2

2=�2=−�r+�M�, �3=0 −�M �r 3M2� �−t+�2 /2�
�=2��k+1/4�, �r= �2t−�2�M +2M3 M �0

FIG. 1. h=�r /2 as a function of M for �=1.2, and t=−0.2. The
parameters r, t, and � are given by Eq. �11�.

FIG. 2. The magnetization M versus t for �=1.2: the dashed line
represents M0, the solid line represents Meq, and the dotted line
corresponds to Mm.

MEISSNER PHASES IN SPIN-TRIPLET… PHYSICAL REVIEW B 72, 024531 �2005�

024531-5



maximum of the function r�M�; see also Figs. 1 and 2.
The further analysis defines the existence and stability

domain of FS below the line AB denoted by circles �see Fig.
3�. In Fig. 3 the curve of circles starts from the point A with
coordinates ��2 /2 ,0� and touches two other �solid and dot-
ted� curves at the point B with coordinates �tB=−�2 /4 ,rB

=�2 /2�. Line of circles represents the function r�Mm�
	rm�t� where

rm�t� =
4

3�3�
�2

2
− t�3/2

. �17�

Dotted line represents re�t�, defined by Eq. �15�. The inequal-
ity r�rm�t� is a condition for the stability of FS, whereas the
inequality r�re�t� for �−t�	�2 /4 is a condition for the ex-
istence of FS as a solution of the respective equation of state.
This existence condition for FS is obtained from �M �r �see
Table I�.

In the region on the left of point B in Fig. 3, the FS phase
satisfies the existence condition �M �r only below the dot-
ted line. In the domain confined between the lines of circles
and the dotted line on the left of the point B the stability
condition for FS is satisfied but the existence condition is
broken. The inequality r	re�t� is the stability condition of
FM for 0� �−t���2 /4. For �−t���2 /4 the FM phase is
stable for all r	re�t�.

In the region confined by the line of circles AB, the dotted
line for 0� �−t���2 /4, and the t-axis, the phases N, FS, and
FM have an overlap of stability domains. The same is valid
for FS, the SC phases and CO1 in the third quadrant of the
plane �t ,r�. The comparison of the respective free energies
for r�0 shows that the stable phase is FS whereas the other

phases are metastable within their domains of stability.
The part of the t-axis given by r=0 and t��2 /2 is a

phase transition line of second order which describes the
N-FS transition. The same transition for 0� t��2 /2 is rep-
resented by the solid line AC which is the equilibrium tran-
sition line of a first order phase transition. The equilibrium
transition curve is given by the function

req�t� =
1

4
�3� − ��2 + 16t�1/2�Meq�t� . �18�

Here

Meq�t� =
1

2�2
��2 − 8t + ���2 + 16t�1/2�1/2 �19�

is the equilibrium jump of the magnetization. The order of
the N-FS transition changes at the tricritical point A.

The domain above the solid line AC and below the line of
circles for t�0 is the region of a possible overheating of FS.
The domain of overcooling of the N-phase is confined by the
solid line AC and the axes �t�0,r�0�. At the triple point C
with coordinates �0,req�0�=�2 /4� the phases N, FM, and FS
coexist. For t�0 the straight line

req
* �t� =

�2

4
+ 
t
, tB � t � 0, �20�

describes the extension of the equilibrium phase transition
line of the N-FS first order transition to negative values of t.
For t� tB the equilibrium phase transition FM-FS is of sec-
ond order and is given by the dotted line on the left of the
point B which is the second tricritical point in this phase
diagram. Along the first order transition line req

* �t� given by
Eq. �20� the equilibrium value of M is Meq=� /2, which im-
plies an equilibrium order parameter jump at the FM-FS
transition equal to �� /2−�
t
�. On the dotted line of the sec-
ond order FM-FS transition the equilibrium value of M is
equal to that of the FM phase �Meq=�
t
�. The FM phase
does not exist below Ts and this is a shortcoming of the
model �12� with �1=0.

The equilibrium FM-FS and N-FS phase transition lines
in Fig. 3 can be expressed by the respective equilibrium
phase transition temperatures Teq defined by the equations
re=r�Teq�, req=r�Teq�, req

* =r�Teq�, and with the help of the
relation Meq=M�Teq�. This limits the possible variations of
parameters of the theory. For example, the critical tempera-
ture �Teq	Tc� of the FM-FS second order transition ��2 /4
�−t� is obtained in the form Tc= �Ts+4�JM /�s�, or, using
M= �−af /bf�1/2,

Tc = Ts −
T*

2
+ �T*

2
�2

+ T*�Tf − Ts��1/2

. �21�

Here Tf �Ts, and T*= �4�J�2� f /�s
2bf is a characteristic tem-

perature of the model �12� with �1=w=v=0. A discussion of
Eq. �21� is given in Sec. IV C.

The investigation of the conditions for the validity of Eq.
�21� leads to the conclusion that the FM-FS continuous phase
transition �at �2�−t� will be possible only if the following
condition is satisfied:

FIG. 3. The phase diagram in the plane �t ,r� with two tricritical
points �A and B� and a triple point C; �=1.2. The parameters r
��T−Ts�P�� and t��T−Tf�P�� are defined by Eq. �11�. The do-
mains of existence and stability of the phases N, FM, and FS are
shown. The line of circles represents the function rm�t� given by Eq.
�17�. The dotted line represents the function re�t� given by Eq. �15�.
On the left of point B, the same dotted curve corresponds to a
FM-FS phase transition of second order. The equilibrium lines of
N-FS and FM-FS phase transitions of first order are given by the
solid lines AC and CB, respectively.
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Tf − Ts � = �� + ���T*, �22�

where �=bf�s
2 /4bs� f

2. Therefore, the second order FM-FS
transition should disappear for a sufficiently large
�-coupling. Such a condition does not exist for the first order
transitions FM-FS and N-FS.

The inclusion of the gradient term �4� in the free energy
�2� should lead to a depression of the equilibrium transition
temperature. As the magnetization increases with the de-
crease of the temperature, the vortex state should occur at
temperatures which are lower than the equilibrium tempera-
ture Teq of the Meissner state. For example, the critical tem-

perature �T̃c� corresponding to the vortex phase of FS-type
has been evaluated15 to be lower than the critical temperature

�21�: �Tc− T̃c�=4�BM /�s, where B= 
e
� /2mc is the

Bohr magneton. For J�B, we have Tc� T̃c.
For r�0, namely, for temperatures T�Ts the supercon-

ductivity is triggered by the magnetic order through the
�-coupling. The superconducting phase for T�Ts is entirely
in the �t ,r� domain of the ferromagnetic phase. Therefore,
the uniform supeconducting phase can occur for T�Ts only
through a coexistence with the ferromagnetic order.

In the next sections we shall focus on the temperature
range T�Ts which seems to be of main practical interest. We
shall not dwell on the superconductivity in the fourth quad-
rant �t�0,r�0� of the �t ,r� diagram where pure supercon-
ducting phases can occur for systems with Ts�Tf, but this is
not the case for UGe2, URhGe, and ZrZn2. Also we shall not
discuss the possible metastable phases in the third quadrant
�t�0,r�0� of the �t ,r� diagram.

C. Magnetic susceptibility

We consider the longitudinal magnetic susceptibility �1
= ��V/V� per unit volume.23 The external magnetic field H
= �0,0 ,H� with H= ��f /�M� has the same direction as the
magnetization M. We shall calculate the quantity �=�bf�1
for the equilibrium thermodynamic states 0 given by Eq.
�13�. Having in mind the relations �11� between M and M,
and between � and 
 we can write

�−1 =
d

dM0
� �f

�M
�

T,
j

�
0

, �23�

where the equilibrium magnetization M0 and equilibrium su-
perconducting order parameter components 
0j should be
taken for the respective equilibrium phase. See Table I,
where the suffix “0” of �, �, and M is omitted; hereafter this
suffix will be often omitted. The value of the equilibrium
magnetization M in FS is the maximal nonnegative root of
the cubic equation in M given in Table I.

From Eq. �23� we obtain the susceptibility � of FS phase
in the form

�−1 = − �2 + 2t + 6M2. �24�

The susceptibility of the other phases has the usual expres-
sion

�−1 = 2t + 6M2. �25�

Equation �25� yields as results the paramagnetic susceptibil-
ity ��P=1/2t ; t�0� of the normal phase and the ferromag-
netic susceptibility ��F=1/4
t
 ; t�0� of FM. These suscepti-
bilities can be compared with the susceptibility � of FS
which cannot be calculated analytically in the whole domain
of stability of FS. Therefore, we shall consider the close
vicinity of the N-FS and FM-FS phase transition lines.

Near the second order phase transition line on the left of
the point B �t� tB�, the magnetization has a smooth behavior
and the magnetic susceptibility does not exhibit any singu-
larities like jump or divergence. For t��2 /2, the magnetiza-
tion is given by M = �s−+s+�, where

s± = �−
�r

4
± � �t − �2/2�3

27
+ �r

4
�2�1/2�1/3

. �26�

When r=0, it is obvious that also M =0. For 
�r
� �t
−�2 /2� we have M �−�r / �2t−�2��2t. Therefore, in a close
vicinity �r�0� of r=0 along the second order phase transi-
tion line �r=0, t��2 /2� the magnetic susceptibility is well
described by the paramagnetic law �P= �1/2t�. For r�0 and
t→�2 /2, we obtain M =−��r /2�1/3 which gives

�−1 = 6�
r

2
�2/3

. �27�

On the phase transition line AC

Meq�t� =
1

2�2
��2 − 8t + ���2 + 16t�1/2�1/2 �28�

and, hence,

�−1 = − 4t −
�2

4
�1 − 31 +

16t

�2 �1/2� . �29�

At the tricritical point A this result gives �−1�A�=0, and at
the triple point C with coordinates �0, �2 /4� we have ��C�
= �2/�2�. On the line BC we obtain M =� /2 so

�−1 = 2t +
�2

2
. �30�

At the tricritical point B with coordinates �−�2 /4 ,�2 /2� the
result is �−1�B�=0.

To investigate the magnetic susceptibility tensor we shall
consider arbitrary orientations of the vectors H and M. We
denote the spatial directions �x ,y ,z� by �1,2,3�.

The components of the inverse magnetic susceptibility
tensor

�̂1
−1 = �̂−1�bf = ��ij

−1��bf �31�

can be represented in the form

�ij
−1 = 2�t + M2��ij + 4MiMj + i�

�

�Mj
�
 � 
*�i, �32�

where M and 
 j are taken at their equilibrium values: M0,

0j, �0j. The last term on the r.h.s. of Eq. �29� is equal to zero
for all phases in Table I except for FS and FS*. When the
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second term in Eq. �30� is equal to zero we obtain the known
result of the susceptibility tensor for second order phase tran-
sitions; see, e.g., �Ref. 16�.

In the FS phase � j depend on Mj and we can choose again
M= �0,0 ,M� and use the results from Table I for the equi-
librium values of � j, �, and M. Then the components �ij

−1

corresponding to FS are

�ij
−1 = 2�t + M2��ij + 4MiMj − �2�i3. �33�

Thus we have �i�j
−1 =0,

�11
−1 = �22

−1 = 2�t + M2� , �34�

and �33
−1 coincides with the inverse longitudinal susceptibility

�−1 as given by Eq. �24�.

D. Entropy and specific heat

The entropy S�T�	�S̃ /V�=−V��f /�T� and the specific

heat C�T�	�C̃ /V�=T��S /�T� per unit volume V are calcu-
lated in a standard way.16 We are interested in the jumps of
these quantities on the N-FM, FM-FS, and N-FS transition
lines. The behavior of S�T� and C�T� near the N-FM phase
transition and near the FM-FS phase transition line of second
order on the left of the point B �Fig. 3� is known from the
standard theory of critical phenomena and for this reason we
focus our attention on the first order phase transitions FS-FM
and FS-N for t�−�2 /4, i.e., on the right of point B in Fig. 3.

We make use of the equations for the order parameters �
and M from Table I and apply the standard procedure for the
calculation of S,

S�T� = −
�s

�bs

�2 −
� f

�bf

M2. �35�

The next step is to calculate the entropies SFS�T� and SFM of
the ordered phases FS and FM. We shall stick to the usual
convention FN=V fN=0 for the free energy of the N-phase,
so we must set SN�T�=0.

Near the second order phase transition line �r=0, t
��2 /2�, SFS�T� is a smooth function of T and has no jump
but the specific heat CFS has a jump at T=Ts, i.e., for r=0.
This jump is given by

�CFS�Ts� =
�s

2Ts

bs
�1 −

1

1 − 2t�Ts�/�2� . �36�

The jump �CFS�Ts� is higher than the usual jump �C�Tc�
=Tc�s

2 /bs known from the Landau theory of standard second
order phase transitions.16

The entropy jump �SAC�T�	SFS�T� on the line AC is

�SAC�T� = − Meq� �s�

4�bs
�1 + 1 +

16t

�2 �1/2� −
� f

�bf

Meq� ,

�37�

where Meq is given by Eq. �19�. From Eqs. �19� and �37�, we
have �S�t=�2 /2�=0, i.e., �S�T� becomes equal to zero at
the tricritical point A. We find also from Eqs. �19� and �37�
that at the triple point C the entropy jump is

�S�t = 0� = −
�2

4  �s

�bs

+
� f

�bf
� . �38�

On the line BC the entropy jump is defined by �SBC�T�
= �SFS�T�−SFM�T��. We obtain

�SBC�T� = 
t
 −
�2

4
� �s

�bs

+
� f

�bf
� . �39�

At the tricritical point B this jump is equal to zero as should
be. The calculation of the specific heat jump on the first order
phase transition lines AC and BC is redundant for two rea-
sons. First, the jump of the specific heat at a first order phase
transition differs from the entropy by a factor of order of
unity. Second, in caloric experiments where the relevant
quantity is the latent heat Q=T�S�T�, the specific heat jump
can hardly be distinguished.

E. Note about a simplified theory

The analysis in this section can be done following an
approximate scheme known from the theory of improper fer-
roelectrics; see, e.g., Ref. 29. In this approximation the order
parameter M is considered small enough which makes pos-
sible to ignore M4-term in the free energy. Then one easily
obtains from the data for FS presented in Table I or by a
direct calculation of the respective reduced free energy that
the order parameters � and M of FS-phase are described by
the simple equalities r= ��M −�2� and M = �� /2t��2. For fer-
roelectrics working with oversimplified free energy gives a
substantial departure of theory from experiment.29 For ferro-
magnetic superconductors the domain of reliability of this
approximation could be the close vicinity of the ferromag-
netic phase transition, i.e., for temperatures near the critical
temperature Tf. This discussion can be worthwhile if only the
primary order parameter also exists in the same narrow tem-
perature domain ���0�. Therefore, the application of the
simplified scheme can be useful in systems, where Ts	Tf.

For Ts�Tf, the analysis can be simplified if we suppose a
relatively small value of the modulus � of the superconduct-
ing order parameter. This approximation should be valid in
some narrow temperature domain near the line of second
order phase transition from FM to FS.

IV. EFFECT OF SYMMETRY CONSERVING COUPLING

Here we shall include in our consideration both linear and
quadratic couplings of magnetization to the superconducting
order parameter which means that both parameters � and �1
in free energy �12� are different from zero. In this way we
shall investigate the effect of the symmetry conserving
�1-term in the free energy on the thermodynamics of the
system. When � is equal to zero but �1�0 the analysis is
easy and the results are known from the theory of bicritical
and tetracritical points.16,27,37,38 For the problem of coexist-
ence of conventional superconductivity and ferromagnetic
order the analysis ��=0,�1�0� was made in Ref. 7.

At this stage we shall not take into account any anisotropy
effects because we do not want to obscure the influence of
quadratic interaction by considering too many parameters.
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For �, �1�0 and w=0, v=0 the results again can be pre-
sented in an analytical form, only a small part of phase dia-
gram should be calculated numerically.

A. Phases

The calculations show that for temperatures T�Ts, i.e.,
for r�0, we have again three stable phases. Two of them are
quite simple: the normal �N− � phase with existence and sta-
bility domains shown in Table I, and the FM phase with the
existence condition t�0 as shown in Table I, and a stability
domain defined by the inequality re

�1��r. Here

re
�1� = �1t + ��− t , �40�

and one can compare it with the respective expression �15�
for �1=0. In this paragraph we shall retain the same nota-
tions as in Sec. III but with a superscript �1� in order to
distinguish them from the case �1=0 The third stable phase
for r�0 is a more complex variant of the mixed phase FS
and its domain FS*, discussed in Sec. III. The symmetry of
the FS phase coincides with that found in Ref. 15.

We have to mention that for r�0 there are five pure su-
perconducting �M =0,��0� phases. Two of them, ��1

�0,�2=�3=0� and ��1=0 ,�2�0,�3�0� are unstable.
Two other phases ��1�0,�2�0,�3=0 ,�2=�1+�k� and
��1�0,�2�0,�3�0,�2=�1+�k ,�3–arbitrary; k=0, ±1,...�
show a marginal stability for t��1r.

Only one of the five pure superconducting phases, the
phase SC3, given in Table I, is stable. In case of �1�0 the
values of � j and the existence domain of SC3 are the same as
shown in Table I for �1=0 but the stability domain is differ-
ent and is given by t��1r. When the anisotropy effects are
taken into account the phases exhibiting marginal stability
within the present approximation may become stable. Be-
sides, three other mixed phases �M �0,��0� exist for r
�0 but one of them is metastable �for �1

2�1, t��1r, and r
��1t� and the other two are absolutely unstable. Here the
thermodynamic behavior for r�0 is much more abundant in
phases than for improper ferroelectrics with two component
primary order parameter.27 However, at this stage of experi-
mental needs about the properties of unconventional ferro-
magnetic superconductors the investigation of the phases for
temperatures T�Ts is not of primary interest and for this
reason we shall focus our attention on the temperature do-
main r�0.

The FS phase for �1�0 is described by the following
equations:

�1 = �2 =
�

�2
, �3 = 0, �41�

�2 = �±�M − r − �1M2� , �42�

�1 − �1
2�M3 ±

3

2
��1M2 + t −

�2

2
− �1r�M ±

�r

2
= 0,

�43�

and

��2 − �1� = �
�

2
+ 2�k , �44�

�k=0, ±1, . . . �. The upper sign in Eqs. �42�–�44� corresponds
to the FS domain where sin��2−�1�=−1 and the lower sign
corresponds to the FS* domain with sin��2−�1�=1. This is a
generalization of the two-domain FS phase discussed in Sec.
III. The analysis of the stability matrix �14� for these phase
domains shows that FS is stable for M �0 and FS* is stable
for M �0, just like our result in Sec. III. As these domains
belong to the same phase, namely, have the same free energy
and are thermodynamically equivalent, we shall consider one
of them, for example, FS.

B. Phase stability and phase diagram

In order to outline the �t ,r� phase diagram we shall use
the information given above for the other two phases which
have their own domains of stability in the �t ,r� plane: N and
FM. The FS stability conditions when �1�0 become

2�M − r − �1M2 	 0, �45�

�M 	 0, �46�

3�1 − �1
2�M2 + 3��1M + t − �1r − �2/2 	 0. �47�

and we prefer to treat Eqs. �45�–�47� together with the exis-
tence condition �2	0, with � given by Eq. �42�, with the
help of the picture shown in Fig. 4.

The most direct approach to analyze the existence and
stability of FS phase is to express r as of function of �M , t�
from the equation of state �43�,

req
�1��t� =

Meq

��1Meq − �/2���1 − �1
2�Meq

2 +
3

2
��1Meq + t −

�2

2
�� ,

�48�

and to substitute the above expression in the existence and
stability conditions of FS-phase. It is obvious that there is a
special value of M

MS1 =
�

2�1
�49�

that is a solution of Eq. �43� for any value of r and

tS1 = −
�2

4�1
2 , �50�

for which this procedure cannot be applied and should be
considered separately. Note, that MS1 is given by the respec-
tive horizontal dashed line in Fig. 4. The analysis shows that
in the interval tB

�1�� t��2 /2 the phase transition is again of
first order; here

tB
�1� = −

�2

4�1 + �1�2 . �51�

To find the equilibrium magnetization of first order phase
transition, depicted by the thick line ACB in Fig. 4 we need
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the expression for equilibrium free energy of FS-phase. It is
obtained from Eq. �12� by setting �w=0,v=0� and substitut-
ing r ,�i as given by Eqs. �41�, �42�, and �48�. The result is

fFS
�1� = −

M2

2�M�1 − �/2�2��1 − �1
2�M4 + ��1M3 + 2

��t�1 − �1
2� −

�2

8
�M2 − 2��1tM + tt −

�2

2
�� ,

�52�

where M 	Meq.
For the phase transition from N to FS phase �0� t

��2 /2�, Meq is found by setting the FS free energy from the
above expression equal to zero, as we have by convention
that the free energy of the normal phase is zero. The value of
Meq

�1� for positive t is obtained numerically and is illustrated
by thick black curve AC in Fig. 4. When tB

�1�� t�0 the tran-
sition is between FM and FS phases and we obtain Meq

�1� from
the equation fFS= fFM= �−t2 /2�, where fFM is the free energy
of FM phase. The equilibrium magnetization in the above
t-interval is given by the formula

Meq
�1�� =

�

2�1 + �1�
, �53�

and is drawn by thick line CB in Fig. 4.

The existence and stability analysis shows that for r�0
the equilibrium magnetization of the first order phase transi-
tion should satisfy the condition Mm

�1��Meq
�1��M0

�1�.
By M0

�1� we denote the positive solution of r�1��Meq�=0
and its t-dependence is drawn in Fig. 4 by the curve with
circles. Mm

�1� is the smaller positive root of stability condition
�47� and also gives the maximum of function req

�1��M�; see Eq.
�48�. The function Mm

�1� is depicted by the dotted curve AB in
Fig. 4. When tS1� t� tB

�1� the existence and stability condi-
tions are fulfilled if �−t�M �MS1, where �−t is the magne-
tization of ferromagnetic phase and is drawn by a thin black
line on the left of point B in Fig. 4. Here we have two
possibilities: r�0 for �−t�M �M0

�1� and r�0 for M0
�1�

�M �MS1. To the left of tS1 and t� tS2, where

tS2 = −  �

�1
�2

, �54�

the FS phase is stable and exists for MS1�M ��−t. Here r
will be positive when M0

�1��M ��−t and r�0 for M0
�1�

�M �MS1. When t� tS2, M ��−t and r is always negative.
On the basis of the existence and stability analysis we

draw in Fig. 5 the �t ,r�-phase diagram for concrete values of
� and �1. As we have mentioned above the order of phase
transitions is the same as for �1=0, see Fig. 3, Sec. III. The
phase transition between the normal and FS phases is of first
order and goes along the equilibrium line AC in the interval
�tA=�2 /2 and tC=0�. The function req

�1��t� is given by Eq. �48�
with Meq

�1� from Fig. 4.
N, FM, and FS phases coexist at the triple point C with

coordinates t=0, and rC
�1�=�2 /4��1+1�. On the left of C for

FIG. 4. The dependence M�t� as an illustration of stability
analysis for �=1.2, �1=0.8, and w=0. The parameters of the theory
�r , t ,� ,�1 ,w , . . . � are defined by Eq. �11�. The horizontal dashed
lines represent the quantities MS1 given by Eq. �49� and MS2

=2MS1. The line of circles AS1S2 describes the positive solution of
Eq. �48�. The thick line AC gives the equilibrium magnetization for
t�0. The thick line BC represents the equilibrium magnetization
for t�0 as given by Eq. �53�. The dotted curve is the smaller
positive solution of the stability condition �47�. The thin solid line
BS1S2 is the magnetization M =�−t. The arrow indicates the triple
point C. A and B are tricritical points of phase transition. The point
S1 corresponds to the maximum of the curve �40� for t�0, and the
point S2 corresponds to re

�1��t�=0 in Eq. �40�.

FIG. 5. The phase diagram in the �t ,r� plane for �=1.2, �1

=0.8, and w=0. The parameters of the theory �r , t ,� ,�1 ,w , . . . � are
defined by Eq. �11�. The domains of stability of the phases N, FM,
and FS are indicated. A and B are tricritical points of phase transi-
tions separating the dashed lines �on the left of point B and on the
right of point A� of second order phase transitions from the solid
line ABC of first order phase transitions. The FS phase is stable in
the whole domain of the �t ,r� below the solid and dashed lines. The
vertical dashed line coinciding with the r-axis above the triple point
C indicates the N-FM phase transition of second order.
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tB
�1�� t�0 the phase transition line of first order req

�1���t� is
found by substituting in Eq. �48� the respective equilibrium
magnetization, given by Eq. �53�. In result we obtain

req
�1���t� =

�2

4�1 + �1�
− t . �55�

This function is illustrated by the line BC in Fig. 5 that
terminates at the tricritical point B with coordinates tB

�1� from
Eq. �51�, and

rB
�1� =

�2�2 + �1�
4�1 + �1�2 . �56�

To the left of the tricritical point B the second order phase
transition curve is given by the relation �40�. Here the mag-
netization is M =�−t and the superconducting order param-
eter is equal to zero ��=0�. This line intersects t-axis at tS2

and is well defined also for r�0. The function re
�1��t� has a

maximum at the point �tS1 ,�2 /4�1�; here M =MS1. When this
point is approached the second derivative of the free energy
with respect to M tends to infinity. The result for the curves
req

�1��t� of equilibrium phase transitions �N-FS and FM-FS�
can be used to define the respective equilibrium phase tran-
sition temperatures TFS.

We shall not discuss the region, t�0, r�0, because we
have supposed from the very beginning that the transition
temperature for the ferromagnetic ordering Tf is higher then
the superconducting transition temperature Ts, as is for the
known unconventional ferromagnetic superconductors. But
this case may become of substantial interest when, as one
may expect, materials with Tf �Ts may be discovered ex-
perimentally.

C. Discussion

The shape of the equilibrium phase transition lines corre-
sponding to the phase transitions N-SC, N-FS, and FM-FS is
similar to that of the more simple case �1=0 and we shall not
dwell on the variation of the size of the phase domains with
the variations of the parameter �1 from zero to values con-
strained by the condition �1

2�1. Our treatment from Sec. III
of the magnetic susceptibility tensor and the thermal quanti-
ties can be generalized in order to demonstrate the depen-
dence of these quantities on �1. We shall not consider such
problems. But an important qualitative difference between
the equilibrium phase transition lines shown in Figs. 3 and 5
cannot be omitted. The second order phase transition line
re�t�, shown by the dotted line on the left of point B in Fig. 3,
tends to large positive values of r for large negative values of
t and remains in the second quadrant �t�0,r�0� of the
plane �t ,r� while the respective second order phase transition
line re

�1��t� in Fig. 5 crosses the t-axis at the point tS2 and is
located in the third quadrant �t�0,r�0� for all possible
values t� tS2. This means that the ground state �at 0 K� of
systems with �1=0 will be always the FS phase whereas two
types of ground states, FM and FS, can exist for systems
with 0��1

2�1. The latter seems more realistic when we
compare theory and experiment, especially, in ferromagnetic

compounds like UGe2, URhGe, and ZrZn2. Neglecting the
�1-term does not allow to describe the experimentally ob-
served presence of FM phase at very low temperatures and
relatively low pressure P.

The final aim of the phase diagram investigation is the
outline of the �T , P� diagram. Important conclusions about
the shape of the �T , P� diagram can be made from the form
of the �t ,r� diagram without an additional information about
the values of the relevant material parameters �as ,af , . . . � and
their dependence on the pressure P. One should know also
the characteristic temperature Ts, which has a lower value
than the experimentally observed1–3,5,6 phase transition tem-
perature �TFS�1 K� to the coexistence FS-phase. A supposi-
tion about the dependence of the parameters as and af on the
pressure P was made in Ref. 15. Our results for Tf �Ts show
that the phase transition temperature TFS varies with the
variation of the system parameters ��s ,� f , . . . � from values
which are higher than the characteristic temperature Ts down
to zero temperature. This is seen from Fig. 5.

In systems where a pure superconducting phase is not
observed for temperatures T�Tf or T�TFS, we can set Ts
�0 in Eq. �21�. Neglecting Ts in Eq. �21� and assuming that
�T* /Tf��1 we obtain that Tc	TFS��T*Tf�1/2. Note that the
first �T* /Tf�1/2-correction to this result has a negative sign
which means that a suitable dependence of the characteristic
temperature T* on the pressure P may be used in attempts to
describe the experimental shape of the FM-FS phase transi-
tion line in the �T , P� diagrams of UGe2 and ZrZn2; see, for
example, Fig. 2 in Ref. 1, Fig. 3 in Ref. 2, Fig. 4 in Ref. 5.
The experimental phase diagrams indicate that Tf�P� is a
smooth monotonically decreasing function of the pressure P
and Tf�P� tends to zero when the pressure P exceeds some
critical value Pc�1 GPa. Postulating the respective experi-
mental shape of the function Tf�P� one may try to give a
theoretical prediction for the shape of the curve TFS describ-
ing the FM-FS phase transition line. The lack of experimen-
tal data about important parameters of the theory forces us to
make some suppositions about the behavior of the function
T*�P�. The phase transition temperature TFS will qualitatively
follow the shape of Tf�P� provided the dependence T*�P� is
very smooth. This is in accord with the experimental shapes
of these curves near the critical pressure Pc where both Tf
and TFS are very small. The substantial difference between Tf
and TFS at lower pressure �P� Pc� can be explained with the
negative sign of the correction term to the leading depen-
dence TFS�P���T*�P�Tf�P��1/2 mentioned above and a con-
venient supposition for the form of the function T*�P�.

Equation �21� presents a rather simplified theoretical re-
sult for TC	TFS because the effect of M2
�
2 coupling is not
taken into account. But following the same ideas, used in our
discussion of Eq. �21�, a more reliable theoretical prediction
of the shape of FM-FS phase transition line can be given on
the basis of Eq. �40�. Using the knowledge about the experi-
mentally found shape of Tf�P� and the definition of the pa-
rameters r and t by Eq. �11� we substitute T=TFS�P� in Eq.
�40�. In doing this we have applied the following approxima-
tions, namely, that Ts�0 for any pressure P, TFS�Pc�
�Tf�Pc��0 and for substantially lower pressure �P� Pc�,
Tf�P��TFS�P�. Then near the critical pressure Pc, we easily
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obtain the transition temperature TFS�0, as should be. For
substantially lower values of the pressure there exists an ex-
perimental requirement �TFS−Ts�� �Tf −TFS�. Using the lat-
ter we establish the approximate formula �Tf −TFS�
=�2bf

1/2 /�1
2� f. The same formula for �Tf −TFS� can be ob-

tained from the parameter tS2�TFS� given by Eq. �54�. The
pressure dependence of the parameters included in this for-
mula defines two qualitatively different types of behavior of
TFS�P� at relatively low pressures �P� Pc�: �a� TFS�P��0
below some �second� critical value of the pressure �Pc�
� Pc�, and �b� finite TFS�P� up to P�0. Therefore, we can
estimate the value of the pressure Pc�� Pc in UGe2, where
TFS�Pc���0. It can be obtained from the equation Tf�Pc��
= ��2bf

1/2 /�1
2� f� provided the pressure dependence of the re-

spective material parameters is known. So, the above consid-
eration is consistent with the theoretical prediction that the
dashed line in Fig. 5 crosses the axis r=0 and for this reason
we have the opportunity to describe two ordered phases at
low temperatures and broad variations of the pressure. Our
theory allows also a description of the shape of the transition
line TFS�P� in ZrZn2 and URhGe, where the transition tem-
perature TFS is finite at ambient pressure. To avoid a misun-
derstanding, let us note that the diagram in Fig. 5 is quite
general and the domain containing the point r=0 of the
phase transition line for negative t may not be permitted in
some ferromagnetic compounds.

Up to now we have discussed experimental curves of sec-
ond order phase transitions. Our analysis gives the opportu-
nity to describe also first order phase transition lines. Our
investigation of the free energy �12� leads to the prediction of
triple �C� and tricritical points �A and B�; see Figs. 3 and 5.
We shall not dwell on the possible application of these re-
sults to the phase diagrams of real substances, where first
order phase transitions and multicritical phenomena occur;
see, e.g., Refs. 36 and 39, where first order phase transitions
and tricritical points have been observed. The consideration
of such problems, in particular, the explanation of the phase
transition lines in Refs. 36 and 39 requires further theoretical
studies, that can be done on the basis of a convenient exten-
sion of the free energy �12�. For example, the investigation
of vortex phases in Ref. 39 needs taking into account the
gradient terms �4�. Another generalization should be done in
order to explain the observation of two FM phases.36,39 Note,
that the experimentalists are not completely certain whether
the FS phase is a uniform or a vortex phase, and this is a
crucial point for the orientation of the further investigations.
But we find quite encouraging that our studies naturally lead
to the prediction of the same variety of phase transition lines
and multicritial points that has been observed in recent
experiments.36,39

V. ANISOTROPY EFFECTS

Our analysis demonstrates that when the anisotropy of
Cooper pairs is taken in consideration, there will be no dras-
tic changes in the shape the phase diagram for r�0 and the
order of the respective phase transitions. Of course, there

will be some changes in the size of the phase domains and
the formulae for the thermodynamic quantities. It is readily
seen from Figs. 6 and 7 that the temperature domain of first
order phase transitions and the temperature domain of stabil-
ity of FS above Ts essentially vary with the variations of the
anisotropy parameter w. The parameter w will also insert
changes in the values of the thermodynamic quantities like
the magnetic susceptibility and the entropy and specific heat
jumps at the phase transition points.

Besides, and this seems to be the main anisotropy effect,
the w- and v-terms in the free energy lead to a stabilization
of the order along the main crystal directions which, in other
words, means that the degeneration of the possible ground
states �FM, SC, and FS� is considerably reduced. This means

FIG. 6. Phase diagram in the �t ,r� plane for �=1.2, �1=0.8, and
w=0.4. The meaning of lines and points is the same as given in
Fig. 5.

FIG. 7. Phase diagram in the �t ,r� plane for �=1.2, �1=0.8, and
w=−2. The straight dotted line for r�0 indicates an instability of
the FS phase. The meaning of other lines and notations is the same
as given in Fig. 5.
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also a smaller number of marginally stable states.
The dimensionless anisotropy parameter w=us / �bs+us�

can be either positive or negative depending on the sign of
us. Obviously when us�0, the parameter w will be positive
too and will be in the interval 0�w�1 to ensure the posi-
tiveness of parameter b from Eq. �10�. When w�0, the latter
condition is obeyed if the original parameters of free energy
�3� satisfy the inequality −bs�us�0.

We should mention here that a new phase of coexistence
of superconductivity and ferromagnetism occurs as a solu-
tion of Eq. �13�. It is defined in the following way:

�1
2 + �2

2 =
1

1 − �1
2��1t +

�2

2w
� − r� ,

M2 =
1

1 − �1
2��1r − t +

�2

2w
�� , �57�

and

2w sin��2 − �1� = �M, cos��2 − �1� � 0. �58�

In the present approximation the phase �57� and �58� is un-
stable, but this may be changed when crystal anisotropy is
taken into account.

We shall write the equations for order parameters M and
� j of FS phase in order to illustrate the changes when w
�0

�2 =
±�M − r − �1M2

�1 − w�
	 0, �59�

and

�1 − w − �1
2�M3 ±

3

2
��1M2 + �t�1 − w� −

�2

2
− �1r�M ±

�r

2

= 0, �60�

where the meaning of the upper and lower sign is the same as
explained just below Eq. �44�. The difference in the stability
conditions is more pronounced and gives new effects that
will be explained further,

�2 − w��M − r − �1M2

1 − w
	 0, �61�

�M − wr − w�1M2 	 0, �62�

and

3�1 − w − �1
2�M2 + 3��1M + t�1 − w� − �2/2 − �1r

1 − w
	 0.

�63�

The calculations of the phase diagram in �t ,r� parameter
space are done in the same way as in case of w=0 and show
that for w�0 there is no qualitative change of the phase
diagram. Quantitatively, the region of first order phase tran-
sition widens both with respect to t and r as illustrated in Fig.
6. On the contrary, when w�0 the first order phase transition

region becomes more narrow but the condition �62� limits
the stability of FS for r�0. This is seen from Fig. 7 where
FS is stable above the straight dotted line for r�0 and t
�0. So, purely superconducting �Meissner� phases occur
also as ground states together with FS and FM phases.

VI. CONCLUSION

We investigated the M-trigger effect in unconventional
ferromagnetic superconductors. This effect arises from the
M�1�2-coupling term in the GL free energy and brings into
existence a superconductivity in a domain of the system’s
phase diagram that is entirely occupied by the ferromagnetic
phase. The coexistence of unconventional superconductivity
and ferromagnetic order is possible for temperatures above
and below the critical temperature Ts, that corresponds to the
standard second-order phase transition from normal to
Meissner phase—usual uniform superconductivity in a zero
external magnetic field which occurs outside the domain of
existence of ferromagnetic order. Our investigation has been
mainly intended to clarify the thermodynamic behavior at
temperatures Ts�T�Tf where the superconductivity cannot
appear without the mechanism of M-triggering. We have de-
scribed the possible ordered phases �FM and FS� in this most
interesting temperature interval.

The Cooper pair and crystal anisotropies have also been
investigated and their main effects on the thermodynamics of
the triggered phase of coexistence is established. In discus-
sions of concrete real material one should consider the re-
spective crystal symmetry. But when the low symmetry and
low order �in both M and �� �-term is present in the free
energy, the dependence of essential thermodynamic proper-
ties on the type of crystal symmetry is not substantial.

Below the superconducting critical temperature Ts a vari-
ety of pure superconducting and mixed phases of coexistence
of superconductivity and ferromagnetism exists and the ther-
modynamic behavior at these relatively low temperatures is
more complex than in known cases of improper ferroelec-
trics. The case Tf �Ts also needs a special investigation.

Our results are referred to the possible uniform supercon-
ducting and ferromagnetic states. Vortex and other nonuni-
form phases need a separate study.

The relation of the present investigation to properties of
real ferromagnetic compounds, such as UGe2, URhGe, and
ZrZn2, has been discussed throughout the text. In these com-
pounds the ferromagnetic critical temperature is much larger
than the superconducting critical temperature �Tf �Ts� and
that is why the M-triggering of the spin-triplet superconduc-
tivity is very strong. Moreover, the �1-term is important to
stabilize the FM order up to the absolute zero �0 K�, as is in
the known spin-triplet ferromagnetic superconductors.
Ignoring15 the symmetry conserving �1-term does not allow
a proper description of the known real substances of this
type. More experimental information about the values of the
material parameters �as ,af , . . . � included in the free energy
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�12� is required in order to outline the thermodynamic be-
havior and the phase diagram in terms of thermodynamic
parameters T and P. In particular, a reliable knowledge about
the dependence of the parameters as and af on the pressure
P, the value of the characteristic temperature Ts and the ratio
as /af at zero temperature are of primary interest.
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