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It is shown how the static and dynamic electromagnetic properties can be calculated for thin flat supercon-
ducting films of any shape and size, also multiply connected as used for superconducting quantum interference
devices, and for any value of the effective magnetic London penetration depth �. As examples, the distribu-
tions of sheet current and magnetic field are obtained for rectangular and circular films without and with slits
and holes, in response to an applied perpendicular magnetic field and to magnetic vortices moving in the film.
The self-energy and interaction of vortices with each other and with an applied magnetic field and/or transport
current are given. Due to the long-ranging magnetic stray field, these energies depend on the size and shape of
the film and on the vortex position even in large films, in contrast to the situation in large bulk superconductors.
The focusing of magnetic flux into the central hole of square films without and with a radial slit is compared.
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I. INTRODUCTION

The calculation of the electromagnetic properties of thin
superconducting films of finite size as used, e.g., in super-
conducting quantum interference devices �SQUIDs�,1 is a
complicated problem since these sensitively depend on the
shape and size of the film. This is because the currents in thin
films are not screened as in bulk superconductors, but inter-
act via the magnetic stray field they generate outside the film.
In particular, the self-energy of a magnetic vortex in thin
films �called Pearl vortex2� and the interaction between two
such vortices depend on their position in the film even for
very large films. This means a vortex is never “far from the
film edges,” in contrast to the behavior of vortices in the
bulk, whose energy, current density, and magnetic field be-
come independent of the vortex position and of the specimen
shape when the distance from the surface is much larger than
the London penetration depth �. This is because in the bulk
the factor 1 / �1+k�

2 �2� in the Fourier transforms �with wave
vector components kx, ky, kz, k�

2 =kx
2+ky

2� causes the fields
and currents to decay exponentially over the length � at large
distances from the vortex core. In thin films of thickness d
�� the effective magnetic penetration depth �=�2 /d is
larger than � and the Fourier transforms contain a factor
1 / � 1

2k�+k�
2 �� that describes also the long-range nonexpo-

nential interaction of vortices via the magnetic stray field
outside the film.

But, even films in the ideal Meissner state containing no
vortices present a difficult problem. Properties of macro-
scopic circular disks and rings in a perpendicular applied
magnetic field were calculated recently for ideal screening
��=0� �Ref. 3� and for arbitrary �.4 When this ring has a
radial slit, e.g., in a washer-shaped SQUID, the circular sym-
metry is lost, but some properties like the sheet current and
the concentration of magnetic flux into the central hole �flux
focusing� can still be calculated approximately from this cir-
cular symmetric model by forcing the current in the ring to
be zero.3,4 �This situation may be achieved by appropriate
magnetic history.� Below, we shall compare this approxima-
tion with the exact two-dimensional �2D� solution for a slit-

ted ring and find partial agreement �Sec. III�.
While the slitted ring or slitted square film with an applied

magnetic field Ha and/or transport current Ia are simply con-
nected geometries �Fig. 1, right two plots�, a closed ring or a
slitted film with the entrance of the slit short-cut by super-
conducting contacts �e.g., by weak links� present multiply
connected geometries �Fig. 1, left two plots�. These are more
difficult to calculate since the �quantized� magnetic flux �
�or fluxoid � f when ��0� trapped in this hole, and the
current I circulating around the hole, are additional param-
eters, besides Ha and Ia. In films with n holes or slots that are
fully surrounded by superconducting material, there are n
such fluxoids � fi and currents Ii that depend on the magnetic
history and that may be used to define n self-inductances
Li=� fi / Ii and n�n−1� /2 mutual inductances Mij =� fi / Ij.

This paper shows how all these �actually 3D� thin-film
problems can be solved numerically by a 2D matrix inver-
sion method allowing for nonequidistant grid points. The
presented general equations and concrete examples general-
ize previous methods that either work only for equidistant
spatial grids5 �which are not very accurate near the film
edges or near a narrow slit or small hole�, or for general grid
that did not account for finite penetration depth ��0,6 or
assumed simply connected geometry,5,6 or applied only to
circular disks or rings.3,4 In this paper I consider the electro-
dynamics of finite-sized macroscopic films that can be de-
scribed by London theory, which applies when the magnetic
field is much smaller than the upper critical field Hc2 and the
superconductor is much larger than the coherence length �.
The application to SQUIDs will be dealt with elsewhere.7 In
the present paper I thus shall not need the notions of fluxoid
quantization, phase of the superconducting order parameter,
vector potential, and voltages caused by the Josephson effect,
but some quantities computed here will be needed in the
theory of SQUIDs, e.g., self-inductance and effective area.

Our 2D matrix inversion method can be quite accurate
even when the number of grid points is not very large. For
example, in the ideal Meissner state with �=0, the computed
current density exactly yields Hz�x ,y ,0�=0 inside the film
�z=0 is the film plane�. For ��0, accurate results are ob-
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tained even when � is smaller than the spacing of our rect-
angular grid. For similar calculations using a finite-element
method and a different integral kernel �or matrix�, see Ref. 8.
Analytical4,9 and numerical10 London calculations were per-
formed in the limit of large �, i.e., for small disks with
radius R��. �Here, I shall not list numerous recent work on
mesoscopically small superconductors with vortices com-
puted from Ginzburg-Landau theory.� An elegant and fast
method that computes the currents in films from the mag-
netic field pattern measured at the film surface with high
resolution, without having to store or explicitly invert a large
matrix, is described by Wijngaarden et al.;11,12 this method
has all advantages of the direct matrix inversion method and
avoids the inversion by Fourier transform, which would re-
quire knowledge of the magnetic field pattern also outside
the film area. The static Bean model for thin films of any
shape is computed by Prigozhin using a variational
method.13

II. CALCULATION METHOD

This section describes how for thin, flat superconducting
films of any shape, also multiply connected as needed for
SQUIDs, one can calculate the static and dynamic response

to an applied magnetic field, applied electric current, and to
vortices moving in the film. In such problems the central
physical quantity is the thickness-integrated current density,
called sheet current J�x ,y�=�dzj�x ,y ,z�= �Jx ,Jy�. For films
with constant thickness d and nearly z-independent current
density j�x ,y ,z�, one approximately has J= jd, but the fol-
lowing equations are more general, applying also to films
with spatially varying thickness d�x ,y� if the typical length
of this variation is 	d.

A. Properties of the stream function

Since one has � ·J=0 in the film except at small contacts,
one can express J in terms of a scalar potential or stream
function g�x ,y� as J=−ẑ
 �g= � 
 �ẑg�= ��g /�y ,−�g /�x�.
The function g�x ,y� has several useful properties and inter-
pretations.

�1� g�x ,y� is the local magnetization or density of tiny
current loops.

�2� The contour lines of g�x ,y� are the current stream
lines. Typical g�x ,y� look like a mountain �Fig. 2�.

�3� On the boundary of the film one may set g�x ,y�=0
since the boundary coincides with a stream line.

�4� The integral of g�x ,y� over the film area equals the

FIG. 1. Current stream lines in
a thin-film square with square
hole and radial slit, and in a circu-
lar disk with circular hole and slit,
in the ideal Meissner state �=0.
Top left: Slit bridged at the edge,
circulating current I�0 flows due
to flux trapped in the hole and slit,
no applied field Ha=0. Top right
and bottom right: Slit open, ap-
plied field Ha�0, magnetic flux
enters the slit and is focused into
the hole where H�x ,y��Ha. Bot-
tom left: Closed slit, applied field
Ha�0, some current I�0 flows
such that the flux in hole and slit
is exactly zero �ideal screening�;
this state is a superposition of the
two upper states. Note that the
current near the hole circulates in
opposite direction, except in the
trapped-flux case.
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magnetic moment of the film if g=0 on its edge.
�5� The difference g�r1�−g�r2� is the current that crosses

any line connecting the two points r1 and r2.
�6� If the film contains an isolated hole or slot such that

magnetic flux can be trapped in it or a current I can circulate
around it, then in this hole one has g�x ,y�=const= I if
g�x ,y�=0 is chosen outside the film.

�7� In a multiply connected film with n holes,
n-independent constants g1 , . . . ,gn can be chosen for the val-
ues of g�x ,y� in each of these holes. The current flowing
between hole 1 and hole 2 is then g1−g2.

�8� A vortex with flux �0 in the film moves in the poten-
tial V=−�0g�x ,y�, since the Lorentz force on a vortex is
−J
 ẑ�0=−�0ẑ
 �ẑ
 �g�=�0�g�x ,y�=−�V.

�9� A vortex moving from the edge of the film into a hole
connected to the outside by a slit, at each position �x ,y�
couples a fluxoid g�x ,y��0 / I into this hole, where g�x ,y� is
the solution that has g�x ,y�= I in this hole �with closed slit;
see point 6� and g=0 outside the film.

�10� When the film has n holes, a vortex in the film at
�x ,y� couples a fluxoid gi�x ,y��0 / I into the ith hole �if this
is connected to the edge by a slit�, where gi�x ,y� is the so-

FIG. 2. The three examples of Fig. 1 for the
stream function g�x ,y� in a square film �size 2

2 in units of half-width a� with square hole
�half-width a1=0.2a� and open slit �width 0.04
a�, for 40
40 grid points, as Fig. 3. For penetra-
tion depth �=0 �ideal screening�. At the film
edges g�x ,y� goes to zero with vertical slope, and
outside the film g=0 �for ��0, the slope of g at
the edges is finite, equal to the sheet current�.
Top: Constant applied field Ha=1, open slit
meaning a current I=0; thus, g=0 in slit and hole
�like Fig. 1 top right�. Middle: Ha=0, current I
=1 flowing around the hole and closed slit due to
trapped flux, yielding g=1 in hole and slit �like
Fig. 1, top left�. Bottom: Top and middle cases
superimposed such that the flux trapped in the
hole and slit is zero �like Fig. 1, bottom left�:
weights 1 and 1.2; thus, in slit and hole g= I
=1.2aHa.
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lution exhibiting gi= I in this hole and gi=0 in all other �iso-
lated� holes and on the film edge.

B. Ampère’s law for thin films

From Ampère’s local 3D law j= � 
H, one obtains for a
current-carrying film in the plane z=0 a nonlocal 2D relation
between the perpendicular magnetic field Hz�x ,y ,0� and the
stream function g�x ,y�

Hz�r� = Ha�r� + �
S

d2r�Q�r,r��g�r�� . �1�

Here, r= �x ,y�, Ha�r� is the z component of the applied mag-
netic field, and S is the area of the film. The integral kernel
Q�r ,r�� has the meaning of the magnetic field �along z�
caused at point r in the plane of the film by a magnetic
dipole �or tiny current loop� of unit strength positioned at r�
and directed along z. From the known dipole field in any
plane z=const, one obtains formally

Q�r,r�� = Q��� = lim
z→0

2z2 − �2

4��z2 + �2�5/2 . �2�

Note that this kernel depends only on the distance
�= �r−r��. For ��0 one has Q���=−1/ �4��3�, but the inte-
gral of Q��� over the infinite plane vanishes, i.e., the total
magnetic flux of a dipole is zero in any plane z=const, also
for z→0; thus, Q��� is highly singular at �=0. For explicit
calculations one has to decide how to deal with this singu-
larity of Q.

For numerics, one has to write the integral as a sum. De-
fining a 2D grid whose N points ri fill the film area S, one
may approximate any integral over S by a sum

�
S

d2rf�r� � �
i=1

N

wif�ri� , �3�

where the wi are weights, e.g., wi=const=S /N for equidis-
tant grids that avoid the film edges; see the Appendix. The
accuracy of this numerical integration can be strongly in-
creased by choosing an appropriate nonequidistant grid, e.g.,
a grid that is denser near the boundary of S or near possible
poles or jumps of the integrand f�x ,y�. Equation �1� now
becomes

Hz�ri� = Ha�ri� + �
j

Qij wj g�r j� , �4�

with the matrix Qij =Q�ri ,r j�. Equation �4� is formally
solved by matrix inversion, i.e., by writing

g�ri� = �
j

Kij�Hz�r j� − Ha�r j�	 , �5�

where Kij is the inverse matrix

Kij = �Qij wj�−1, �6�

defined by the equation lKil�Qljwj�=�ij, with �ij =1 for i
= j and �ij =0 for i� j. Note that, in contrast to Qij, the in-
verse matrix Kij depends on the shape of the film and not

only on the difference ri−r j. For the film shapes we have
tested, all the matrix elements Kij are found to be negative,
with a sharp negative peak at i= j, and tending to zero when
ri or r j approaches the film edge; see Fig. 3 for an example.
In principle, the inverse kernel K�x ,y ; x� ,y��, integrated
over y and y� �the strip width� was introduced14 and
depicted15 earlier in the context of the magnetostatic energy
of a tilted and curved narrow superconducting strip with
pinned vortices. Then, and later,16 K�x ,y ; x� ,y�� was calcu-
lated by iterating an integral equation.

A useful expression for the matrix Qij was obtained in
terms of a Fourier series in Ref. 5, but this method works
only for equidistant grids, while for nonequidistant grids the
matrix inversion is singular. This numerical form of Qij is
thus not very accurate when one is interested in the sharply
peaked J and Hz near the film edges, or when the film ex-
hibits fine structures, e.g., a small hole or narrow slit, since
the maximum number of grid points on present personal
computers is limited to about N=5000, yielding a very large
N
N matrix Qij.

A matrix Qij that works well for any grid ri, also with
nonconstant weights wi, is obtained as follows. From Eq. �2�,
one has for i� j

Qi�j = −
1

4��ri − r j�3
= − qij . �7�

The diagonal terms Qii are obtained from the condition that
the integral of Q��� taken over the infinite area has to vanish.
Splitting this integral into the integral over the film area S

FIG. 3. Example for the inverse matrix Kij
�=K��ri ,r j� in a

square film �half-width a� with square hole �half-width a1=0.2a�
and open slit �width 0.04a�, similar to the squares in Figs. 1 and
Fig. 2. For 40
40 grid points ri and constant r j = �0.48,0.42�a,
penetration depth �=0.1a. At the film edges and in hole and slit,
one has Kij

�=0. The plotted Kij
� is approximately symmetric in i , j

since here the weights wi�const. It also shows the interaction be-
tween a vortex at �x ,y� and a vortex pair �due to the imposed
symmetry� sitting at �xj ,yj�= �0.48, ±0.42�a, cf. Eq. �29�. Its con-
tours are the current stream lines of this vortex pair. For �=0,
Kij

�=Kij looks similar, but the peak is higher and the slopes at the
edges are vertical.
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plus the integral over the infinite area S̄ outside S, and writ-
ing the first integral as a sum, we get

0 = �
�

d2r�Q�ri − r�� � �
j

Qijwj + �
S̄

d2r�Q�ri − r�� .

�8�

Defining a 2D function C�r� as an integral over the film area
or as a contour integral over the film edge

C�r� = �
S̄

d2r�

4��r − r��3
= �

0

2� d�

4�R���
, �9�

with R= �r−r�� �� is the angle between the vector R=r−r�
pointing to the point r� on the film edge and any fixed direc-
tion, say, the +x axis�, and writing Ci=C�ri�, qij =1/ �4��ri

−r j�3�, we get from �8� the diagonal term Qiiwi= j�i qijwj

+Ci. The full matrix reads thus

Qij = ��ij − 1�qij + �ij
�
l�i

qil wl + Ci�/wj . �10�

Note that the terms in �10� should not be rearranged since
qii=�. The matrix �10� is well behaved during inversion, so
one may write

Kij = ���ij − 1�qijwj + �ij
�
l�i

qil wl + Ci�−1
. �11�

For a rectangular film filling the area �x��a, �y��b, one
has explicitly from Eq. �9� �Refs. 5 and 16�

C�x,y� =
1

4�
�
p,q

��a − px�−2 + �b − qy�−2	1/2, �12�

with p ,q= ±1. Interestingly, expression �12� may be used
also for films that have a hole or slit, or several holes, or that
do not fill the rectangle completely, e.g., a circular disk with
radius �a=b. In such cases one has to omit in Eqs. �4� and
�5� the grid points that fall outside the film �but keep the
points in isolated holes; see Sec. II E�. Therefore, Eq. �5�,
with the explicit kernel Kij from Eq. �11� and Ci from Eq.
�12�, allows one to compute the stream function g�x ,y� and
thus the sheet current for thin films of arbitrary shape when
one knows the magnetic field Hz�x ,y�−Ha�x ,y� generated
inside the film by this current. Information on Hz outside the
film is not required for this stable inversion method.

C. Static solution of London equation

In superconductor films with thickness d��, the London
penetration depth, the 3D static London equation �2� 
 j
+H=0 may be integrated over the film thickness d to yield
the 2D equation

Hz�x,y� = − ��� 
 J�x,y�	ẑ = ��2g�x,y� , �13�

where �=�2 /d is the effective London depth of the film.
Eliminating Hz�x ,y� from Eqs. �1� and �13�, one obtains an
implicit equation for g�x ,y�

Ha�r� = − �
S

d2r�Q�r,r��g�r�� + ��2g�r�

= − �
S

d2r��Q�r,r�� − ��r − r����2	g�r�� ,

�14�

or with the discretized Eq. �4�

Ha�ri� = − �
j

�Qijwj − ��ij
2 �g�r j� . �15�

In it the matrix �ij
2 computes the Laplacian �2=�2 /�x2

+�2 /�y2 at r=ri of a function defined on a grid, e.g., from
the values g�r j� at r j =ri and its four nearest neighbors. Equa-
tion �15� is solved for g�x ,y� by matrix inversion

g�ri� = − �
j

Kij
�Ha�r j� , �16�

with the inverse matrix

Kij
� = �Qij wj − ��ij

2 �−1, �17�

now depending on �. This matrix inversion is the more
stable the larger is �, since finite � increases the diagonal
terms and makes the resulting Kij

� a smoother function as
compared to the case �=0 considered in Eq. �6�. Examples
for Hz�x ,y� are shown in Fig. 4 for a square with slit and
hole, while Fig. 5 shows some profiles Hz�x ,0� along the y
axis for the same square. Note that even small �=0.01a
allows Hz to partly penetrate the entire film.

D. Dynamic solution of London equation

The time-dependent behavior of superconducting films
containing vortices may be described within continuum
theory by the following realistic relation between the local
electric field E�x ,y , t� and the sheet current J and magnetic
induction B=�0H:5

E = �s�J,B�J�r,t� + �0�J̇�r,t� . �18�

Here, �s=� /d is the sheet resistivity caused by moving vor-

tices, and the second term with �=�2 /d and J̇=�J /�t is the
London term describing acceleration of Cooper pairs. The
isotropic model �18� assumes that the resistivity � depends
only on the magnitudes J and B. For example, without vortex
pinning and the Hall effect, one has free flux flow with �
=�FF��B /Bc2��n, where �n is the resistivity in the normal
conducting state and Bc2 is the upper critical field. For ther-
mally activated depinning, a realistic model is �
=�0�J /Jc�B��� with creep exponent �	1 and an in general
B-dependent critical sheet current Jc�B�. For a generalization
to anisotropic superconductors, see Ref. 5.

From the induction law Ḃ=−� 
E, which in the film

plane reduces to Ḃz=�Ex /�y–�Ey /�x, and from J=−ẑ
 �g,

one obtains �0Ḣz= Ḃz= � ��s�g	+�0��2ġ. Inserting this
into the time derivative of Eq. �1�, one finds an equation for
g�r , t�
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�
S

d2r��Q�r,r�� − ��r − r����2	ġ�r�,t� = f�r,t� − Ḣa�r,t� ,

f�r,t� = �0
−1 � ��s�r,t� � g�r,t�	 . �19�

In discretized form this becomes �cf. Eq. �15�	

�
j

�Qijwj − ��ij
2 �ġ�r j� = f�ri,t� − Ḣa�ri,t� . �20�

Inverting this, one obtains the equation of motion for
g�x ,y , t� in explicit form

ġ�ri,t� = �
j

Kij
��f�r j,t� − Ḣa�r j,t�	 , �21�

with Kij
� from Eq. �17�. In the Meissner state or for rigidly

pinned vortices, one has �s=0 and these dynamic equations
reduce to the static equations of Sec. II C.

E. Multiply connected films

Multiply connected films have one or more holes or slots
that are completely surrounded by superconducting material
and thus can trap magnetic flux. As a fundamental example I
consider here a film containing one such hole with flux
trapped such that a current I circulates around the hole when
no magnetic field is applied, Ha=0. In this case one has
g�x ,y�=0 outside the film and g�x ,y�= I in the hole, and
inside the film g�x ,y� smoothly goes from 0 to I. Generali-
zation of this example to the presence of more holes and to
Ha�0 is possible by linear superposition.

This problem may be solved in three steps. First, consider
the situation where g= I in the hole and g=0 everywhere
outside the hole. This means a sharply localized sheet current
of size I flows along the edge of the hole where this g�x ,y�
has a jump. Such an edge current formally can be caused by
an effective applied field

Ha
eff�ri� = − I �

j in hole
�Qijwj − ��ij

2 � , �22�

cf. Eq. �15�. Next, the real sheet current in the film is found
as the J=−ẑ
 �g that generates this Ha

eff�r� inside the film,
cf. Eq. �16�

g�ri� = − �
j in film

Kij
�Ha

eff�r j� for ri in the film,

g�ri� = I for ri in the hole,

FIG. 4. The magnetic field Hz�x ,y� in the plane of a thin square
with hole and slit, Ha�0, I=0 �case of flux focusing; see Fig. 1, top
right and Fig. 2, top� for ideal screening �=0 �top� and for � /a
=0.01 �bottom� �60
60 grid points; only half the square is shown�.
Note that even such small � strongly changes Hz�x ,y� inside the
superconductor, which penetrates much farther than �. The corre-
sponding profiles Hz�x ,0� are show in Fig. 5.

FIG. 5. The profiles of the magnetic field Hz�x ,0� in the thin
square of Fig. 1 �top right� taken along the x axis that passes
through the hole and slit, in units of the applied field Ha and shown
for several values of the 2D magnetic penetration depth �=�2 /d
=0, 0.01, 0.03, 0.1, 0.3, and 1 in units of the half-width a of the
square. Same case as in Fig. 4 but with more grid points �100

100�. Note that in the center of the square hole the magnetic field
is enhanced by a factor of 3 when �=0, Hz�0,0��3Ha �flux focus-
ing�; in the narrow slit Hz�0.4a ,0�=7.4Ha is even higher. Finite �
reduces this enhancement and the spatial variation of H�x ,0�.
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g�r� = 0 outside the film. �23�

Finally, the real magnetic field in the entire plane z=0 is
obtained as the field caused by this current, cf. Eq. �4�

Hz�ri� = �
j

Qijwjg�r j� , �24�

where now the sum is over all r j in the film and in the hole.
This method works for any value of � and yields continuous
functions g�x ,y� and Hz�x ,y� when ��0. When �=0 �ideal
screening� the resulting Hz�x ,y� has sharp jumps at the film
edges since in that case Hz exactly vanishes inside the film
and has sharp infinities just outside the film edges �also in the
hole�, where Hz�� −1/2 �� is the distance from the edge�. The
current density in the film for �=0 diverges similarly, but on
the inner side of the edges, where g��1/2 and J�� −1/2. For
��0 the sheet current at the edges is finite and the infinities
of Hz are logarithmic on both sides of all edges.

F. Individual vortices in the film

The sheet current, magnetic field, and energy of vortices
in the film is obtained by linear superposition from the solu-
tion for one vortex and the interaction energy of a vortex
pair. In a film of finite size all these results explicitly depend
on the vortex positions and not only on their distances due to
the strong effect of the film edges. The existence of one
vortex at position rv modifies the static London equation of
Sec. II C to give �2� 
 j+H= ��0 /�0�ẑ �2�r−rv�, where
�0=h /2e=2.07
10−15 T m2 is the quantum of flux and
�2�r� is the 2D delta function. Equations �13� and �14� then
become

Hz�r� − ��2g�r� = �0
−1�0�2�r − rv� , �25�

�
S

d2r��Q�r,r�� − ��r − r����2	g�r�� = �0
−1�0�2�r − rv�

− Ha�r� . �26�

Writing the integral as a sum yields

�
j

�Qijwj − ��ij
2 �g�r j� = �0

−1�0�2�ri − rv� − Ha�ri� .

�27�

To invert this and find g�ri� and the vortex interaction, we
have to assume that the vortex sits on a grid point, rv=r j.
Averaging over the grid cell centered at r j and having an area
wj replaces �2�ri−r j� by �ij /wj. Inverting this and perform-
ing the sum containing �ij then yields the stream function
caused by a vortex positioned at r j and by the applied field
Ha�ri�

g�ri� = �0
−1�0Kij

�/wj − �
l

Kil
�Ha�rl� , �28�

with the inverse matrix Kij from Eq. �17�; see also Eq. �16�.
A second vortex sitting at ri sees the potential −�0g�ri�;

the interaction energy between two vortices positioned at ri
and r j is thus

V�ri,r j� = Vij = Vji = − �0
−1�0

2Kij
�/wj . �29�

This potential is repulsive �positive� and sharply peaked at
ri=r j, since all the Kij

� are negative. One can show that the
matrix Kij

� /wj is indeed symmetric in i , j, Kij
� /wj =Kji

� /wi. For
�=0 this is directly seen from the definition, Eq. �6�, writing
�ij =lKil�Qljwj�=l�Kil /wl��wlQljwj�, which shows that
Kil /wl is the inverse of the symmetric matrix wlQljwj and is
thus symmetric itself. For ��0 one also has to prove that
the operator �ij /wj is symmetric; see the Appendix.

When the film contains several vortices positioned at
some of the grid points r j, then the sum over these r j has to
be performed in the first term of Eq. �28�, and the total en-
ergy of this vortex system becomes

FIG. 6. Thin superconducting square �half- width a� with central
square hole �half-width a1� in applied field Ba=�0Ha�0 and with
no circulating current �I=0, case of flux focusing�. Plotted are the
magnetic field B�0�=�0Hz�0,0� in the center of the hole �top� and
the magnetic flux � inside the hole �bottom�, for squares without
slit �left, versus a1 /a� and with a narrow radial slit �right, versus
1−a1 /a�, like in Fig. 1, for several values of the 2D penetration
depths � /a=0, . . . ,�. For �=0 and a1 /a→0, both the minimum
field and the average field in the hole diverge, 2B�0� /Ba

�� /4a1
2Ba�0.80a /a1; see also the corresponding Figs. 15 and 16

of Ref. 4 for rings. For small holes, a1�a, the presence of a slit
reduces this field enhancement.
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F = �
i

Fs�ri� + �
j�i

Vij + �
i

Va�ri� �
1

2�
j,i

Vij + �
i

Va�ri� ,

�30�

where the sums are over the vortex positions i , j, Fs�ri�
� 1

2Vii is the self-energy of the vortex, Vij is the vortex in-
teraction �29�, and Va�ri�=lKil

�Ha�rl� is the potential caused
by the applied field Ha�r�. For constant Ha the external po-
tential Va�ri�=HalKil

� has the shape of a negative trough
which is zero along the film edges. The vortices are thus
pulled into the film by this potential.

G. Self-energy of a vortex in the film

In contrast to vortices in large bulk superconductors, the
self-energy of a vortex in a thin film depends on the film size
and shape and on the vortex position, even when it is far
from the film edges. Calculating this vortex energy from the
2D current density in the film and the 3D magnetic stray field
outside the film would be a formidable task. Fortunately, a
much simpler calculation is possible using our above results
and the known Lorentz force �0�g�r� on the vortex: In a
thought experiment, we move a first vortex from the film
edge to its final position ri. At the edge the energy of this
vortex, and also the interaction with other vortices needed
later, are zero. Then, its energy increases according to the
integrated Lorentz force that originates from the interaction
of this vortex with its own sheet current �more precisely:
with the film edges, or with its images if an image method
can be used, but this argument will not be required here�.
When the vortex has reached position ri its energy is just its
self-energy Fs�ri�. Now, move a second vortex from the edge
and merge it with the first one. The self-energy of this new
vortex, 4Fs�ri�, is composed of the two self-energies and the
energy needed to move the second vortex against the sheet
current of the first one, equal to the interaction energy Vii,
Eq. �29�. From this we obtain the self-energy Fs�ri�=Vii / �4
−2�= 1

2Vii used in Eq. �30�.
This result is exact within our numerical method, but in

real films the self-energy depends on the logarithm of the
vortex core radius ��, the coherence length. In our numerics
� is effectively replaced by some cutoff length of the order of
the grid spacing. If required, an improved consideration of
the vortex core is possible if its radius exceeds the local grid
spacing. The core shape may then be taken from the GL
solution for infinite films.17 If � is smaller than the grid spac-
ing, the correct self-energy is slightly larger than 1

2Vii, by a
position-independent constant.

H. The fluxoid in films

The fluxoid � f inside a given closed path S inside the film
is defined as the magnetic flux through this loop plus the 2D
penetration depth � times the path integral of the sheet cur-
rent, � f /�0=�S dxdyHz�x ,y�+��dS J�x ,y�. When g�x ,y�
and Hz�x ,y� are given on a rectangular grid, the integration
path is conveniently chosen along a closed rectangle which
runs in the middle between the grid points �see the Appen-

dix�. The components Jx and Jy are then obtained from the
difference of the values of g�x ,y� at neighboring grid points,
while the flux is the sum of wkHz�xk ,yk� over all points k
inside this loop �see the Appendix�. The fluxoid obtained in
this way from our solutions is indeed independent of the
chosen path to within 4 to 5 significant digits, confirming
thus that the solutions g�x ,y� and Hz�x ,y� are accurate also
for finite � and even when ��a; see Figs. 7 and 8 below.
Surprisingly, the obtained �-dependent g and Hz are quite
accurate even when � is much smaller than the spacing of
the numerical grid �typically �a /50�, down to � /a=10−4.
Besides this, the solutions for �=0 are very accurate, with
Hz=0 inside the film; see Fig. 5.

III. EXAMPLE: FLUX FOCUSING

To illustrate how this method works, and to check previ-
ous approximations of a slitted ring by a full ring,3,4 I discuss
here the case of flux focusing in some detail. Consider a
thin-film square of half-width a with a central square hole of
half-width a1 �a1� �x��a, a1� �y��a� without slit, or with a
narrow radial slit of width ��a extending along the x axis
from x=a1 to x=a �Fig. 1�. The current I circulating around
the hole is forced to zero either “artificially” by setting the
stream function g�x ,y�=0 everywhere outside the supercon-
ducting film, i.e., also in the hole and slit, or, naturally, by
cutting a slit that makes I=0. A uniform magnetic field Ba
=�0Ha applied along z is screened inside the film �or partly
screened if the 2D penetration depth is �=�2 /d�0 for
thickness d��� by a sheet current J=−ẑ
 �g= � 
 �ẑg�
= ��g /�y ,−�g /�x� that circulates clockwise near the edges
and anticlockwise near the hole; see Fig. 1 �top right�. This
screening current causes a magnetic field in the hole �and in
the slit� that can be much higher than Ha; see Figs. 4 and 5.

FIG. 7. The fluxoid � f trapped in the square hole of a thin
square without radial slit in the flux-focusing case of Fig. 6. This
figure is very similar to Fig. 14 of Ref. 4 for rings. For small and
large � nearly the same limiting curves are reached as for rings.
The dots show the large-� limit for rings with radii a1 and a:
4a1aBa /� f �2a1a ln�a /a1� / �a2−a1

2�.4 For �=0 this � f coincides
with the � in Fig. 6 �bottom left�.
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This field enhancement �or flux focusing� is plotted versus
the relative hole size a1 /a in Fig. 6. For squares with no slit
our numerics yields for small holes with a1 /a�1 and ideal
screening ��=0� for the central field B�0�=�0Hz�0,0�
�0.40Baa /a1, and for the magnetic flux in the hole �
�0.80�4a1

2Ba�a /a1, i.e., both values diverge as 1/a1 when
a1→0. This result is very similar to the flux focusing in
circular rings depicted in Figs. 15 and 16 of Ref. 4. In par-
ticular, compared to a ring with radius a and hole radius a1,
the limit �=0 �where the flux � equals the fluxoid � f� is
almost identical both for B�0� /Ba and for the trapped flux
plotted as the effective area Aeff=� f /Ba referred to the hole
area. Namely, for small holes at �=0 one has for squares
Aeff /4a1

2�0.80a /a1 and for circular rings Aeff /�a1
2

= �8/�2�a /a1=0.81a /a1 �exact result3,4,18�.

The corresponding results for the fluxoid � f in squares
without slit are shown in Fig. 7. As expected, � f is indepen-
dent of the integration path around the hole, which was cho-
sen as any concentric square of half-width between a1 and a.
Again, these � f are very similar to those for circular rings
shown in Fig. 14 of Ref. 4. For �=0 �where � f =�� they
agree closely, as discussed above. But, even for large �	a
and all hole sizes one has for rings4 Aeff=2�a2

−a1
2� / ln�a /a1�, which is also a good approximation for the

square; see the dots in Fig. 7.
Our 2D method allows us to check this approximation of

slit-free flux focusing by considering squares or rings with
slit. The results for the square with slit are depicted in Fig. 6
�B�0� and � plotted versus 1−a1 /a	 and Fig. 8 �� f for two
different integration paths�. One can see that for large holes
these realistic B�0�, �, and � f are similar to those of slit-free
squares. However, for small holes a1 /a�0.2, the field en-
hancement is considerably weakened by the presence of a
slit, in particular for small � /a. For �=0 the enhancement
factor no longer diverges as 1/a1 but tends to saturate �or
possibly diverges very weakly, as one over some logarithm,
as is the case for finite � in the absence of a slit�. This means
that the slit changes the screening currents near small holes
considerably, and thus reduces the field enhancement. As can
be seen from the curves in Fig. 6, the presence of a slit has
qualitatively the same effect as an increased value of �. This
finding applies even though the width � of our slit was very
small, � /a�1/500 and less.

By the same token, the presence of a slit changes the
fluxoid � f, Fig. 8. Moreover, the fluxoid now depends on the
integration path. Since this path has to run inside the super-
conductor, one has to bridge the slit by a narrow supercon-
ducting bridge. The current through this bridge by definition
is I=0 in this flux-focusing case. It turns out that the result-
ing � f depends on the position of this bridge. In Fig. 8 the
two extreme cases are shown when this bridge is chosen at
x=a1 �where the slit emerges from the hole� and at x=a
�where the slit exits the square�. For large holes these two
choices yield similar � f, but for small holes the large inte-
gration path yields a larger fluxoid than the small path.

One reason for this difference is that the fluxoid for the
large path includes the magnetic flux �slit inside the slit. For
�=0 one can show that �slit is very large and almost does
not decrease when the slit width � is decreased. From the
simplified model of two long parallel strips �length l	2a�
with borders at y= ±a and y= ±� /2 in perpendicular field
Ba, one finds for narrow slits the trapped flux7,19

�slit = �alBa/ln�8a/�� for � � a . �31�

For our squares with small hole, we put the slit length l�a
and estimate the flux in the slit as �slit=�a2Ba / ln�8a /��,
which depends weakly on the slit width �. Comparing this
with the flux in small holes from above, �hole= �8/��a1aBa,
we get the ratio

�slit

�hole =
�2

8 ln�8a/��
a

a1
� 0.15

a

a1
, �32�

when � /a is of the order 1 /500. This means, for small holes
with relative width a1 /a�0.15, the magnetic flux even in a

FIG. 8. The fluxoid � f trapped in the square hole of the square
of Fig. 7, but now with a narrow radial slit. Since the integration
path of the fluxoid must run inside the superconductor, the path has
to cross the slit by a narrow bridge, through which no current flows
since I=0 in this flux-focusing case. The plot shows the fluxoid
when this bridge is chosen at x=a1 �where the slit enters the hole,
top� and at x=a �where the slit exits the square, bottom�. For large
holes these two � f are similar, but for small holes the larger inte-
gration path �bottom� yields a larger fluxoid since the integration
includes the not-negligible magnetic flux inside the narrow slit. For
�=0 the fluxoid of the smaller path �top� coincides with the flux �
of Fig. 6 �bottom right�.

THIN SUPERCONDUCTORS AND SQUIDs IN… PHYSICAL REVIEW B 72, 024529 �2005�

024529-9



very narrow slit exceeds the flux in the hole. This finding
explains why for small holes our flux-focusing results for
slit-free and slitted disks differ considerably, while they
agree for large holes.

To check this further, we computed the magnetic flux �
and the fluxoid � f for a square with no hole, but with a
narrow radial slit ranging from x=0 to x=a on the x axis. We
bridge this slit by a narrow superconducting bridge centered
at x=a2, 0�a2�a; see Fig. 9. The contour within which �
and � f are calculated is a concentric square passing through
this bridge at x=a2. We consider the case of flux focusing
�Ha�0, I=0�; thus, the current through the bridge is zero. In
Fig. 10 the resulting � and � f are plotted versus a2 /a for
� /a=0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, and �. Note that
the scales differ by a factor of 4. As expected, for �=0 �ideal
screening� one has � f =�, and for � /a	1 �full penetration�
�=4a2

2Ba. Interestingly, for � /a�1, one has approximately
� f ����ca2 /a�4a2Ba, where the constant c�0.08 slightly
depends on the slit width. This proportionality of the flux to
the slit length within the square path confirms that the mag-
netic flux in the narrow slit is approximately proportional to
its length, and that Eq. �31� �derived for a long double strip�
is a good approximation for our radial slit in the square.

IV. CONCLUSION

In this paper I presented a method that allows calculation
of the 2D distributions of the sheet current J�x ,y� and mag-
netic field component Hz�x ,y� �and, of course, the full 3D
magnetic field� for thin, flat superconductors of arbitrary
shape. If the film thickness is d�� �the London depth�, our
method accounts for the 2D magnetic penetration depth �
=�2 /d, which may have any value, 0����. The sheet

current is expressed by the scalar potential �or stream func-
tion� g�x ,y�, for which we list ten useful properties in Sec.
II A. The statics and dynamics of superconductors in the
Meissner state, or with pinned and depinning vortices de-
scribed by a complex or nonlinear resistivity, can be calcu-
lated. It is shown how this is generalized to multiply con-
nected film shapes, e.g., squares or disks with a hole or
closed slot, or with several such holes, slots, slits. For indi-
vidual 2D vortices in the film we give their mutual interac-
tion and self-energy, which both depend on the specimen
shape. The coupling of part of the magnetic flux of a moving
vortex into a hole or slit is expressed in terms of the stream
function g�x ,y�, which is computed and depicted for some
basic examples.

If a slitted square or circular disk is used as a SQUID, the
applied magnetic field and applied currents induce a signal
across the weak link that bridges the slit, and the moving
vortices cause a noisy signal.1 The SQUID signal in principle
can be calculated by our 2D method; see Ref. 7 for a detailed
theory of such SQUIDs and for the 1D problem of a long
double strip that models a linear SQUID.

As a useful example for application of our 2D method, we
consider in Sec. III the phenomenon of flux focusing, which
occurs when the total current circulating in a square or cir-
cular disk around a central hole is zero, I=0. We compare the
“ideal case” when the disk has no slit �I=0 can then be
achieved by appropriate magnetic history� with the realistic
situation where a radial slit forces I=0. We find good agree-
ment for large holes, but for squares with small central hole
and radial slit, flux focusing is reduced by this slit. More
applications will be published.

FIG. 9. The current stream lines in a thin superconductor square
��x��a , �y��a� with radial slit running at y=0 from x=0 to x=a,
with a superconducting bridge at x=a2=0.35a. Shown is the flux-
focusing case Ha�0, I=0, i.e., no current crosses the bridge.
� /a=0.01. The dots mark the numerical grid of 80
80 points used
for this plot.

FIG. 10. The fluxoid � f and magnetic flux � inside a concentric
square of half-width a2 passing through the bridge �at x=a2� of the
slitted square of Fig. 9, plotted versus a2 /a for several values � /a.
For better presentation � f is shown 4 times larger than �, and � is
plotted versus 1−a2 /a. For �=0 one has � f =�. For � /a	1 one
has �=4a2

2Ba �dashed line, full penetration�, and � f

��a2 /a�0.6a2Ba.
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APPENDIX: NUMERICAL TRICKS

For the computation of the stream function g�r�=g�x ,y�
with symmetry g�x ,−y�=g�x ,y�, −a�x�a, 0�y�b, a 2D
grid of n points rk= �xk ,yk� with weights wk, k=1, . . . ,n, is
chosen that covers the basic area 2a
b �upper half of the
rectangular film 2a
2b�. For simplicity we chose a rectan-
gular grid rij = �xi ,yj� with i=1, . . . ,2nx and j=1, . . . ,ny, e.g.,
the equidistant grid xi=−a+ �i− 1

2
�a /nx, yj = �j− 1

2
�b /ny with

constant weights w=2ab /n, n=2nxny. A better choice is a
nonequidistant grid that is denser near the edges of the thin
film. For example, for a rectangular film with rectangular
hole with borders at x= ±a1, y= ±b1 and a narrow slit along
y=0 �see Fig. 1�, a possible choice for the yj and weights wyj
�and correspondingly for the xi and wxi� is yj =b1f�v j�, wyj

=b1f��v j� /ny1, v j = �j− 1
2

� /ny1 for j=1, . . . ,ny1, and yj =b1

+ �b−b1�f�v j�, wyj = �b−b1�f��v j� / �ny −ny1�, v j = �j−ny1

− 1
2

� / �ny −ny1� for j=ny1+1 , . . . ,ny, with any function f�v�
defined in 0�v�1 and having a derivative f��v�=df /dv
that at v=0 and v=1 is zero or small. We choose, e.g.,

f�v� = �3v2 − 2v3�c + �1 − c�v ,

f��v� = 6v�1 − v�c + 1 − c , �A1�

with 0�c�1; c=0 means equidistant yj with constant
weights wyj, and c=1 �highest accuracy� means that the dis-
tances yj+1−yj and weights wyj vanish linearly at y=0, y
=b1, and y=b. One can show that  jwyj��yj���0

b��y�dy for
any sufficiently smooth function ��y�.

For our 2D grid rij = �xi ,yj� the weights are wij =wxiwyj.
This 2D counting of grid points is required for graphics and
for computing derivatives, e.g., �g�x ,y� /�x and
�2g�x ,y� /�x2. However, for computation of 2D integrals or

for matrix operations, a 1D counting of the grid points is
required: rij =rk= �xk ,yk�, wij =wk, k= i+2nx�j−1�=1, . . . ,n,
n=2nxny, and any 2D function like g�x ,y� is represented as a
vector gk=g�xk ,yk�. The magnetic moment of the film, Sec.
II A, is then m=�g�r�d2r�kgkwk.

The magnetic flux through a closed rectangular path run-
ning between the grid points �along x and y values obtained
from the above formulas for xi, yi by using half-integer val-
ues for i, j, e.g., j=7/2� is then �=�0kwkHz�xk ,yk�, where
the sum is over all points k inside this loop.

Particular attention requires the computation of the La-
placian �2 acting on g�x ,y� �e.g., in Eq. �13�	, and computed
by multiplication by a matrix �kl

2 �e.g., in Eq. �15�	. This
operator should contain the information that g�x ,y�=0 out-
side and on the outer edges of the rectangular film �x��a,
�y��b, and that at y=0 one has �g�x ,y� /�y=0 due to the
symmetry g�x ,−y�=g�x ,y�. A 2D method that in principle
applies to any 2D grid rk= �xk ,yk� computes �kl

2 as the in-
verse of the Green function G�r ,r�� satisfying �2G�r ,r��
=��r−r�� and the conditions that G�r ,r��=0 for r on the
outer edge of the rectangle 2a
2b and having even symme-
try with respect to y. This G�r ,r�� may be expressed by an
infinite sum, with alternating signs, of functions ln�r−r�
−Rmn� / �4��, where the Rmn are the vectors of a rectangular
lattice with spacings 4a and 2b. The resulting matrix indeed
works; however, it is less accurate �and takes much more
computation time� than the simple 1D method of computing
�2g=�2g /�x2+�2g /�y2 from g�xi ,yj� and the values
g�xi±1 ,yj±1� at the four neighboring points. With our non-
equidistant grid we need for this the formula for f ��xi�
=�2f /�x2 at x=xi. Writing f�xi−1�= f−, f�xi�= f0, f�xi+1�= f+,
h1=xi−xi−1�0, h2=xi+1−xi�0, one has

f ��x0� � f−
2/h1

h1 + h2
− f0

2

h1h2
+ f+

2/h2

h1 + h2
. �A2�

The boundary and symmetry conditions for g�x ,y� allow us
to define the required values of g on the grid lines lying one
grid spacing outside the basic area −a�x�a, 0�y�b: x0
=−2a+x1, xnx+1=2a−xnx

, y0=y−1, yny+1=2b−yny
, g�x0 ,yj�

=g�xnx+1 ,yj�=g�xi ,yny+1�=0, g�xi ,y0�=g�xi ,y1�.
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