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We study a strongly correlated fermionic model with attractive interactions in the presence of disorder in two
spatial dimensions. Our model has been designed so that it can be solved using the recently discovered
meron-cluster approach. Although the model is unconventional it has the same symmetries as the Hubbard
model. Since the naive algorithm is inefficient, we develop an algorithm by combining the meron-cluster
technique with the directed-loop update. This combination allows us to compute the pair susceptibility and the
winding number susceptibility accurately. We find that the s-wave superconductivity, present in the clean
model, does not disappear until the disorder reaches a temperature dependent critical strength. The critical
behavior as a function of disorder close to the phase transition belongs to the Berezinky-Kosterlitz-Thouless
universality class as expected. The fermionic degrees of freedom, although present, do not appear to play an
important role near the phase transition.
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I. INTRODUCTION

A variety of systems show quantum coherence over large
distances at low temperatures. Superfluidity and supercon-
ductivity are two striking physical phenomena showing such
behavior, which have been extensively studied over the
years. However, when correlations between the microscopic
degrees of freedom become strong it is difficult to study
these phenomena theoretically from first principles. The cal-
culations must take into account strong fluctuations over
many length scales which is only possible numerically.
When the microscopic degrees of freedom involve bosonic
variables one can usually devise efficient quantum Monte
Carlo methods to solve the problem.1 On the other hand, it is
still difficult to study a variety of models from first principles
when the microscopic theory is fermionic. For example, the
critical temperature below which superconductivity is seen in
the well-known attractive Hubbard model was only deter-
mined recently,2 using the determinantal Monte Carlo
method3,4 and on lattices only as large as 18�18. The main
approaches to dealing with fermionic systems can be viewed
as arguments that universality allows one to replace the mi-
croscopic theory with an effective low energy theory. The
resulting effective theory is usually either a Fermi-liquid
theory, a BCS-type mean-field theory, or some bosonic
theory.5 A key element in furthering microscopic understand-
ing, then, is to validate the universality arguments and deter-
mine the low-energy effective theory; in practice, this has
proved very difficult for systems with strong correlations.

Real systems usually contain impurities. Thus, in addition
to understanding superconductivity in clean systems, the ef-
fects of impurities in the form of disorder need to be incor-
porated in the studies. In certain systems like two-
dimensional superconducting films and Josephson-junction
arrays, it has been discovered that superconductivity can be
destroyed by tuning parameters such as the film thickness.6,7

Since these tuning parameters change the effective strength
of the disorder, it is believed that the superconductor-to-
insulator �SI� phase transitions in these systems can be un-
derstood as being driven by disorder. Among the models

used to explain the experiments, the attractive Hubbard
model with disordered chemical potential is one well-known
starting point.8,9

The relevance of disorder for superconductivity was first
addressed by Anderson,10 where he argued that superconduc-
tivity is insensitive to perturbations that do not destroy time
reversal invariance. Using a BCS type trial wave function
Ma and Lee11 showed that superconductivity can persist even
below the mobility edge. Clearly, these studies suggest that
an SI transition is an effect of strong disorder which makes it
a difficult subject for analytic work. Fisher et al.12 have ar-
gued that the effective theory describing the transition is
bosonic, and then developed a deeper understanding of the
purely bosonic superfluid-insulator transition using renor-
malization group arguments along with scaling. A variety of
quantum Monte Carlo work has been done over the years on
these purely bosonic microscopic theories.13–18 If fermions
do not play an important role near the transition, it is likely
that these studies will also be useful in understanding the
universality of the fermionic SI transition. Recently determi-
nant quantum Monte Carlo studies of the attractive �fermi-
onic� Hubbard model with disorder have been performed,9

which show that it is indeed possible to drive an SI transition
by increasing the disorder and, as expected, the critical dis-
order is large. However, the system sizes explored were quite
small, 8�8. Other studies of disorder effects also involved
only very small systems.19,20

Motivated by the physics of the SI transition, in this paper
we study the effects of disorder in a strongly correlated fer-
mionic model. Our model is unconventional and has been
built so that it can be studied using the recently discovered
meron-cluster algorithms.21,22 These algorithms are so effi-
cient that lattices as large as L=128 were studied recently,
and it was shown with great precision both that the low
temperature phase of the clean model is indeed supercon-
ducting and that the finite temperature phase transition be-
longs to the Berezinski-Kosterlitz-Thouless �BKT� universal-
ity class.23,24 Here we use the same model to explore the
effects of disorder on superconductivity and, in particular,
focus on the role of fermions. Unfortunately, the naive ex-
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tension of the earlier algorithm becomes inefficient in the
presence of disorder; hence, we also develop an algorithm by
combining the meron-cluster formulation with the directed
loop algorithm.25 This algorithm allows us to measure the
relevant observables very accurately.

Our paper is organized as follows: In Sec. II, we introduce
our model and define the observables that we use later. In
Sec. III, we rewrite the model in a cluster representation.
Sec. IV explains the directed-loop algorithm we have devel-
oped. Section V contains our results, and Sec. VI contains
our conclusions and directions for the future.

II. THE MODEL

The model we consider in this paper was motivated by the
ability to solve the fermion sign problem using the meron-
cluster algorithm.22 The Hamiltonian of the model can be
written as

H = �
�ij�

Hij
�2� + �

i

Hi
�1�, �1�

where Hij
�2� consists of all the nearest neighbor interactions

between sites i and j on an L�L square lattice and Hi
�1�

includes interactions on the site i. The term Hi
�1� is given by

Hi
�1� = �U + J3 − 1��ni↑ −

1

2
��ni↓ −

1

2
� −

�i

2
�ni↑ + ni↓ − 1� ,

�2�

where U represents the Hubbard interaction between spin-up
and spin-down electrons and �i is the local chemical poten-
tial, through which disorder is introduced in the model. The
term Hij

�2� is unconventional and is given by

Hij
�2� =

1

4
�cis

† cjs + cjs
† cis���1 + J3��nij

2 − 4nij + 3�

− �1 − J3��nij − 2�	 + �Si · S j + Ji · J j − �1 − J3�Ji
zJj

z	

−
1 + J3

4
�ni↑ −

1

2
��ni↓ −

1

2
��nj↑ −

1

2
��nj↓ −

1

2
� . �3�

Here cis
† and cis are the usual creation and destruction opera-

tors of spin s at site i, n=c†c, and nij =�snis+njs. Si is the
spin operator on site i defined by

Si =
1

2�
s,s�

cis
† �� ss�cis�, �4�

where �� is the Pauli matrices. Ji is the pseudospin operator
defined by

Ji
+ = �− 1�ix+iyci↑

† ci↓
† ,

Ji
− = �− 1�ix+jyci↓ci↑, �5�

Ji
z = 1

2 �ni↑ + ni↓ − 1� .

J+ and J− are related to pair creation and annihilation
operators. In our notation ix�y� refers to the x�y� component of
the site i.

Although the Hamiltonian we study is unconventional, it
has all the relevant symmetries of the Hubbard model when
J3=1. In particular when �=0 the Hamiltonian is invariant
under the SU �2� spin and SU �2� pseudospin transforma-
tions. When ��0, the pseudospin symmetry is broken to the
U �1� fermion number symmetry. One can introduce repul-
sion or attraction by making U sufficiently positive or nega-
tive, respectively. The important difference with the Hubbard
model is that when U=0 the model is still strongly interact-
ing and by setting J3�1 we can break the pseudospin sym-
metry. Further, the model simplifies in the U→−� limit; in
this limit the model can be mapped to the simple Hamil-
tonian,

H = �
�ij�

Ji · J j + �J3 − 1�Ji
zJi

z. �6�

Clearly, when J3=1, one obtains the antiferromagnetic
Heisenberg model involving pseudospins, while J3=0 leads
to the XY model. When J3=1, U→�, and �i=0 one gets the
antiferromagnetic spin model

H = �
�ij�

Si · S j . �7�

An interesting aspect of this model is that the fermion sign
problem can be solved using the meron-cluster approach for
0�J3�1 when U�0 at any value of �i. Also when J3=1
the sign problem can be solved when U�0 when ��U/2.
Thus, we think the model offers a rich phase diagram and
deserves to be investigated. In this paper we will consider
−��U�0 and investigate the physics when J3=0 and J3
=1. We introduce disorder through �i=�+	�i where 	�i is
a random number distributed uniformly from −
 to 
.

In order to probe superconductivity in this system we will
focus on two observables. The first is the pair susceptibility
defined as

�p =
T

V
�
i,j



0

1/T

d�

0

1/T

d���Pi�,j��
+ + Pi�,j��

− � , �8�

where V is the spatial volume, T is the temperature, and

Pi�,j��
+ =

1

4Z
Tr�e−�−��Hci↑

† ci↓
† e−��−���Hcj↓cj↑e

−��H� �9�

is the pair correlation with Pi�,j��
− = P

j�−���,i�−��
+ . The second

is the winding number susceptibility defined as

�w =
�

4V
�
i,j



0

1/T

d�

0

1/T

d���Ci�,j��
�x� + Ci�,j��

�y� � , �10�

where

Ci�,j��
��� ��� =

1

Z
Tr�e−�−��HJ��i�e−��−���HJ��j�e−��H	 �11�

is the current-current correlation function where J��i� is the
conserved fermion current,
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J��i� =
1

2 �
s=↑,↓

�cis
† c�i+�̂�s − c�i+�̂�s

† cis� , �12�

at the site i in the �̂= x̂ , ŷ direction.
In order to estimate the importance of fermions we will

also look at the density of singly occupied sites defined as

ns =
1

VZ
�

i

Tr�exp�− H��ni↑ + ni↓ − 2ni↑ni↓�	 �13�

and at the total density of electrons defined by

n =
1

VZ
�

i

Tr�exp�− H��ni↑ + ni↓�	 . �14�

A comparison of ns and n will tell us how many sites have
formed local pairs.

III. CLUSTER REPRESENTATION

It is possible to rewrite the partition function of our model
in discrete time in terms of a statistical mechanics of closed
loops on a space-time lattice.22 We first divide , the length
in the Euclidean time direction, into M equal steps such that
�= /M. Interactions between nearest neighbor sites are in-
troduced in a checker-board type manner, so that on each
time slice every site interacts with a unique neighbor. This
then introduces four extra time slices for every � time step.
In the cluster representation the nearest neighbor interactions
occur in the form of three types of bond configurations on
space-time plaquettes as shown in Fig. 1. Their weights are
given by

�A = e�J3/4�e−�J3/2 + e−�/2�/2,

�H = e�J3/4�− e−�J3/2 + e�/2�/2, �15�

�E = e�J3/4�e−�J3/2 − e−�/2�/2.

Given a configuration �C� of bonds, one can connect them
together to form many closed loops; we denote them by
C� ,�=1,2 , . . . ,Nc. The partition function can then be writ-
ten as

Z = �
C
�

�

��C����
P

�P�� . �16�

where �P is the weight of the bond associated with the
plaquette P and takes one of the values given in Eq. �15�,

��C�� = 2 cosh� �

8
�C�

� + ��C��2e��/2��U/4�SC� �17�

is the weight corresponding to each loop C� that arises due to
the fermionic degrees of freedom associated with the loop.
Here

SC�
� �

�i���C�

1, �18�

where the sum is over all space–time points that belong to
the cluster C�. Thus SC�

is just the size of the cluster. On the
other hand,

�C�
� �

�i���C�

�iwi�, �19�

where wi� is +1 when the cluster is going forward in time and
−1 when it is going backward in time at the site i�. If the
cluster moves horizontally, our convention is that the tempo-
ral direction is reversed. In order to determine wi� one can
start from any point and traverse the cluster in either direc-
tion. Note that

Wt�C�� � �
�i���C�

wi�. �20�

is the temporal winding of the cluster C�. Finally, the factor
��C�� in Eq. �17� is a sign factor associated with the cluster
topology, that arises due to the fermion permutation signs.22

Following Ref. 22 we call the cluster a meron if ��C��=−1.
If Nh�C�� is the number of horizontal hops in the cluster C�,
then the cluster is a meron if and only if Nh�C�� /2+Wt�C��
is even. An example of a bond configuration in two dimen-
sions is shown in Fig. 2.

In the cluster representation it is easy to show that

�Pi�,j��
+ + Pi�,j��

− � = ��
�

2 cosh� �

8
�C�

�i�,j����
��C��

	�i�;j����C�� ,

�21�

where 	�i�;j����C�
imposes the restriction that both the space–

time sites �i�� and �j��� belong to the cluster C� and

FIG. 1. �Color online� The three bond configurations on space–
time plaquettes and their weights. The values of the weights are
given in Eq. �15�.

FIG. 2. �Color online� An example of a bond configuration in
one space and one time dimension. The configuration contains five
clusters.
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�C�

�i�,j��� = �
�k����C�

sk��
�i�,j����iwk��, �22�

where sk��
i�,j�� is +1 while going from �i�� to �j��� and −1

while continuing from �j��� to �i��. The winding number
susceptibility is given by

�w =
�

4V
�
�
���

�

W��
2 cosh� �

8
�C�

�
2��C��

+ �
����

W��W��� sinh� �

8
�C�

�sinh� �

8
�C��

�
��C����C���

�� ,

�23�

where W�� refers to the spatial winding of the loop clusters
along the spatial direction �. The density of single occupa-
tion turns out to be

ns =
1

4MV��
�

��C��SC�
2e��U/4�SC�

��C�� � �24�

and is a measure of the number of unpaired fermions.

IV. DIRECTED-LOOP ALGORITHM

A simple Monte Carlo algorithm for the current problem
involves visiting every interaction plaquette and updating the
bond configuration on it by replacing it with one of the three
choices shown in Fig. 1. Since the Boltzmann weight also
depends on the structure of the loops formed by these bonds,
the decision involves figuring out the connectivity of the
sites of the plaquette �referred to as P ,Q ,R ,S� due to the
bonds on other plaquettes. This connectivity can be one of
three types as shown in Fig. 3. Thus, choosing a interaction
involves finding weights of nine configurations �three bond
configurations for three types of connectivity� and the bond
configuration can be found by using a heat bath or a Me-
tropolis step.

We have found that in the presence of a chemical poten-
tial �, this simple algorithm is inefficient. This behavior can
be understood by noting that a chemical potential is similar
to a magnetic field in a a quantum spin model and in the
context of quantum spin models there is evidence that this
type of naive algorithm becomes inefficient in the presence
of magnetic fields.26,27 Today it is well known that quantum
spin systems in the presence of a magnetic field can be
solved efficiently using the directed-loop algorithm.25 How-
ever, until now this algorithm has been formulated only in

the spin representation and not in the cluster representation.
Unfortunately, the sign problem in the fermionic model can
only be solved in the cluster representation. In this paper we
show how one can extend the directed-loop algorithm to the
cluster representation which then leads to an efficient algo-
rithm for the fermionic model even in the presence of a
chemical potential.

The basic idea behind the directed loop algorithm is to
extend the configuration space so that configurations that
contribute to certain two point correlation functions �denoted
�C

i�,j��
�2� �� are sampled along with the configurations that con-

tribute to the partition function �denoted �C��. The configu-
rations C

i�,j��
�2� have two reference space-time points, i� and

j��; during the directed-loop update one of these points, say
i�, is held fixed while the other point j�� is moved around.
The directed loop update begins with a configuration in the
set �C� and chooses a site i� at random and probabilistically
creates a configuration in the set �C

i�,j��
�2� �, with i�= j��. The

probability of creating this configuration must satisfy de-
tailed balance in order to produce configurations �C� and
�C

i�,j��
�2� � with the correct Boltzmann weight. Once a configu-

ration in the set �C
i�,j��
�2� � is created, the point j�� is moved

around while satisfying detailed balance and thus sampling
other configurations in the set C

i�,j��
�2� with the correct Boltz-

mann weight. Finally, when the two points meet again, i.e.,
when j��= i�, the two points may be removed to obtain a
configuration in the set �C� in accord with detailed balance.
Thus, since at every step detailed balance is satisfied, it is
easy to show that the directed-loop update, which starts from
a configuration in �C� and ends on another configuration in
�C�, satisfies detailed balance. During the loop update, all the
sites encountered contribute to the two point correlation
function.

In the current work we have used the pair correlations to
develop the directed loop algorithm. Thus, the configurations
in �C

i�,j��
�2� � are the ones that contribute to the pair correlations

in Eq. �21�. Thus, the weight of such a configuration is taken
to be

2 cosh� �

8
�C�0

�i�,j����� �
���0

��C���
P

�P� , �25�

where the sites i� and j�� are forced to remain on the same
cluster �0. The weight of a configuration in the set �C� is

��
�

��C���
P

�P� . �26�

The essential steps of the directed loop algorithm are as fol-
lows:

�i� Start with the initial configuration which belongs to
the set �C�.

�ii� Select a space-time site i� at random and propose to
create a configuration C

i�,j��
�2� assuming j��= i�. Accept the

proposal with probability

FIG. 3. �Color online� The three possible types of connectivity
of the sites of a plaquette �P ,Q ,R ,S� due to bonds on other
plaquettes.
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Min�2 cosh� �

8
�C�0

�i�,j����
��C�0

�
,1� , �27�

where C�0
is the cluster which contains the site i�.

�iii� If the proposal is not accepted then the update is
complete. Otherwise we go on.

�iv� The site j�� is moved to the next site by picking the
plaquette it is connected to which is not the one just visited.
Since each site is connected to two plaquettes the plaquette is
unique unless one is at the beginning. In that case one
chooses one of the two randomly.

�v� Each plaquette update involves choosing one of 10
possible configurations. These configurations depend on the
connectivity of the plaquette and an example is given in Fig.
4. One of these 10 is chosen using a heat bath.

�vi� Steps �iv� and �v� are repeated until j�� reaches i�, at
which stage the transition to the �C� sector is made with
probability

Min� ��C�0
�

2 cosh� �

8
�C�0

�i�,j���� ,1� . �28�

If the transition is made then the directed-loop algorithm
ends, otherwise one goes back to step �iv� assuming one is in
at the beginning of the loop.

In the above algorithm, the pair susceptibility can be com-
puted using the formula

�p =
�

16
�S� , �29�

where S is the number of sites visited during the directed
loop update. Other observables such as �w and ns can be
computed using the formula of Eqs. �23� and �24�.

We have tested the efficiency of the directed loop algo-
rithm by comparing the results with spin model results in the
limit U=−� which can be obtained using the usual directed
loop algorithm. Since each update of the plaquette in the
fermion algorithm requires knowing the connectivity of the
loop, the algorithm is indeed much slower than the directed
loop algorithm of a spin model which does not require this
step. Unfortunately, this is a price one must pay for being
able to compute quantities in a fermionic theory. In Ref. 23 a
trick was used to reduce the time to determine the connec-
tivity of the clusters. The trick was to use a “tree” structure
to store the information about the cluster connectivity which
allowed one to obtain the relevant information in a time that
grew like the logarithm of the cluster size. This was not
implemented in the current work but could be implemented
if necessary.

V. RESULTS

In this section we discuss the results obtained from exten-
sive simulations for lattice sizes up to L=32. In our work we
have fixed �=0.25 in order to avoid changes in the time
discretization errors. We have found that this value of � is
reasonably small and the results at smaller values appear to
join within our error bars. Further, since our desire is to
understand universal physics of disorder, we believe that fix-
ing � should not be a major concern since it only changes the
transfer matrix by a small amount. For a given disorder re-
alization we typically discard the first 1000 directed loop
updates for equilibration and then average over 20 000 di-
rected loop updates in blocks of 1000 to generate each of our
statistics. All quantities plotted at a given value of 
 have
been averaged over 20 disorder realizations.

A. Superconductivity with disorder

It is known from earlier studies23 that our model has a low
temperature superconducting phase when U=0, J3=0, and
�=
=0. The superconductivity disappears at a finite tem-
perature and the phase transition belongs to the expected
BKT universality class. Here we study the effects of disorder
on this system by keeping �=0 but 
�0. In the clean model
the BKT predictions for the leading finite size scaling form
of the pair susceptibility and the winding number suscepti-
bility are known

�p�L� = �AL2−�, T � Tc,

A , T � Tc,
� �30�

and

�w�L� = �B�1 +
1

2 log�L/L0�� , T � Tc,

B exp�− L/L0� , T � Tc,
� �31�

where A, B, and L0 are constants which depend on the tem-
perature. We further expect 0���0.25, and �=0.25 with
B=2 at the phase transition.23,28 Here, instead of varying the
temperature we fix the temperature at T=0.25 and study the
effects of disorder by increasing its strength through the pa-

FIG. 4. �Color online� Ten possible configurations for one of the
three types of connectivity shown in Fig. 3. During the directed
loop update, depending on the connectivity of the sites of the
plaquette, a heat bath is used to pick one of 10 possible configura-
tions in order to move the site �j���.
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rameter 
. If the BKT universality holds we then expect the
same finite size behavior to be true where the constants A, B,
and L0 now depend on 
.

In Fig. 5 we plot our results for �p and �w as a function of
L. The fits are shown in Table I. The data appear to be con-
sistent with a BKT transition around a critical disorder of
�1.5. Note in particular the excellent power law behavior of
�p for 
�1.55. The expected form for �w is seen for 

�1.35, but it does not fit very well for 
�1.5. From the

rapid decay of �w �confirmed by saturation in �p, not shown�,
the system is clearly no longer superconducting when 
=3.

To obtain a good estimate of the critical disorder, 
c, we
assume that the forms �30� and �31� hold close to the transi-
tion and that the deviation of the exponent � and constant B
is linear in 
,

� = a�
 − 
c� + 0.25, �32�

B = b�
 − 
c� + 2.0. �33�

A joint fit of � and B to this form for 
 in the interval �1.35,
1.65	 yields 
c=1.53�4�.

When U=−� our model reduces to the XY model in the
pseudospin variables. As seen in Fig. 5, 
=1.65 is still in the
superconducting phase in the XY limit.29 Thus, the effect of
fermions is to disorder the superconductor more quickly, as
can be intuitively expected because of the increased entropy.

As discussed earlier, when J3=1 and �=0 the model has
an additional SU �2� pseudospin symmetry, as in the attrac-
tive Hubbard model. Thus, due to the Mermin-Wagner theo-
rem, superconductivity is only possible when ��0. The J3
=1 model also has been studied earlier in the absence of
disorder,24 and a BKT transition was established using uni-
versal finite size scaling. We have extended these calcula-
tions to the disordered regime. We again fix the temperature
at T=0.25 and study the effects of disorder with �=1.

Figure 6 gives our results and Table II shows the corre-
sponding fits. The expected BKT transition behavior is in-
deed seen for 
�0.5. Note that the values obtained for � are
constant, within statistical error, in this range. Thus to extract
the critical disorder 
c we use only the �w data. A fit of the

�0.5 values to the form in Eq. �33� yields 
c=0.13�5�; the
data for � is consistent with this value. The critical disorder
found here is much smaller than in the J3=0 case above,
indicating as expected that superconductivity is weaker when
J3=1.

B. Fermionic degrees of freedom

Since we are studying a strongly correlated electronic sys-
tem with on-site attraction between spin-up and spin-down
electrons, one might worry that the electrons have formed
local pairs on each site and the model is essentially bosonic.
Hence, it is important to look at observables that extract
fermionic information in the model. One such observable is
the density of singly occupied sites defined in Eq. �13�. In
Fig. 7 we plot ns as a function of temperature when J3=0 and
�=0. Since there is particle-hole symmetry at �=0 we have
n=1. For this calculation we have fixed �= /M =0.25 for
�4 and M =64 for �4. We show two different values of

—one for weak disorder and the other for strong
disorder—at different values of U. The data shown was ob-
tained at L=16; we have observed that the density does not
vary much as the lattice size increases.

First we note that the density of singly occupied sites
decreases significantly as the temperature is lowered for U
=0. When the disorder is small the pairs begin to break close
to the critical temperature, while at large disorders the pairs
break only at a temperature much higher than the critical

FIG. 5. Pair susceptibility divided by L1.75 ��p /L1.75, top, loga-
rithmic scales� and winding number susceptibility ��w, bottom, lin-
ear scales� as a function of lattice size for different magnitudes of
disorder 
 at J3=0, U=0, �=0, and T=0.25. The unfilled circles
give the value of �w at 
=1.65 in the XY limit obtained when U
=−�. The curves in the bottom panel are fits to Eq. �31�. The dotted
horizontal lines are inserted as guides to the eye. The BKT transi-
tion appears to be near 
�1.5.

TABLE I. Fitting results for the pair susceptibility ��p� and
winding number susceptibility ��w� for J3=0, U=0, and �=0 �Fig.
5�. The fitting formulas are Eqs. �30� and �31�; the �2 given is per
degree of freedom from the fit.




�p �w

A � �2 B L0 �2

1.00 0.52�1� 0.198�9� 0.306 2.49�7� 0.1�2� 0.409

1.35 0.46�1� 0.198�7� 0.020 2.14�3� 0.6�2� 0.251

1.45 0.474�8� 0.219�6� 0.834 2.04�4� 0.7�3� 1.644

1.55 0.50�1� 0.25�1� 0.676 1.91�4� 0.8�4� 3.838

1.65 0.50�2� 0.28�1� 5.466 1.72�4� 1.4�4� 2.291
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temperature. Further, as �U� is reduced from infinity, the
background density of singly occupied sites increases as ex-
pected; the increase is significant for T�0.4, while it is mod-
est for smaller T. The background density approaches a con-
stant as T decreases, leading us to conclude that fermionic
excitations do exist for all values of T. On the other hand, the
change in disorder 
 has almost negligible effect on ns, es-
pecially near the phase transition �dotted lines in the figure�.
This leads us to conclude that the properties of the phase
transition are most likely governed by a bosonic model such
as the disordered quantum XY model, especially in the

strongly disordered case. Thus, our work gives credence to
the “dirty boson” scenario.

VI. DIRECTIONS FOR THE FUTURE

In this paper we have studied the effects of disorder on a
strongly correlated electronic system. Our model was known
to be superconducting in the clean limit and our motivation
in this work was to study the effects of disorder through a
position dependent chemical potential. Unfortunately, a naive
extension of the meron-cluster algorithm was found to be
inefficient in the presence of a disordered chemical potential.
Hence in this work we constructed a different and efficient
algorithm by combining the meron-cluster approach with the
directed-loop algorithm. Earlier work on the directed-loop
algorithm involved quantum spin systems and always was
constructed in the spin representation. In this work we have
shown that the algorithm can be constructed even in the clus-
ter representation, which is essential in the fermionic system
in order to solve the fermion sign problem. Our algorithm
was quite successful and allowed us to compute the pair and
winding number susceptibilities accurately.

We found that disorder significantly suppresses supercon-
ductivity and the system undergoes a phase transition which
appears consistent with the BKT universality class. Although
this scenario has been expected,15 our work is the first, as far
as we know, to study the universal scaling predictions of the
BKT transition in a fermionic system with disorder. We
could go to lattices as large as L=32 thanks to our algorithm.
We found that when J3=0 superconductivity is stronger than
when J3=1.

We also found that there indeed are fermionic excitations
in the system, but they are not affected by the disorder. The
role of these fermions remains an interesting open question.
For example, do the background fermions form a Fermi liq-
uid in the weak disorder regime? If this is the case, then it
would be interesting to ask whether the fermions become
localized or do they remain extended. Is the phase transition
between a superconductor and an insulator or whether it is a

FIG. 6. Pair susceptibility divided by L1.75 ��p /L1.75, top, loga-
rithmic scales� and winding number susceptibility ��w, bottom, lin-
ear scales� as a function of the lattice size for different magnitudes
of disorder 
 at J3=1, U=−0.1, �=1, and T=0.25. The curves in
the bottom panel are fits to Eq. �31�. The dotted horizontal lines are
guides to the eye. Note the excellent BKT transition behavior.

TABLE II. Fitting results for the pair susceptibility ��p� and the
winding number susceptibility ��w� for J3=1, U=−0.1, and �=1
�Fig. 6�. The fitting formulas are Eqs. �30� and �31�; the �2 given is
per degree of freedom from the fit.




�p �w

A � �2 B L0 �2

0.00 0.365�8� 0.242�9� 0.081 2.04�4� 0.5�2� 0.120

0.25 0.354�8� 0.235�9� 0.383 1.97�3� 0.8�2� 0.277

0.50 0.346�7� 0.245�7� 0.460 1.83�2� 1.0�2� 1.213

0.75 0.36�1� 0.29�1� 0.446 1.58�2� 1.8�3� 1.952

1.00 0.35�1� 0.31�1� 0.083 1.33�2� 2.5�3� 1.618

FIG. 7. Density of singly occupied sites versus inverse tempera-
ture for 
=0.5 and 
=2 at J3=0, �=0, and three different values
of U. The dotted line indicates the approximate critical value of 
=1/T where the system undergoes a BKT transition to a supercon-
ductor. The total particle density is n=1 due to particle-hole
symmetry.
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transition between a superconductor and a metal. Finally, al-
though we have focused on attractive interactions in this
work, we can study the repulsive model by setting U posi-
tive. In that case it is possible to add a chemical potential
such that ��U/2 when J3=1 without introducing a sign
problem.22 These studies have the potential to increase the
fermionic effects further.
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