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Phase transitions of a flux lattice in layered superconductors with magnetic field perpendicular to the layers
and in presence of disorder are studied. We find that disorder generates a random Josephson coupling between
layers which leads to a Josephson glass �JG� phase at low temperatures; vanishing of the JG order identifies a
depinning transition. We also find that disorder and thermal fluctuations lead to layer decoupling where the
renormalized Josephson coupling vanishes. Near decoupling an anharmonic regime is found, where usual
elasticity and the resulting Bragg glass are not valid. The depinning line crosses the decoupling line at a
multicritical point, resulting in four transition lines. The phase diagram is consistent with the unusual data on
Bi2Sr2CaCu2O8 such as the “second peak” and depinning transitions. The Josephson plasma frequency is
evaluated in the various phases.
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I. INTRODUCTION

The phase diagram of layered superconductors in a mag-
netic field B perpendicular to the layers is of considerable
interest in view of extensive experiments on high-
temperature superconductors.1 A first-order transition in
YBa2Cu3O7 �YBCO� and in Bi2Sr2CaCu2O8 �BSCCO� has
been interpreted as a melting transition of the flux lattice.
The data suggests that the first-order line terminates at a
multicritical point, which for BSCCO �Refs. 2 and 3� is at
B0�300−103 G and T0�40−50 K, while for YBCO �Ref.
4� it is at B0�2−10 T and T0�60−80 K, depending on
disorder and oxygen concentration. The multicritical point
also terminates a “second peak” transition1–4 which is mani-
fested by a sharp increase in magnetization and in critical
current. The transition line at B�B0 and T�T0 is weakly T
dependent and was found, for BSCCO, to be smoothly con-
nected with the first-order line.5 Neutron scattering and �SR
data1,6 show that positional correlations of the flux lattice are
significantly reduced near these phase boundaries, except
however, near the multicritical point where a reentrant be-
havior is observed.7 Data on Nd1.85Ce0.15CuO4−� �NCCO�
has also shown a second peak transition; here, however, B0
decreases with temperature near the superconducting transi-
tion at Tc�23 K with no apparent multicritical point.8 The
second peak phenomena is also pronounced in other layered
systems such as NbSe2 �Refs. 9 and 10� and in Pb/Ge
multilayers.11 Recent decoration data12 on NbSe2 has shown
that the topology of the vortex structure is weakly affected
by crossing part of the second peak line. Hence the nature of
the phase at B�B0 is not well established.

The Josephson plasma resonance is a probe of the Joseph-
son coupling13,14 and can be used to probe the various phase
transitions. Recent data on BSCCO has indeed shown a sig-
nificant reduction in the resonance frequency at the second
peak transition.15,16

In a remarkable experiment Fuchs et al.17 have shown that
the phase diagram of BSSCO is much more elaborate. They
show that the spatial distribution of an external current ex-
hibits a transition from bulk pinning to surface pinning of
vortices with most of the current flowing at the sample

edges. This depinning line crosses the multicritical point and
its temperature is almost B independent at B�B0. The de-
pinning transition correlates with anomalies in vibrating reed
experiments18 and in magnetization.19 Thus there are four
transition lines which emanate from the multicritical point at
B0 ,T0: The first-order line, the second peak line and depin-
ning lines for both B�B0 and B�B0. The common intersec-
tion of these four transition lines was also seen in data of the
c-axis Josephson critical current.20 This critical current de-
creases significantly above the second peak line �in contrast
with the critical current parallel to the layers� and also de-
creases in the depinned regimes.

The notion of vortex matter in the presence of disorder
has emerged as a fundamental problem of elastic manifolds
in a random media.21 This has motivated an extensive theo-
retical effort towards understanding the field-temperature
�B−T� phase diagram in presence of disorder. Impurity dis-
order does not allow long range translational order of the
flux lattice and finite domains are expected.22 At low tem-
peratures and fields the system is a Bragg glass,23,24 i.e., the
lattice is dislocation free, at long scales the displacement
correlations decay as a power law and Bragg peaks are ex-
pected. The impurity induced domains are essential for the
description of both equilibrium, e.g., thermodynamic phase
transitions and nonequilibrium, e.g., critical current phenom-
ena. Melting, e.g., is expected to occur by thermal or disor-
der induced dislocations, as indeed demonstrated for fields
parallel to the layers.25,26 Numerical simulations on related
XY models have also shown disorder-induced melting.27–29

The flux lattice can undergo a transition which is unique
to layered superconductors, i.e., a decoupling transition.30,31

In this transition the Josephson coupling between layers van-
ishes while the lattice is maintained by the electromagnetic
coupling between layers. A disorder-induced decoupling was
also proposed as a crossover phenomena.32 Decoupling in
presence of columnar defects was also studied,33 showing
enhancement of the coupled phase.

It has been shown that decoupling coalesces with a defect
unbinding transition34,35 which has analogs in isotropic
systems.36 The resulting vacancies and interstitials lead to a
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reduction in the elastic tilt modulus,37 consistent with the
decoupling scenario as described below. It is possible then
that a decoupling-defect transition accounts for the peak phe-
nomena in all type-II superconductors. The analysis below is,
however, presented for layered anisotropic systems where
quantitative predictions can be made. Vacancies and intersti-
tials are neglected; their role is dicussed in the concluding
section of the preceding companion article.38

In the present work we expand our previous work39,40 and
study effects of disorder at temperatures below the melting
temperature Tm by employing replica symmetry breaking
�RSB� methods. The RSB methods are accurate when cou-
plings of the nonlinear terms are weak. For example, in the
pure case they reproduce the RG result at weak Josephson
coupling;38 in the related problem of vacancies and intersti-
tials it was shown that RSB accurately locates a disorder-
induced transition.35 In the present problem weak coupling
corresponds to weak Josephson coupling and weak disorder.
Weak disorder can be stated as a condition on the size of
domains RBG being larger than the renormalized penetration
length in the c direction. This condition is examined in Sec.
IV and the RSB actually detects this by producing a stronger
singularity �Appendixes A–C�. Furthermore, RSB as a varia-
tional method can identify order parameters and determine
the form of the phase diagram. The critical behavior near the
transition, however, is not expected to be accurate.

The most interesting finding in this work is that of a glass
order parameter which we term as Josephson glass �JG�, as it
is due to disorder induced on the Josephson coupling. The JG
order is expected to lead to stronger pinning, hence the line
where JG vanishes is associated with a depinning line. We
find that the JG and decoupling lines cross and lead to four
distinct phases which meet at one point in the B−T phase
diagram, remarkably close to the experimental phase
diagram.17,20 This paper follows a companion one38 where
the decoupling transition is studied in the pure system by
second order renormalization group �RG�.

The full problem addressed here involves the following
set of nonlinearities: �i� Josephson coupling which involves
both pancake displacements and a nonsingular phase. �ii� A
disordered Josephson coupling which leads to the JG order.
�iii� A nonlinear coupling of disorder to the displacement
pattern, leading to the well studied Bragg glass �BG�.23,24

After presenting the model in Sec. II, we study a simplified
version of the full problem in Sec. III in which the nonsin-
gular phase is neglected and also the disorder coupling is
linearized, corresponding to scales within finite domains.
These approximations lead to an unphysical divergence of an
integral I�z� where z is the renormalized Josephson coupling,
i.e., z→0 at decoupling. In Sec. III we assume that I�z� is
convergent and behaves as �ln z, an assumption that is jus-
tified in Appendixes A–C. In Appendix A we extend Sec. III
to solve the combined BG/JG system, though the nonsingular
phase is neglected. In Appendix B the BG system including
the nonsingular phase is solved, but JG is neglected, as rel-
evant to thermal decoupling. In both Appendixes A and B we
find an additional ln2z term which signals a divergence of
disorder effects in a regime close to decoupling. In Appendix
C we study JG with the nonsingular phase, but disorder is
linearized. It is shown that I�z� converges even in this situa-

tion, while an additional 1 /�z term is generated. In Sec. IV
we present a dimensional derivation of domain sizes which
correctly reproduces the pinning and BG lengths. Near de-
coupling there is a regime of nonlinear elasticity with an
apparent jump of the tilt modulus c44 and the critical current.
This anharmonic regime coincides with the onset of the ln2z
term in Appendixes A and B. In Sec. V the Josephson plasma
frequency is studied, being an efficient probe for identifying
the various phases. In Sec. VI we discuss available data on
the second peak and depinning transitions. We propose that
decoupling accounts for the main features of the second peak
transition while the depinning transitions correspond to the
onset of JG order.

II. THE MODEL

Consider a flux lattice with an equilibrium position of the
l-th flux line at vectors Rl of a regular two-dimensional lat-
tice. The flux line is composed of a sequence of singular
points, or “pancake” vortices, whose positions at the nth
layer can fluctuate to Rl+ul

n. Of particular interest is the
transverse part of ul

n with the Fourier transform uT�q ,k�,
where q ,k are wave vectors parallel and perpendicular to the
layers, respectively. The elastic energy due to the electro-
magnetic coupling has the form

He−m =
1

2�
q,k

�da2�2�c66
0 q2 + c44

0 �k�kz
2�	uT�q,k�	2, �1�

where the flux line density is 1 /a2, d is the spacing between
layers, q is within the Brillouin zone �of area �2� /a�2�, 	k	
�� /d, and kz= �2/d�sin�kd /2�. The shear and tilt moduli are
given �for a�d� by41–43

c66
0 = �/�16da2� ,

c44
0 �k� = ��/�8da2	ab

2 kz
2��ln�1 + a2kz

2/4�� , �2�

where �=
0
2d / �4�2	ab

2 � sets the energy scale and 	ab is the
magnetic penetration length parallel to the layers; ��103

−104 K for YBCO or BSCCO parameters.1 Note the strong
dispersion of c44

0 �k� so that c44
0 �k� decreases by the large fac-

tor �d /a�2 when k varies from k�1/a to 1 /a�k�� /d.
The Josephson phase between the layers n and n+1 at

position r in both layers involves contributions from a non-
singular component and from singular vortex terms. The sin-
gular phase around a pancake vortex at position Rl+ul

n is
��r−Rl−ul

n�, where ��r�=arctan�y /x� with r= �x ,y�. We as-
sume that all vortices belong to the flux lines, i.e., there are
no free vacancies or interstitials.

The Josephson phase involves the interlayer phase differ-
ence from the pancake singularities ��r−Rl−ul

n�−��r−Rl

−ul
n+1�, which after expansion in ul

n becomes �Eq. �19� of the
companion article38�

bn�r� = 2�id

BZ

d2qdk

�2��3 e−iq·r−iknd�eikd − 1�
uT�q,k�

q
. �3�

We consider first a simplified model which neglects the
nonsingular part of the Josephson phase. The nonsingular
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phase is essential for evaluating displacement fluctuations
�Sec. IV�, however, for the purpose of the phase transitions
under study it can be neglected �justified by Appendixes A
and B�. We have then an effective Hamiltonian for wavevec-
tors 	q	�Q0, �Eq. �23� of the companion article38�

Hpure
�1� /T =

1

2�
q,k

c�q,k�q2	b�q,k�	2 −
EJ

T
�

n

 d2rcos bn�r� ,

�4�

where EJ is the interlayer Josephson coupling energy per unit
area and

c�q,k� =
a4

�2�d�2T
�c44

0 �k� +
q2

kz
2 c66

0 � 
 c�k� + c�
q2

kz
2 . �5�

The last equality defines c�k� and c�, i.e.,

c�k� =
�a2

32�2Td3	ab
2

ln�1 + a2kz
2/4��

kz
2 ,

c� =
�a2

64�2Td3 . �6�

Since ���1/r decays slowly, even if ul
n are small the con-

tribution of many vortices which move in phase �q→0�
leads to a divergent response of bn�r�, i.e., the 1/q factor in
Eq. �3�. This leads to a decoupling transition,31,38,39 which at
weak EJ is �Eqs. �27� and �40� of the companion article38�

Td
0 =

4a4

d2 �
 dk

c44
0 �k�

�−1

�
�a2ln�a/d�

4�	ab
2 . �7�

We note that melting and related dislocations have been
neglected. An estimate of Tm by the Lindemann criterion
yields21,43 Tm��, hence our description near Td

0 is limited to
to a�	ab. Melting in the absence of Josephson coupling was
in fact studied,44 showing that Tm is between � /8 and the
two-dimensional melting temperature of �0.004�, approach-
ing the latter at high fields a
	ab. At intemediate fields the
present description is then valid at a�0.4	ab. However, for
disorder induced melting we estimate �see the discussion
Sec. VI� that for BSCCO parameters the decoupling field is
below the melting field if a�0.14	ab, consistent with the
low-temperature second peak field value.

We proceed now to study the disorder term. A second
assumption of the simplified version is that of linearized dis-
order, i.e., small fluctuations 	ul

n	
a. Consider a short range
pinning potential Upin

n �r� with the coupling

Hpin =
 d2r�
n,l

Upin
n �r�p�r − Rl − ul

n� , �8�

where p�r� is a shape function for a vortex of size �0 and the
disorder has short-range correlation

�Upin
n �r�Upin

n� �r��� =
1

2
Ū�n,n���r − r�� . �9�

Expanding Eq. �8� to first order in ul
n and averaging Upin

n �r�
by the replica method23,47 leads to a disorder term in the free
energy

Hdis
�1�/T =

Ūp̄

4T2�
nl

�
�,�

ul
n,� · ul

n,�, �10�

where � ,� are replica indices. The average involves


 �ip�r�� jp�r�d2r = p̄�ij �11�

with p̄ of order 1.
The replicated Hamiltonian of the simplified version,

keeping only transverse displacements, is therefore

H�1�/T =
1

2 �
q,k;�,�

�c�q,k�q2��,� − s0
q2

kz
2�b��q,k�b�*�q,k�

−
EJ

T
�
n;�

 d2r cos bn

��r�

−
Ev

T
�

n;���

 d2r cos�bn

��r� − bn
��r�� , �12�

where

s0 =
Ūp̄

2T2

a2d

�2�d2�2 . �13�

It is found useful below to define a dimensionless disorder
parameter s,

s =
8�Ūp̄	ab

4

�2a2ln2�a/d�
. �14�

The inter-replica Josephson coupling, i.e., the Ev term in Eq.
�12�, is generated from the EJ term in second order renor-
malization group �RG�. It is essential to keep the Ev term
from the start since it couples different replica indices and
leads to distinct physics by RSB, as shown below. Physically,
the Ev term originates from random displacements of pan-
cake vortices due to intralayer impurities. The pancake vor-
tices are then not one on top of the other, resulting in random
segments of Josephson vortices, i.e., vortices parallel to the
layers. The latter represents random Josephson phases,
whose replica average leads to the Ev term in Eq. �12�.

We proceed now to present the full model, which extends
Eq. �12� to include the nonsingular phase as well as nonlin-
ear disorder. The Josephson phase involves a nonsingular
phase �n�r� in addition to the pancake fluctuations via bn�r�.
The Hamiltonian of the pure system is then �Eq. �21� of the
companion article38�
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Hpure�b,��/T =
1

2�
q,k

Gf
−1�q,k�	��q,k�	2

+
1

2�
q,k

c�q,k�q2	b�q,k�	2

−
EJ

T
�

n

 d2r cos��n�r� + bn�r�� , �15�

where

Gf�q,k� =
4�d3T

�q2 �	ab
−2 + kz

2� . �16�

Consider next the general form of the disorder coupling.21

Using the relation �l�
2��−Rl�=�le

iQl·�, where Ql are recip-
rocal lattice vectors, the disorder coupling �8� becomes

Hpin = −
 d2r�
n

Upin
n �r� 
 d2�

a2 p�r − � − un�����
l

eiQl·�.

�17�

For 	Ql	�1/�0 we can replace p�r� by �0
2�2�r� so that

Hpin = −
�0

2

a2 
 d2r�
n

Upin
n �r��1 + � · un�r��−1�

l

eiQl�r−un�r��.

�18�

The coupling to long wavelength modes via � ·un�r� is
irrelevant23 in 3D so that the replica average of Hpin becomes

Hdis/T =
g0

a2 �
Q,�,�,n


 d2r cos�Q · �un,��r� − un,��r���

�19�

with g0= Ū�0
4 /T2a2. To relate this form to the linearized one

�10� we expand in un,��r� and use �QQ2

��a2 /4���1/�0
2
Q2dQ2�a2 /8��0

4 so that Eq. �10� is obtained
if p̄�1/2�. The coupling g0 can then be written as

g0 =
Ū�0

4

T2a2 = s
�2�0

4ln2�a/d�
4T2	ab

4 . �20�

We are interested here in BG effects on the q→0 singularity
associated with the decoupling transition, i.e., the long-range
properties of the BG. The BG domain size is defined by the
scale R where the displacement correlation starts to diverge
as ln r. It is reasonable to expect that this scale is determined
by the shortest Q, as indeed is shown for a system with
regular elasticity,23 i.e., far from decoupling. We consider
then the disorder term with just the shortest reciprocal wave
vectors 	Q	�2� /a �e.g., six wave vectors in the hexagonal
lattice�. The full Hamiltonian is then

H/T = �
�

1

T
Hpure�b�,���

−
Ev

T
�

n;���

 d2r cos�bn

��r� − bn
��r� + �n

��r� − �n
��r��

−
g0

a2 �
���,n


 d2r cos�Q · �un,��r� − un,��r��� . �21�

We note finally that a similar two-dimensional �2D�
model has been studied by RSB and RG methods.45,46 As
shown in the next section, finite values of k dominate the
phase transitions, so that a certain k averages of the coeffi-
cients in Eq. �12� lead to a 2D problem with the same q
singularities as in Eq. �12�. Indeed the RSB solution below
has the same structure as the 2D case45 with a temperature
parameter t=T /Td

0 and a disorder parameter s �Eq. �14��. In
view of this similarity, it is useful to quote the RG equations
of the 2D model45 in terms of u=�2EJ /T and v=�2Ev /T,

du = �2u�1 − t − s� − 2��uvt�d ln � ,

dv = �2v�1 − 2t� +
1

2
��su2 − 2��tv2�d ln � ,

dt = − 2��2�t + s�t2u2d ln � ,

d�s/t2� = 16��2tv2d ln � , �22�

where the initial value of the scale � is a and �� ,�� are
numbers of order 1. We quote these results so that the neces-
sity of the Ev term is shown more concretely. Indeed Ev is
generated by sEJ

2 while at t�
1
2 it is relevant on its own.

Furthermore, the RG results will be used to qualitatively sup-
port and supplement the phase diagram, as derived by RSB
in the next section.

III. PHASE DIAGRAM

In this section we consider the simplified version, Eq.
�12�. This assumes that displacements are within finite do-
mains and Bragg glass effects are neglected; also the non-
singular phase is neglected here. Appendixes A and B show
that these assumptions are justified for the purpose of our
phase diagram. The nonsingular phase is essential for evalu-
ating displacement fluctuations, as studied in Appendix C.

We proceed by using the RSB method.47 The RSB method
proceeds by employing a variational free energy Fvar=F0
+ �H−H0� with F0 the free energy corresponding to

H0 =
1

2 �
q,k;�,�

G�,�
−1 �q,k�b��q,k�b�*�q,k� �23�

and G�,��q ,k� is determined by an extremum condition on
Fvar. We define the following averages �¯�0 with respect to
H0,

�cos bn
��r��0 = e−�1/2�A�,

A� = �
q,k

G�,��q,k� , �24�
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�cos�bn
��r� − bn

��r��0 = e−�1/2�B�,�,

B�,� = 2�
q,k

�G�,��q,k� − G�,��q,k�� �25�

so that

Fvar/T =
1

2�
q,k

Tr�ln G�q,k� + �G−1�q,k� − c�q,k�q2Î

− s0
q2

kz
2 L̂�G�q,k�� −

EJ

T
�
�

e−�1/2�A�

−
Ev

T
�

���

e−�1/2�B�,�, �26�

where Î�,�=��,� and L̂�,�=1.
The variational equation �Fvar /�G�,�=0 yields

G�,�
−1 �q,k� = �c�q,k�q2 + z���,� − s0�q2/kz

2� − ��,�, �27�

z =
EJ

Td
e−�1/2�A�, �28�

��,� =
Ev

Td�e−�1/2�B�,� − ��,��
�

e−�1/2�B�,�� , �29�

where z is a renormalized Josephson coupling. In the replica
limit with the number of replicas n→0 the RSB �Ref. 47�
method represents each matrix as a hierarchy of matrices,
e.g., ��,� is represented by ��u�, with 0�u�1 and a diag-
onal component �̃. We therefore parametrize G�,�

−1 by ã and
a�u�, where

ã = c�q,k�q2 − s0
q2

kz
2 + z − �̃ ,

a�u� = − s0
q2

kz
2 − ��u� . �30�

The amount by which the replica symmetry is broken is mea-
sured by a glass order parameter

��u� = u��u� − 

0

u

��v�dv . �31�

The inverse matrix G�,� is represented by b̃ and b�u�,
where47 �see also Appendix B of Ref. 45�

b̃ =
1

ã − �a�� − a�0�
ã − �a�

+ 1 + 

0

1 dv
v2

��v�
ã − �a� + ��v�� ,

b̃ − b�u� =
1

u�ã − �a� + ��u��
− 


u

1 dv
v2

1

ã − �a� + ��v�

�32�

and

�a� = 

0

1

a�v�dv = s0
q2

kz
2 − ��� ,

ã − �a� + ��u� = c�q,k�q2 + z + ��u� . �33�

B�u� can be written, using Eq. �25� and the inversion formula
�32�, as

1

2
B�u� =

g�u�
u

− 

u

1 g�v�
v2 , �34�

where

g�u� = �
q,k

1

c�k�q2 + z + ��u�

=
 dk

2�

1

4�c�k��ln
�c

z + ��u�� + C1 �35�

and

C1 =
 dk

8�2c�k�
ln

c�k�
c��/d�

. �36�

Here c�q ,k� of Eq. �5� is replaced by c�k� as defined in Eqs.
�5� and �6� while the q2 term in Eq. �5� amounts to redefining
the upper cutoff into qu

2=4 ln�a /d� /	ab
2 , �considering k

�� /d as the dominant range of the following k integration�
and �c=c�� /d�qu

2. In the following a variable t is tempera-
ture in units Td

0 of the pure system �Eq. �7��, i.e.,

t =
T

Td
0 =
 dk

16�2

1

c�k�
. �37�

Equation �35� is then

g�u� = 2t ln
�c

z + ��u�
+ C1. �38�

To find ��u� we note that Eq. �29� is equivalent to ��u�
= �Ev /Td�exp�−B�u� /2�. Differentiating this equation and us-
ing ���u�=u���u� we obtain

���u�
u

= −
d

du
����u�

g��u� � , �39�

which by using Eq. �38� can be written as

�1

u
−

1

2t
�d�

du
= 0. �40�

The solution of this equation is a one step function, i.e., ��u�
jumps at u=2t from zero to a constant value �0 at 2t�u
�1. The solution is therefore nontrivial if t�1/2.

To complete the solution, the function B�u� from Eq. �34�
is needed

1

2
B�u� = C1 + ln

�c

z
+ �2t − 1�ln

�c

z + �0
, u � 2t ,

=C1 + 2t ln
�c

z + �0
, 2t � u � 1 �41�

which yields for ��u�

��u� = �0 =
z

z + �0
�1, u � 2t ,
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�1 =
Ev

Td
� z + �0

�c
�2t

e−C1, 2t � u � 1. �42�

Finally, from Eq. �31� we have z+�0=2t�1, hence,

z + �0

�c
= � 2Ev

dTd
0�c

e−C1�1/�1−2t�

�43�

A consistent weak coupling solution is indeed possible only
at t�

1
2 .

To find a second equation for z from Eq. �28� we need the
first inversion formula in Eq. �32�

G̃�q,k� =

s0

kz
2c�k�

+
1

2t

c�k�q2 + z
+

�0 −
s0z

kz
2c�k�

�c�k�q2 + z�2 +

1 −
1

2t

c�k�q2 + z + �0

�44�

and after the q summation

A� = �
q,k

G̃�qk� =
 dk

8�2� 1

2tc�k�
ln

z + �0

z

+
1

c�k�
ln

�c

z + �0
+

�0

zc�k�� + C1 +
s0

8�2 �I�z� + zI��z�� ,

�45�

where

I�z� =
 dq2dk

kz
2c�k�

1

c�k�q2 + z
�46�

and I��z�=dI�z� /dz. For �0�0 we have from Eq. �42� �0

=z /2t while for �0=0 �possible at t�
1
2 as found below� we

have �0�z2t
z, hence, with s defined in Eq. �14�,

A� = ln�2etEv/zd� + �s0/8�2��I�z� + zI��z��, �0 � 0,

�47�

=C1 + 2�t + s�ln
�c

z
+ 2s, �0 = 0. �48�

Formally I�z� diverges at k=0; this divergence can be
traced back to our assumption that the cos�Q · �ul

n,�−ul
n,���

term is expanded into the s0 term in Eq. �12�. Retaining this
cosine leads to domains of correlated ul

n. In Appendix A the
joint BG-JG solution is found and is shown to remove the
k→0 divergence. A combined BG with nonsingular phase
solution is also shown in Appendix B to remove this diver-
gence. The presence of BG, however, produces a term �ln2z
in a regime near decoupling �Eq. �A23� in the regime of Eq.
�A27��. This “anharmonic” regime is studied further in Sec.
IV. Excluding this anharmonic regime, the dominant part of
I�z� is

I0�z� = 2

1/a

�/d dk

kz
2c�k� 
 dq2

c�k�q2 + z
=

�d

4c2��/d�
ln

�c

z
.

�49�

The I�z� term in Eq. �45� can then be written as

s0

8�2 I�z� �
s0

8�2 I0�z� = 2s ln
�c

z
. �50�

Therefore, the renormalized Josephson coupling of Eq. �28�
is for �0�0, using Eq. �47�,

z

�c
= e−1� EJ

2

2TtdEv�c
�1/�1−2s�

. �51�

Note that Ev is generated from EJ by RG,45,46 i.e., Ev�EJ
2

initially; however, Ev is RG relevant at t�
1
2 even in first-

order RG �Eq. �22��, hence we consider Ev and EJ as com-
parable so that EJ

2 / �2TtdEv�c�
1. Hence a consistent weak
coupling z /�c
1 solution is possible only for s�

1
2 . Thus

s= 1
2 marks a disorder induced decoupling with z=0 at s

�
1
2 .
Comparing Eqs. �43� and �51� shows that �0 vanishes at

s= t �up to O�ln�EJ /Ev� / ln Ev� term, small for EJ�Ev

d�cTd�. Formally there is a solution with �0�0 when s
� t. However, the average distribution47 of 	b�q ,k�	2, which
is �exp�−	b�q ,k�	2 /G�,��q ,k��, is acceptable only if
G�,��q ,k��0; this is therefore a thermodynamic stability
criterion. Note in particular from Eq. �44�

G���q = 0,k� =
1

2t
�2

z
−

1 − 2t

z + �0
� . �52�

When s� t and �0�0 the power dependence in Eq. �43�
implies that z+�0
z �unless too close to t=s, i.e., s− t
�1/ 	ln Ev	� and therefore G���q=0,k��0. This shows that
only �0�0 is acceptable.

Thus the regime where both z ,�0 are finite is limited to
s�

1
2 , t�s; we term this regime the coupled Josephson glass

�JG� phase. The “coupled” notation means that the renormal-
ized Josephson coupling is finite, i.e., z�0. The glass param-
eter vanishes �continuously� at t=s while the Josephson cou-
pling vanishes �with an apparent discontinuity—see Sec. IV�
at s= 1

2 �see Fig. 1�. For s�
1
2 and t�

1
2 the solution is z=0

while �0�0 satisfies Eq. �43�, i.e., it is a decoupled JG

FIG. 1. Phase diagram. Full lines are decoupling lines where the
Josephson coupling vanishes. The upper dashed line is a depinning
transition where the Josephson glass parameter vanishes; the lower
dashed line is either a 1st order line or a crossover into a weaker JG
phase, i.e., weaker pinning.
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phase. Recall that the JG order parameter �0 is due to Ev
which is initially generated by EJ. In fact, the RG of Eq. �22�
shows �see a similar effect in Fig. 3 of the companion
article38 for the pure system� that EJ first increases �scaling
from �0 to 1/qu�, generating the Ev term, and only at scales
beyond 1/quEJ decreases to zero. It is remarkable then that
EJ is renormalized to zero while the JG order survives, much
like the smile of the Cheshire cat.

Finally, for �0=0 a replica symmetric solution is valid at
s� t, which upon using Eqs. �28� and �48� becomes

z

�c
= � EJ

Td�c
e−s−�1/2�C1�1/�1−s−t�

. �53�

Thus s+ t=1 for s�
1
2 defines a “thermal” decoupling transi-

tion.
The interpretation of the phase diagram needs to be

supplemented by a few observations from an RG analysis.
The RSB results above coincide with those of a 2D model
where the parameters t ,s of the 3D system, as suitable k
averages �Eqs. �37� and �50��, correspond to Hamiltonian
parameters of the 2D system.45 With this correspondence in
mind, we infer next some qualitative modifications by using
the 2D RG equations,45,46 Eq. �22�. Note first that in a
coupled phase z is RG relevant and therefore Ev, which is
generated to order z2, is finite too, hence a weak glass phase
is expected also in the regime s� t�1−s; this weak glass
order is not captured by the RSB solution. The line t=s for
s�

1
2 can therefore be either a first-order transition or a cross-

over line. RG suggests �Eq. �22�� this crossover line at t= 1
2 :

at t�
1
2 RG yields Ev which is largely independent of z,

hence a strong JG order, while at t�
1
2 RG generates Ev

�z2 with a weak JG order. The stability of the RSB solution
shows that in fact this line, which is either 1st order or a
crossover, is at t=s.

The RG, shows also a disorder induced decoupling, since
Eq. �22� has a fixed point with u*=0 and v*= �1−2t� /��t,
stable at t�

1
2 and strong disorder. Note that for this solution

s� ln � increases with scale �, hence the correlator ��r�
= �cos bn

��r�cos bn
��0�� which by RSB decays as r−2−4s is ac-

tually decaying faster as ln ��r��−ln2r. Explicit solution of
the 2D RG equations46 found indeed a phase diagram very
similar to that in Ref. 45 or in Fig. 1.

The phase diagram, shown in Fig. 1, has three phase tran-
sition lines and a line which is either a first-order or a cross-
over line. All these lines meet at a multicritical point s= t
=1/2. We interpret the transition where �0 vanishes as a
depinning transition, i.e., the JG order parameter provides an
additional pinning to that from the Bragg glass. The phase
diagram has then a decoupling line which crosses a depin-
ning line at the multicritical point. The decoupling line has a
disorder driven section s= 1

2 at t�
1
2 .

The phase diagram in terms of field and temperature is
derived by defining B0 ,T0 as the field and temperature value
of the multicritical point and is shown in Fig. 2. B0 is deter-
mined by the disorder strength via s= 1

2 while T0= 1
2Td

0�a
=�B0 /
0� �Eq. �7��. Hence s=B /2B0 and t=TB /T0B0, up to
ln B terms. Since s increases with B the s= 1

2 line defines a

decoupling transition from a coupled JG phase at low B to a
decoupled JG phase at high fields.

The coupled JG phase at B�B0 goes through either a 1st
order or a crossover line at t=s, i.e., at T=T0 �up to ln B
factors�. Therefore at T�T0 the glass parameter �0 is sig-
nificantly reduced implying depinning, a change from strong
to weak pinning. The decoupled JG phase undergoes a de-
pinning transition into a decoupled phase at T=B0T0 /B. Note
that all phases, even the high T decoupled one, are Bragg
glass phases of the flux lattice; in the decoupled phase the
lattice is maintained by the interlayer electromagnetic cou-
pling.

The JG coupled phase at T�T0 undergoes a decoupling
transition at t=1−s, i.e., B=2B0T0 / �T+T0�. This transition is
continuous; the variational method of the pure system has
been formally extended to higher J /T and found to be of first
order.31 As shown in the companion article,38 the transition
remains second-order when proper second-order RG is em-
ployed. Disorder, however, leads to an apparent discontinuity
near decoupling, as discussed in the next section.

IV. DOMAIN SIZES

In this section we estimate various domain sizes and
evaluate displacement fluctuations which identify these sizes.
Remarkably, the expressions for the domain sizes are con-
firmed �up to numerical prefactors� by BG solutions �Appen-
dixes A–C�. The nonsingular phase, which was irrelevant for
the purpose of the phase diagram in Sec. III, is essential now.

To appreciate the effect of the nonsingular phase �, we
briefly review the derivation of the transverse tilt modulus
c44 of a pure flux lattice.43 The Josephson phase involves the
contribution of pancake fluctuations via bn�r� as well as a
nonsingular phase, with the Hamiltonian �15�. To identify c44
we expand the Josephson coupling to second order in

b̃�q ,k�=b�q ,k�+��q ,k�,

FIG. 2. Phase diagram in terms of field and temperature. Full
lines are decoupling lines �B=B0 and B=2B0T0 / �T+T0��, where the
Josephson coupling vanishes. The upper dashed line is a depinning
transition �T=B0T0 /B�, where the Josephson glass parameter van-
ishes; the lower dashed line �T=T0� is either a first-order transition
or a crossover into weaker pinning.
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Hpure/T =
1

2�
q,k
��Gf

−1�q,k� +
EJ

Td
��b̃�q,k�

− b�q,k�
Gf

−1�q,k�

Gf
−1�q,k� +

EJ

Td

�2

+
Gf

−1�q,k�
EJ

Td

Gf
−1�q,k� +

EJ

Td

	b�q,k�	2

+
1

2
c�q,k�	�q,k�	2 + O�b̃4�q,k��� . �54�

The first term decouples from b�q ,k� and with 	b�q ,k�	2
= �2�d2�2kz

2	utr�q ,k�	2 /q2 �Eq. �3�� we identify41–43

c44�q,k� = c44
0 �k� +

B2

4�

1

1 + 	c
2q2 + 	ab

2 k2

+
2B
0

�8�	c�2 ln�a2/4��0
2� , �55�

where 	c
2=	ab

2 � / �4�d2EJ�; the last term is from reducing
high momenta of the second term of Eq. �54� into the first
Brillouin zone.

The second term of c44�q ,k� is peculiar: at q�0 it van-
ishes when EJ vanishes and 	c→�, as it should. However, at
q=0 this term seems to survive even if 	c→�. The origin of
this peculiarity is that the harmonic expansion of the Joseph-
son cosine term which identifies c44 fails43 when both
q ,1 /	c→0. The shift in the 1st term of Eq. �54� identifies an
expansion parameter43 with terms �q2kz

2	uT�q ,k�	2 / �q2

+	c
−2�1+	ab

2 kz
2��2, which diverge when both q ,1 /	c→0 and

the expansion becomes invalid. In fact, the nonlinear cosine
term replaces EJ /Td by z or 	c is replaced by a renormalized

	c
R = �	ab

2 �/�4�Td3z� �56�

which diverges at decoupling. Hence usual elasticity at
q ,1 /	c

R→0 near decoupling is ill defined.
The Bragg glass domain size RBG �parallel to the layers�

sets a scale for the relevant q values. When RBG�	c
R the tilt

modulus is large, containing the B2 /4� term of Eq. �55�.
However, as decoupling at the field B0 is approached 	c

R

diverges so that when RBG�	c
R Eq. �55� fails to describe c44

on the scale of q�1/RBG. This defines an anharmonic cross-
over regime where usual elasticity cannot be used to derive
Bragg glass properties. Finally, at B�B0 elasticity is restored
and c44 is reduced to the first term in Eq. �55�. The main
interest is in the regime of strong fields, i.e., a�2	ab where
T0
� is below melting. Thus at B�B0 and for sufficiently
large domains the second term in Eq. �55� dominates and
c44=B2 /4� while at B�B0 only the magnetic coupling sur-
vives c44=c44

0 �k� which at ka
1 becomes � / �32�	ab
2 d�.

Hence there is an apparent discontinuity

c44 = �	ab
2 �/da4, 	c

R � RBG, �57�

=�/�32�	ab
2 d�, 	c

R = � . �58�

Thus c44 is reduced within the anharmonic regime by the
small factor

� = a4/�32�2	ab
4 � . �59�

The apparent discontinuity in c44 affects also the domain
sizes which can be estimated by a dimensional argument.22,23

Consider the tilt c44 and shear c66 terms of the elasticity
Hamiltonian for the displacement u�r� and its transverse
component uT�r�. Rescaling parallel and perpendicular
lengths yields an isotropic form,21,24 which together with the
pinning energy �18� yield �ignoring elasticity of longitudinal
displacements�

H =
 d3r�1

2
c44

1/3c66
2/3��uT�r��2

− ��0
2/a2d�Upin�r��

Q
cos Q · �r − u�r��� , �60�

where the disorder coupling to �uT�r� is neglected. To esti-
mate the energy gain from disorder we consider the overlap
of the disorder energy between two configurations u�r� and
u��r� which are solutions for two realizations of the random
potential;21 this overlap is a measure of the energy variance
in configuration space. The r integration leads to a single Q
sum so that the variance is ��Qcos Q · �u�r�−u��r��. Each
of u�r� and u��r� has fluctuations �u2���uT

2� in a domain of
size R� so that the Q sum is cutoff by Q� �uT

2�−1/2. Below
this cutoff the cosine can be expanded and summed so that
averaging Eq. �60� yields

�H�/R�3 =
1

2
c44

1/3c66
2/3�uT

2�R�−2 − Ū1/2�0
2/�a2d�uT

2�R�3�1/2.

�61�

Minimizing with respect to R� yields R���uT
2�3, i.e., the

Flory exponent.23 This exponent is not exact; the more accu-
rate statement, shown within the BG solution,23 is that the

disorder averaged correlation B̃�R��= ��uT�R��−uT�0��2�
�R�1/3 is a quantitatively correct description in the range

between the pinning length Rp where B̃�Rp�=�0
2 and RBG,

where B̃�RBG�=a2. The fluctuations �uT
2� on scale R� in the

dimensional argument correspond then to B̃�R��.
The domain size parallel to the layers is, from minimizing

Eq. �61� �up to ln�a /d� and a numerical prefactor�

R+ � �	ab/a�5�uT
2�3/�s�0

4d�, 	c
R � R+,

R− � �	ab/a�3�uT
2�3/�4�s�0

4d�, 	c
R = � . �62�

The pinning length R=Rp is given by Eq. �62� with �uT
2�

��0
2. The condition 	c

R�Rp
+ is not valid for BSCCO param-

eters; to allow for large pinning domains one needs either
a
	ab or to allow for domains with a somewhat larger fluc-
tuation in �uT

2�; the latter increases Rp very rapidly since it
increases with the 6-th power of uT. The critical current can
now be estimated21,22 by balancing the Lorenz force jcBR3 /c
with the pinning force �H� /�0 �evaluated at the minimum of
Eq. �61��, leading to jc�1/c44. Increasing the field within
the anharmonic regime decreases c44 by the factor � so that jc
is enhanced by a 1/� factor which is significant when a
�	ab.
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A second length scale R=RBG is identified by Eq. �62�
with the fluctuations �uT

2��a2. The proper definition of RBG

is the scale for the onset of the ln r form for the displacement
correlation function, as inferred in Eq. �A26� or �B8�. It is
remarkable that Eq. �62� gives the correct form for for RBG,
up to a numerical prefactor, i.e., Eqs. �A26� and �B8�. Equa-
tion �62� shows that RBG is reduced by �1/2 through the an-
harmonic regime. The onset of the anharmonic regime is at
RBG

+ �	c
R, i.e.,

	c
R � 10−3a	ab

5

sd�0
4 �63�

with a numerical prefactor from the BG solution �Eqs. �A26�
and �B8��. For BSCCO or YBCO parameters at s� 1

2 this
reduces to 	c

R /	ab�105, i.e., the initial anisotropy of
	c /	ab=10−100 has to increase to �105. Since z is expo-
nentially renormalized �Eqs. �51� and �53�� this anharmonic
range may be observable.

Figure 3 illustrates the lengths RBG and 	c
R, demonstrating

the anharmonic regime within which RBG has a significant
drop and correspondingly jc has an apparent jump. Note that
even in the decoupled phase �B�B0� RBG is large for typical
type-II superconductors, RBG�	ab

3 a3 / �4�s�0
4d��a, consis-

tent with a decoupling transition within the Bragg glass
phase, i.e., below a melting transition.

The solution of Sec. III can also be extended to include
the nonsingular phase. Since disorder is linearized, the pin-
ning length Rp can be determined, though the BG length
cannot. Appendix C develops this solution and shows that in
the coupled phase Rp coincides with R+ Eq. �62� �with �uT

2�
��0

2�, up to a numerical prefactor.
The main result is then that the fluctuations in uT�r� be-

have with an effective c44 which is large when q�1/	c
R �Eq.

�57��, i.e., for domain sizes RBG�	c
R, while for z=0 c44 is

reduced �Eq. �58��. While the condition 	c
R�Rp

+ in Eq. �62� is
not valid for BSCCO �the pinning domains are likely to be
two dimensional� our results for the anharmonic regime itself
in terms of the much larger RBG are valid. The existence of a
narrow anharmonic regime leads to an apparent jump in c44
which possibly affects the critical current.

In the anharmonic region below decoupling �see Fig. 3�
where RBG�	c

R a more complete form �e.g., Eq. �C8�� is
required to interpolate between the limiting forms of c44.
However, a method relying on an effective harmonic theory,
such as RSB, is suspect within the anharmonic regime, since
the system has no effective elastic constants. Furthermore,
RSB signals this deficiency by producing a ln2z term, pre-
cisely in the the anharmonic regime found here, as shown in
Appendixes A and B.

V. JOSEPHSON PLASMA RESONANCE

Josephson plasma resonance provides extremely useful
data for identifying phases of vortex matter.13–16 In particular
a jump in the resonance frequency �pl has shown15,16 that the
Josephson coupling is strongly modified at the second peak
transition. In this section we derive �pl in the ordered phases
and also consider the fluctuation contribution in the disor-
dered phase. The Josephson plasma frequency is given by14

�see also the companion article,38 Sec. V�

�pl
2 =

16�e2dEJ

�0�2 �cos b� , �64�

where �0 is a dielectric constant. The task is then to evaluate
the thermodynamic average �cos b�.

Consider first the ordered phases where at least one of z
and �0 is finite. We start by evaluating Fvar of Eq. �26� for a
general one step RSB, recover the solution of Sec. III, and
then identify �cos b�. This derivation is needed so that the
free energy itself can be evaluated, and from the latter
�cos b� is inferred. The self mass term ��,� of Eq. �27� is
written for a one step solution in the form

�̂ = �0L̂ + ��1 − �0�Ĉ − ��0n + ��1 − �0�m�Î , �65�

where L̂�,�=1 and Ĉ has 1 element in blocks of size m�m
sitting consecutively along the diagonal, and 0 elements oth-
erwise. For n→0 we identify ��1−�0�m=�0 so that

Ĝ�q,k� = ��c�q,k�q2 + z + �0�Î + �− s0
q2

kz
2 − �0�L̂ −

�0

m
Ĉ�−1


 �Î + �L̂ + �Ĉ . �66�

It is straightforward to identify the coefficients of the inverse
matrix

��q,k� =
1

c�q,k�q2 + z + �0
,

� = �
q,k

��q,k� = 2t ln
�c

z + �0
+ C1,

��q,k� =

s0
q2

kz
2 + �0

�c�q,k�q2 + z�2 ,

� = �
q,k

��q,k� = 2s�ln
�c

z
− 1� +

2t�0

z
,

FIG. 3. �Color online� Bragg glass domain size RBG parallel to
the layers and the renormalized London length perpendicular to the
layers 	c

R; the latter diverges at the decoupling field B0. RBG can be
found from elasticity for B�B0 only if RBG�	c

R; otherwise, as in
the hatched region, the elastic tilt modulus is ill defined.
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��q,k� = −
1

m
���q,k� −

1

c�q,k�q2 + z
� , �67�

� = �
q,k

��q,k� =
2t

m
ln

z + �0

z
,

where the form of Eq. �50� is used for I�z� in the second line.
The definition of �̂ identifies �1=2Eve−� /d and �0
=2Eve−�−� /d. We follow a similar algebra in Sec. IV of Ref.
45 to evaluate the free energy density per replica as

f�m,z,�0� = f0 + �1 −
1

m
t�0 + �1 +

s

t
�tz −

Ev

Td
�2t − m�e−�−�

+
Ev

Td
�1 − m�e� −

EJ

Td
e−�1/2���+�+��� , �68�

where f0 is m ,z and �0 independent. Minimizing f�m ,z ,�0�
yields m=2t and Eqs. �42�, �43�, and �51� for �0 ,�1, z+�0,
and z. A replica symmetric solution is also possible with
�0=0 leading to Eq. �53�. The free energy at minimum is

fmin = f0 + �t − 1 +
1

4t
���0 + z� + �s −

1

2
�z . �69�

The Hamiltonian �12� shows that �cos b�=−Td��f /�EJ�.
As discussed below Eq. �53� Ev is generated from EJ in
second order RG so that Ev�EJ

2 initially, while Ev is RG
relevant at t�

1
2 , so that its value which is to be used by the

variational scheme is more weakly EJ dependent. We assume
then Ev�EJ

� with 0���2. Hence in the �0�0 phases

��z + �0�
�EJ

=
��z + �0�
EJ�1 − 2t�

,

�z

�EJ
=

�2 − ��
�1 − 2s�EJ

,

�cos b� = − ��1 − 2t�
z + �0

zbare
+ �1 −

1

2
�� z

zbare
, �70�

where zbare=EJ /Td is the bare value of z. For the �0=0 phase

�z

�EJ
=

z

�1 − t − s�EJ
,

�cos b� =
z

zbare
. �71�

so that at T=s=0 the order is maximal, �cos b�=1.
These results show that the JG order produces a negative

contribution to �cos b� so that when crossing a depinning line
�cos b� is enhanced by the �� terms in Eq. �70�. Since �0 is
continuous, the jump at depinning is �� 3

2 −2t�z /zbare. As dis-
cussed in Sec. III, the depinning in the lower part of Fig. 1 is
not a strict phase transition, but rather a crossover line, hence
we expect a smeared jump of �cos b�. An observation of a
�cos b� enhancement when crossing the lower depinning line
at T�T0 �B�B0� would be a clear signature that depinning

relates to JG order. The actual enhancement depends on �,
for which we do not have a precise derivation.

Near the decoupling transitions, the presence of anhar-
monic regimes, shown in Sec. IV, lead to an apparent jump in
�cos b�. This jump relates to the z terms in Eq. �70� and also
depends on the fluctuation contribution which is considered
next.

We proceed to evaluate fluctuation contribution when
�cos b� is small. As shown by Koshelev14 the local
�cos bn�r�� is finite even at high temperatures, e.g., above the
decoupling transition. The high-temperature expansion,
while formally ill defined, does reproduce the RG results for
�cos b�, as shown in Sec. III of the companion article.38 The
high-temperature expansion yields

�cos bn�r�� = �EJ/2T� 
 d2r exp�− A�r�� ,

A�r� = �
q,k

�1 − cos q · r��	b��q,k�	2� . �72�

For r2�1/qu
2 we can use the form �45� with z replaced by a

cutoff c�k� /r2 while for r�1/qu we expand 1−cos q ·r
→ 1

4q2r2, hence

A�r� = 4�s + t�ln�qur�, r � 1/qu,

=
1

2
�s + t�qu

2r2, r � 1/qu. �73�

The two regimes in Eq. �73� give comparable results,
though the r�1/qu is larger near the transition and repro-
duces the form of the RG result, as discussed in Sec. III of
the companion article.38 The latter yields, in terms of the
multicritical point coordinates �up to ln B terms�,

�cos b� �
�EJ	ab

2

8 ln�a/d�
·

B0T0

T�BT0 + BT − B0T0�
. �74�

Well above decoupling at s+ t�
1
2 we obtain �cos b�

��BT�T+T0��−1. A 1/BT dependence has been obtained by
Koshelev14 with a weakly temperature-dependent prefactor
for an XY model, i.e., infinite 	ab model. This result corre-
sponds, in fact, to the melted, or liquid phase.38 Data on

BSCCO �Ref. 13� has shown that �cos b̃n�r���B−0.8T−1 in
reasonable agreement with the 1/BT form. The present result
shows that in the decoupled phase, below melting, �pl
��BT�T+T0��−1, or the form �74� near decoupling. This dis-
tinct temperature dependence can be used to identify the de-
coupled phase.

As decoupling is crossed, we expect a positive fluctuation
term to compensate the negative contribution of the JG order.
Thus the forms �70� and �71� can be used for the jumps of
�cos b� across depinning or decoupling, while Eq. �72� is
valid in the high-temperature or high-field regime where
�cos b� is small.
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VI. DISCUSSION

The present work exhibits the JG order parameter as well
as the decoupling transition with disorder. We discuss now
our proposal for each of the four transition lines emanating
from the multicritical point �Fig. 2� and compare with ex-
perimental data.

Consider first the decoupling transition within the JG
phase at B=B0, T�T0. We have shown that RSB methods
are suspect within a narrow region near decoupling, where
usual elasticity is ill defined �Fig. 3�. RSB identifies this as a
ln2z divergence in A� which renormalizes z �Eq. �28��. This
can be thought of as a disorder term seff� ln z with a diverg-
ing seff. The consequence is an apparent discontinuity, or
even an intrinsic first-order transition, driven by disorder.

This decoupling transition is consistent with the main fea-
tures of the second peak transition: �i� decoupling field being
weakly T dependent,1–4 �ii� decoupling field decreasing with
impurity concentration,2 �iii� an apparent jump in the critical
current,1–4,8–11 �iv� decrease in the c-axis critical current,20

and �v� a jump in the Josephson plasma resonance.15,16 The
anharmonic region near decoupling leads to an apparent re-
duction in c44. The reduction in c44 and the resulting reduc-
tion in domain sizes account qualitatively for the enhanced
jc. We do not attempt a quantitative fit; in fact, the measured
magnetization changes �and inferred jc� at the second peak
decrease with temperature due to the strongly temperature
dependent relaxation rates,48 approaching the much smaller
equilibrium magnetizations.

The nature of the phase at fields above the second peak
line has not been conclusively settled. This work proposes
that it is a BG phase where the domain sizes have been
reduced by ��=a2 / �4��2	ab

2�. Experimentally, the smooth
connection of the second peak with the first-order line5 sug-
gests that it is a single “order-disorder” line of common ori-
gin, e.g., a melting line. However, the presence of a depin-
ning line that crosses the “order-disorder” line has been seen
by numerous experiments.17–20 The crossing of this depin-
ning line with the “order-disorder” line, separates the latter
into a disorder driven second peak part within a pinned re-
gime and into a thermally driven part in a depinned, or more
weakly pinned regime. This depinning line corresponds to
the onset of a Josephson glass order, as suggested below.

Consider next the decoupling line at T�T0. This corre-
sponds to the first-order transition, which is considered as a
melting line.1,5 However, neutron data7 has shown a reentrant
behavior in the 600−103 G range with positional correlations
increasing with temperature. It is possible then that near the
multicritical point the first-order line is a decoupling line. At
higher temperatures decoupling then merges into a melting
line.

The third transition line is a transition within the JG order
at T=T0, B�B0 into a weaker JG at T�T0. A depinning line
which is almost vertical at T�T0 was indeed observed.17–20

We note in particular the c-axis critical current20 which
shows a decrease on the high-temperature side of the depin-
ning line. The thermodynamic critical current is proportional
to the renormalized z that changes from the weakly
T-dependent Eq. �51� at T�T0 to the strong exponential de-
crease with T in Eq. �53� at T�T0, consistent with the data.

At T�T0 we also expect a sharp enhancement of the Joseph-
son plasma resonance, which is an additional tool for identi-
fying the JG order parameter.

The final fourth line is a depinning line at T=B0T0 /B, B
�B0 corresponding to a depinning line as observed in
BSCCO by current distribution data,17 vibration reed,18

magnetization,19 and c-axis critical current data.20 This line
is more difficult to detect by Josephson plasma resonance
since its frequency varies continuously, with discontinuities
in derivatives. In the decoupled phases �with or without JG
order�, where �cos b� is small, we expect the fluctuation form
Eq. �74�.

We have assumed throughout that our transition lines are
well below melting. Thermal melting is discussed below Eq.
�7� while here we estimate the disorder induced melting
field. We assume a Lindeman criterion such that the fluctua-
tions in the decoupled phase on scale R−=a are �uT

2�=cL
2a2,

with cL=0.15 a conventional Lindeman number.21 Using Eq.
�62� with a prefactor as identified by Eq. �A26� yields a
melting field of Bm�10−2cL

3�2B0B		ab
5 /d�0

4 where B	

=
0 /	ab
2 . With BSCCO parameters the condition Bm�B0 is

satisfied if B0�50B	, hence with the second peak field of
B0�B	�500 G disorder induced melting is expected at a
higher field.

In conclusion, we have found a phase diagram which is
remarkably close to the experimental one,1–4,17,19,20 having a
multicritical point and providing a fundamental interpreta-
tion of both the second peak transition and the more recently
observed depinning transitions.

Note added in proof. In a recent work49 the depinning
transitions were identified by relaxed magnetization data as
equilibrium transitions. Both transitions at fields below and
above the multicritical point were identified and suggested to
be equilibrium glass transitions.
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APPENDIX A: BRAGG AND JOSEPHSON GLASSES

This section studies nonlinearities due to both disorder
and Josephson coupling leading to two glass order
parameters—the Josephson glass �JG� and the Bragg glass
�BG�; the nonsingular phase is neglected. In particular an
equivalent term to the integral I�z� �Eq. �46�� is identified and
is shown to be convergent at k→0.

We consider the full Hamiltonian Eq. �21�, which by ne-
glecting the nonsingular phase becomes

H/T =
1

2 �
q,k,�

�c�
q4

kz
2 + c�k�q2�	b��q,k�	2

−
EJ

T
�
n;�

 d2r cos bn

��r� −
Ev

T
�

n;���

 d2r cos�bn

��r�

− bn
��r�� −

g0

a2 �
���,n


 d2r cos�Q · �un,��r� − un,��r��� .

�A1�
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The average of the disorder term over the variational
Hamiltonian �23� H0 yields

�cos�Q · �un,��r� − un,��r����

= exp�−
a2

2d2�
q,k

q2

kz
2 �G���q,k� − G���q,k��� . �A2�

We assume for simplicity a square lattice, Q=2� /a, other-
wise a factor �aQ /2��2 is needed in the exponent; there are
then four shortest Q terms in Eq. �A1�. The variational equa-
tion for G�,�

−1 �q ,k�, Eq. �27�, has now an additional self-
energy term ���

�1� which allows for an additional RSB. Written

as an equation for matrices in replica space, e.g., Ĝ, we have

Ĝ−1�q,k� = �c�
q4

kz
2 + c�k�q2 + z�Î − �̂2 −

q2

kz
2 �̂1. �A3�

When ��̂1���=1, i.e., no RSB, the previous form �27� is re-
covered. The variational Fvar �26� has now a term �exp�
− 1

2B��
�1�� �instead of the s0 term�, where

B��
�1� =

a2

d2�
q,k

q2

kz
2 �G���q,k� − G���q,k�� . �A4�

The variation of this term identifies

���
�1� =

4g0

d3 �e−�1/2�B��
�1�

− ����
�

e−�1/2�B��
�1�

� �A5�

while ���
�2� and B��

�2� have the previous forms �25� and �29�. In
the hierarchical scheme G−1 is represented by �ã ,a�u�� which
are now given by

ã = c�
q4

kz
2 + c�k�q2 + z − �̃2 − �̃1

q2

kz
2 ,

a�u� = − �2�u� − �1�u�
q2

kz
2 . �A6�

The JG and BG order parameters which measure the degree
of RSB are �1�u� ,�2�u�, respectively, where �i�u�=u�i�u�
−�0

u�i�v�dv, i=1,2. Using the inversion �32� we can write

1

2
Bi�u� =

gi�u�
u

− 

u

1 gi�v�
v2 dv, i = 1,2, �A7�

where

g1�u� =
a2

2d2�
q,k
�c�q2 + c�k�kz

2 + �z + �2�u��
kz

2

q2 + �1�u��−1

,

g2�u� = �
q,k
�c�

q4

kz
2 + c�k�q2 + z + �2�u� + �1�u�

q2

kz
2�−1

.

�A8�

As in Eq. �39�, we find

�i��u�
u

= −
d

du
��i��u�

gi��u� �, i = 1,2. �A9�

Consider first g2�u� which is dominated by k�q so that the
c� term produces just the cutoff qu. The q integration then
yields Eq. �38� with �c→ �c�k�+�1�u� /kz

2�qu
2 in the loga-

rithm. As above, we replace k by � /d in this logarithm since
the k integral is dominated by k�� /d due to the significant
softening of c�k� near k=� /d. Hence the form g2�u�� ln�z
+�2�u�� is maintained and the solution, as in Eq. �40� is a
one step function at u=2t.

To solve the equation for �1�u� we simplify the form of
c�k� as

c�k� = c�0� 
 c−, k �
1

a
,

=c��

d
� 4

d2kz
2 , k �

1

a
. �A10�

This form captures the significant dispersion of c�k� with
c�� /d�
c�0� and allows analytic treatment of the poten-
tially divergent k→0 integrals. The k�1/a integration range
in g1�u� has an integrand

�c�q2 + �1�u� + c��/d��4/d2� + �z + �2�u��kz
2/q2�−1

so that c�� /d��4/d2���1�u� provides a cutoff on the q in-
tegration, i.e., g1�u� acquires a term independent of �1�u�.
The k�1/a integration has c�0� /a2��1�u� so that after the
k integration

g1�u� =
a2

8�d2 
 q2dq
��c�q2 + �1�u���c−q2 + z + �2�u��

+ const.

�A11�

�1�u� varies between �1�0�=0 and �1�uc� which depends on
the disorder strength �see below�; �1�u�=�1�uc� is constant
at u�uc, being a valid solution of Eq. �A9�. As the decou-
pling transition is approached and z→0 the q integration in
Eq. �A11� has distinct forms depending on the ratio of �1�u�
and c�z /c−. When �1�u��c�z /c− the dominant integration
range is �1�u� /c��q2�z /c− and the result for the derivative
is

d

d�1
g1��1� =

��
�z

ln �1, �� =
a2

8�d2c�3/2 . �A12�

Substituting in Eq. �A9� yields �1�u��u�z /��ln2u and with
Eq. �A7� we obtain �C2=g1�u=0��

g1�u� = C2 +
u

ln u
+ O� u

ln2u
� ,

1

2
B1�u� = C2 + ln ln u + O� 1

ln u
� �A13�

so that �1�u��1/ ln u→0 at u→0. When �1�u��c�z /c�0�
the dominant integration range is z /c�0���1�u� /c��q2 so
that z=0 can be taken and
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d

d�1
g1��1� = −

�−

��1

, �− =
a2

8�c�c−
1/2 . �A14�

Substituting in Eq. �A9� yields �1�u�, so that in both regimes
we have to leading order in u

�1�u� =
u�z

��ln2u
, �1�u� � z

c�

c−
,

=
u2

4�−
2 , �1�u� � z

c�

c−
. �A15�

Integrating Eq. �A14� and using Eq. �A7� for 2�−
�c�z /c−

�u�uc,

g1�u� = C2 − u ,

1

2
B1�u� = C2 − ln

u

uc
− uc �A16�

so that �1�u��u in this range. We suspect that the solution at
�1�u��zc� /c− is significantly modified by the nonsingular
phase �as indeed found in Appendix B�. This is of no concern
since anyway the effect of this range on the z equation van-
ishes �Eq. �A20� below�.

We finally consider the equation for z by using the inver-
sion formula �32�

A� = 

q,k

G̃�q,k� = 

q,k

1

c� q4

kz
2 + c�k�q2 + z

� �2�0� + �1�0� q2

kz
2

c� q4

kz
2 + c�k�q2 + z

+ 1 + 

0

1 dv
v2

�2�v� + �1�v� q2

kz
2

c� q4

kz
2 + c�k�q2 + z + �2�v� + �1�v� q2

kz
2

� .

�A17�

Taking �2�0��z from Sec. III the �2�0� term yields a con-
stant, independent of z. Note that without BG order, �1�u�
=0, the one step solution for �2�u� reproduces the s0 terms in
Eq. �44�.

Consider first the range k�1/a which led to an apparent
divergence in Sec. III. For small v, where the v integral may
diverge, we take �2�v�=0 so that

A1 = 

0

dv
v2


q



k�1/a
k2� 1

c�q4 + �c−q2 + z�k2

−
1

c�q4 + �c−q2 + z�k2 + �1�u�q2� . �A18�

Performing the k integral leads to a �c−q2+z�−3/2 factor,
which amounts to a lower cutoff �z /c−,

A1 =
 dv
4�c−

3/2v2
�z/c−

dq�− �c� +
1

q
��1�v� + c�q2� .

�A19�

For �1�v��zc� /c− one can expand in �1�v�, which from Eq.
�A15� yields a term



0

��z dv
v2

v
ln2v

�
1

ln z
→ 0, z → 0. �A20�

For the v integration range where �1�v��zc� /c−, which ex-
ists if �1�uc��zc� /c−, we have

A1 =
1

4�c−
3/2�


��z

dv
2v2

��1�v�ln
4c−�1�v�

c�z
−

1

4�−
ln z�

=
1

64��−c−
3/2 �ln2z + O�ln z�� . �A21�

The second contribution to A� is from the range k�1/a
where c�k�kz

2�constant provides a cutoff in the A� integra-
tions, hence �1�v� can be neglected in the denominator, lead-
ing to

A2 = 

k�1/a



q

q2

kz
2�c�k�q2 + z�2


0

dv
v2 �1�v� . �A22�

Identifying s0=�0�dv /v2��1�v� we obtain the form �50� for
I�z�, i.e., A2=−2s ln z. Collecting both terms we finally have

A� =
�d2	ab

2

a4 ln2z − 2s ln z + O�ln z� , �A23�

where additional ln z terms involve �2�v� and t as in Eqs.
�47� and �48�.

We proceed to identify �1�u�, which determines the BG
domain size, and to examine the condition �1�uc��zc� /c−

necessary for the appearance of the ln2z term in Eq. �A23�.
Equations �A5� and �A16� yield for the range 2��c�z /c−
�u�uc,

�1�u� =
4g0

d3

u

uc
e−C2+uc. �A24�

The definition �1�u�=u�1�u�−�0
u�1�v�dv then leads to

�1�uc� =
2g0

d3 uce
−C2+uc. �A25�

C2 is a Debye Waller factor which is small by the assumption
of being well below melting, T /�
1. Comparing with Eq.
�A15� we identify uc�104sTd2�0

4 /	ab
2a4
1 and �1�uc�

��−�g /d3�2.
�1�uc� is related to the BG domain size in the axis per-

pendicular to the layers LBG
− =�c− /�1�uc� or in the ab plane

RBG
− =�c� /�1�uc�, as identified by the q ,k cutoffs in g1�u�

�Eq. �A8��, or by evaluating displacement correlations.23

Hence

RBG
− �

10−4	ab
3a3

sd�0
4 , �A26�

while LBG
− =RBG

− a / �	ab
�2��. These forms are valid close to

decoupling ��1�uc��zc� /c−� or in the decoupled phase �z
=0�. Remarkably, this result of RBG is, up to the 10−4 factor,
identical to that found from the dimensonal analysis Eq. �62�
with �uT

2��a2. We do not attempt to evaluate RBG in the
coupled phase with �1�uc��zc� /c− since then the nonsingu-
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lar phase, being neglected here, is essential for generating the
proper c44. As noted above, for the purpose of decoupling the
value of A� in the k�1/a range for large z �zc� /c−

��1�uc�� is negligible even without the nonsingular phase,
as seen in Eq. �A20�.

The condition �1�uc��zc� /c−, for the appearance of the
ln2z in Eq. �A23� can be written in terms of 	c

R �Eq. �56��
with �z /c−=1/	c

R��,

	c
R � RBG

− /�� �
10−3a	ab

5

sd�0
4 . �A27�

For typical BSCCO or YBCO parameters this implies a
renormalized anisotropy of 	c

R /	ab�105, i.e., fairly close to
decoupling at z=0. Note that RBG

− /�� can be identified as
RBG

+ , the BG domain size in the coupled phase, as shown in
Appendix B and Sec. IV.

APPENDIX B: BRAGG GLASS WITH NONSINGULAR
PHASE

We solve here the decoupling transition with nonlinear
coupling of disorder �BG effects� and with the nonsingular
phase. The Ev term of Eq. �21� is neglected, i.e., no JG ef-
fects. This describes correctly thermal decoupling, i.e., the
line s+ t=1 in Fig. 1 where JG is absent within the RSB
scheme. To identify the proper H0, we expand the renormal-
ized Josephson coupling −z cos�bn

��r�+�n
��r��� 1

2z�bn
��r�

+�n
��r��2 so that with the other Gaussian terms of Eq. �15�

we have

H0 =
1

2

 d2qdk

�2��3�Gf
−1�q,k�	���q,k�	2 + z	���q,k� + b��q,k�	2

+ c�q,k�q2	b��q,k�	2 −
q2

kz
2 �abb�*�q,k�b��q,k�� . �B1�

Formally, one needs to perform a variation of �cos�bn
��r�

+�n
��r���=exp�− 1

2A��, where

A� = �
q,k

�	���q,k� + b��q,k�	2� �B2�

to obtain the z term in Eq. �B1�. This procedure was also
used for decoupling in the presence of columnar defects.33

We proceed as in the pure case �54� by shifting to

�̃��q,k� = ���q,k� +
z

Gf
−1�q,k� + z

b��q,k� �B3�

which yields

H0 =
1

2

 ��Gf

−1�q,k� + z�	�̃��q,k�	2

+ G��
−1 �q,k�b�*�q,k�b��q,k�� ,

G��
−1 �q,k� = �c�

q4

kz
2 + c�k�q2 +

zq2

q2 + �1 + 	ab
2kz

2�/�	c
R�2����

−
q2

kz
2 ���, �B4�

where the last term corresponds to the B2 term of c44 �Eq.
�55�� with 	c replaced by 	c

R. Note that for q� �1
+	ab

2kz
2�1/2 /	c

R this reduces to Eq. �A3� with �2→0. A term
corresponding to the last term of Eq. �55�, being ��	c

R�−2, is
neglected.

We proceed to evaluate g1�u� with Eq. �A8� replaced here
by

g1�u� =
a2

2d2�
q,k
�c�q2 + �c�k� +

z

q2 + �1 + 	ab
2kz

2�/�	c
R�2�kz

2

+ �1�u��−1

. �B5�

For k�1/a c�k�kz
2��1�u� and g1�u� is �1 independent, as in

Appendix A. For k�1/a two regimes are identified, where
the coefficient of the kz

2 term in Eq. �B5� becomes

c+ = c�0� + z�	c
R�2 = c− +

	ab
2�

4�Td3 , q � 1/	c
R,

c− = c�0� =
a4�

2�4�d�3	ab
2T

, q � 1/	c
R �B6�

so that c+ /c−=1+1/��1 with � defined in Eq. �59�. This
reflects the significant dependence of c44 on interchanging
the q→0 and 1/	c

R→0 limits, as discussed in Sec. IV. After
the k integration we obtain �replacing Eq. �A11��

g1���1� = −
a2

8�d2�

0

1/	c
R 1

�c+

+ 

1/	c

R

1
�c−

� qdq
�c�q2 + �1

� �±/��1, �B7�

where �±=a2 / �8�c��c±� with �+ for ��1�u� /c��1/	c
R and

�− for ��1�u� /c��1/	c
R. Hence �1�u�=u2 /4�± and Eqs.

�A16� and �A24� are valid in both �± regimes. Comparing
Eq. �A25� with u2 /4�± identifies uc�2�±g0 /d3 and �1�uc�
��±�g0 /d3�2. The BG scales RBG

± =�c� /�1�uc� are therefore

RBG
+ �

10−3a	ab
5

sd�0
2 , RBG

+ � 1/	c
R,

RBG
− �

10−4	ab
3a3

sd�0
4 , RBG

− � 1/	c
R �B8�

so that RBG
+ =��+ /�−RBG

− =RBG
− /��. The range RBG

− �	c
R

�RBG
+ allows for both length scales and serves as a crossover

between the regimes in Eq. �B8�. The ratio RBG
+ =RBG

− /��
reflects the change in elastic constants, as in the dimensional
argument of Sec. IV. The result �B8� for RBG

− agrees with Eq.
�A26� in Appendix A.

Renormalization of z requires the sum �B2� which is av-
eraged with respect to H0 of Eq. �B4�
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A� = �
q,k
��̃��q,k� −

z

Gf
−1�q,k� + z

b��q,k� + b��q,k��2

=�
q,k
� 1

Gf
−1�q,k� + z

+ � z

Gf
−1�q,k� + z

�2

G���q,k�� .

�B9�

The first term is ��T /��ln z and is neglected at T
�. The
second term has a factor

z

Gf
−1�q,k� + z

=
q2

q2 + �1 + 	ab
2kz

2�/�	c
R�2 �B10�

which for q� �1+	ab
2kz

2�1/2 /	c
R strongly reduces the q inte-

gration, while for larger q ,A� becomes

A� = 

q,k

� 1

c� q4

kz
2 + c�k�q2 + z

��1 + 

0

1 dv
v2

�1�v� q2

kz
2

c� q4

kz
2 + c�k�q2 + z + �1�v� q2

kz
2

� ,

�B11�

where �� indicates q� �1+	ab
2kz

2�1/2 /	c
R. For k�1/a,

c�k�kz
2��1�u� provides a cutoff with the result A2

=2s ln��c /z� as in Eq. �A22�. For k�1/a the v integral term
of Eq. �B11� becomes A1 as in Eq. �A18� except for a q
cutoff in ��. The k integration of Eq. �A18� produces a cutoff
q��z /c−=1/ �	c

R���� �1+	ab
2kz

2�1/2 /	c
R, hence Eq. �A19� is

valid. For �1�v��zc� /c−

1
�z



0

��z dv
v2 �1�v� � const. �B12�

while for �1�v��zc� /c− �A21� is reproduced. The latter in-
tegration range exists if �1�uc��zc� /c−, i.e., RBG

− ��c− /z
=	c

R��. Using Eq. �B8� we identify the condition for the
appearance of the ln2z term as

RBG
+ � 	c

R, onset of ln2z term. �B13�

This is also the condition found in Appendix A �Eq. �A27��,
as well as the condition of Sec. IV, as illustrated in Fig. 3, for
the onset of the anharmonic regime.

APPENDIX C: JOSEPHSON GLASS WITH NONSINGULAR
PHASE

In this appendix we extend the solution of Sec. III to
include the nonsingular phase. In particular we identify the
pinning length Rp in the coupled phase and show that it
coincides with Eq. �62� �with �uT

2���0
2�, up to a numerical

prefactor. Since disorder is linearized, we do not expect to
derive BG domain sizes. Also the integral I�z� is reconsid-
ered.

Consider then Eq. �12� with the pure part replaced by Eq.
�15�. The harmonic part can be written as

Gf
−1�q,k�	b̃��q,k� − b��q,k�	2

+ �c�q,k�q2��� − s0
q2

kz
2�b��q,k�b�*�q,k�

=Gf
−1�q,k�	b̃��q,k�	2 + d�B��

−1 �q,k�d�*�q,k�

− Gf
−2�q,k�B��b̃��q,k�b̃�*�q,k� , �C1�

where

d��q,k� = b��q,k� − B�,��q,k�Gf
−1�q,k�b̃��q,k� ,

B�,�
−1 �q,k� = Gf

−1�q,k���q,k���,� − s0
q2

kz
2 ,

��q,k� = 1 + Gf�q,k�c�q,k�q2. �C2�

The resulting replicated Hamiltonian is

H�2�/T =
1

2 �
q,k;�,�

B�,�
−1 d��q,k�d�*�q,k�

+
1

2� c�q,k�
��q,k�

q2��,� −
s0q2

�2�q,k�kz
2�b̃��q,k�b̃�*�q,k�

−
EJ

T
�
n;�

 d2r cos b̃n

��r� −
Ev

T
�

n;���

 d2r cos�b̃n

��r�

− b̃n
��r�� . �C3�

The effect of the nonsingular phase on our previous
Hamiltonian �12� of Sec. II is to replace c�q ,k�
→c�q ,k� /��q ,k� and s0→s0 /�2�q ,k�. From the definition in
Eq. �C2� we find that ��q ,k�−1 is either �q2 or �k2 and is
small except when

��q,k� − 1 = �, k � 1/	ab, q � ka/	ab

=
a2

16�	ab
2 k � 1/	ab, q � ka/	ab. �C4�

This behavior is sufficient to eliminates the k→0 divergence
of I�z� �leading to �1/�z� as shown below.

We proceed to evaluate the fluctuations in utr�q ,k� and
identify the scale Rp. From Eq. �C2�

�	uT�q,k�	2� = �2�d2�−2q2

kz
2 ��d��q,k�d�*�q,k��

+ Gf
−2�q,k�B���q,k�B����q,k�G���q,k�� .

�C5�

Here G���q ,k�= �b̃��q ,k�b̃��
* �q ,k�� is the solution from Sec.

III, and in the replica limit

�
���

G����q,k� → 0,
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�
�

G���q,k� → � c�q,k�
��q,k�

q2 + z�−1

, �C6�

where terms involving �0 cancel. Hence

�	uT�q,k�	2� = �2�d2�−2q2

kz
2�B���q,k�

+
Gf

−2�q,k�
�Gf

−1�q,k� + c�q,k�q2�2G̃�q,k�

+
2s0q2/kz

2

�Gf
−1�q,k� + c�q,k�q2�3

Gf
−2�q,k�

c�q,k�
��q,k�q

2 + z
� .

�C7�

With some straightforward algebra,

�	uT�q,k�	2� = �2�d2�−2q2

kz
4�s0q2Gf�q,k��−1�q,k��c�q,k�q2

+
Gf

−1�q,k�z
Gf

−1�q,k� + z
�−1

+
s0

c�q,k��2�q,k�

�� c�q,k�
��q,k�

q2 + z�−1� + ¯ , �C8�

where ¯ stands for terms which converge in �q ,k� integra-
tion. Note the term Gf

−1�q ,k�z / �Gf
−1�q ,k�+z� which depends

on the order of q→0 and z→0 limits; this limit dependence
leads to the apparent discontinuity in c44 as discussed in Sec.
IV. For z�0 and small q, i.e., Gf

−1�q ,k�
z the first term in
Eq. �C8� dominates, leading to

�	uT�q,k�	2� �
4�2s0T2

a8�c44k
2 + c66q

2�2 , q � 1/	c
R, �C9�

where c44 is from Eq. �57� and the condition Gf
−1�q ,k�
z is

written in terms of 	c
R �Eq. �56��. The correlations at distance

r parallel to the layers are then

��uT�r� − uT�0��2� �
4d2s0T2

a4c44
1/2c66

3/2r 
 �0
2 r

Rp
. �C10�

The last equality defines the pinning length Rp where the
fluctuations become of order �0

2. This result for Rp �up to a
numerical prefactor� is the same as the one obtained from
Eq. �62� with �uT

2���0
2.

In the decoupled phase with z=0 the second term in Eq.
�C8� dominates. To leading order in � the result is identical to
Eq. �C10� except that c44 is replaced by its z=0 value Eq.
�58�, i.e., the pinning length is reduced.

Consider next the integral I�z�. As noted below Eq. �C3�
the nonsingular phase leads to the replacements c�q ,k�
→c�q ,k� /��q ,k� and s0→s0 /�2�q ,k� so that Eq. �46� be-
comes

I�z� =
 dq2dk

kz
2c�q,k���q,k�

1

�c�q,k�/��q,k��q2 + z
. �C11�

In the range 1/a�k�� /d with ��q ,k��1 the q2 term in
c�q ,k� amounts to a cutoff qu

2 �defined below Eq. �36�� lead-
ing to I0�z� �49�. In the range 1/	ab�k�1/a we have
c�q ,k�=c�0��1+2�	ab

2q2 /a2k2� and ��q ,k��1. The singu-
larity in z which we wish to identify, is exhibited by q→0,
hence c�q ,k��c�0�=c− leads to the first correction

I1�z� = −
2	ab

c−
2 ln z + const. �C12�

In the range k�1/	ab we have two terms

I2�z� = 2

0

1/	ab dk

k2c−

�

0

	abk/a dq2

�1 +
2�	ab

2q2

a2k2 ��c−q2�1 +
2�	ab

2q2

a2k2 � + z�
,

I3�z� = 2

0

1/	ab dk

k2c�



	abk/a

1/a �16�	ab
2k2

a2q2 �2 dq2

c�q2 + z
,

�C13�

where c�= �32�2	ab
4 /a4�c− is due to the finite effect of

c�q ,k� /��q ,k� when q�	abk /a, k�1/	ab. In I2�z� the q4

term replaces the q2 cutoff as ak /	ab leading to

I2�z� =
a

	ab
2c−

2�c−

z
+

2	ab

c−
2 ln z + const. �C14�

while

I3�z� =
�8��3	ab

3ac�2 �c�

z
�C15�

is smaller then the first term of Eq. �C14�. We conclude then

I�z� =
a

	ab
2c−

2�c�0�
z

+ 2s ln
�c

z
+ const. �C16�

The effect of the 1/�z term is significant, in terms of 	c
R

�Eq. �56�� if

	c
R

	ab

�
�2	ab

2a

4d2ln2�a/d�
� 104 �C17�

for BSCCO parameters; with bare anisotropy of 	c /	ab
�50 one needs to be fairly close to the transition to have an
effect from the 1/�z term. Note that nonlinear coupling of
disorder, i.e. BG formulation, is much more efficient in re-
ducing the I�z� singularity, as shown in Appendixes A and B.
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