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We investigate the effects of strong electron correlation on magnetoelectric transport phenomena in noncen-
trosymmetric superconductors with particular emphasis on its application to the recently discovered heavy-
fermion superconductor CePt3Si. Taking into account electron correlation effects in a formally exact way, we
obtain the expression of the magnetoelectric coefficient for the Zeeman-field-induced paramagnetic supercur-
rent, the existence of which was predicted more than a decade ago. It is found that in contrast to the usual
Meissner current, which is much reduced by the mass renormalization factor in the heavy-fermion state, the
paramagnetic supercurrent is not affected by the Fermi liquid effect. This result implies that the experimental
observation of the magnetoelectric effect is more feasible in heavy-fermion systems than that in conventional
metals with moderate effective mass.
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I. INTRODUCTION

It has been discussed for decades that metallic systems
with noncentrosymmetric crystal structure may exhibit non-
trivial magnetoelectric effects.1–5 The existence of an asym-

metric potential gradient �� V due to the noncentrosymmetric

structure gives rise to the spin-orbit interaction �p� ��� V� ·�� ,
which breaks the individual inversion and spin rotation sym-
metry. As a result, the charge or energy current operator may
couple to the spin-density operator. In this context, current
flows induced by an applied magnetic field and current-flow-
driven magnetization have been investigated extensively
both in normal metals1,2 and superconductors.3–5 In particu-
lar, Edelstein predicted the remarkable magnetoelectric effect
in superconducting states; i.e., in noncentrosymmetric super-
conductors, the Zeeman field induces a supercurrent, and
conversely, the supercurrent flow induces a magnetization.3,4

Later, the former effect is elegantly reformulated by Yip in
terms of the “van Vleck” contribution which stems from the
inversion-symmetry-breaking spin-orbit interaction.5 Since a
static magnetic field cannot induce dissipative current flows,
the Zeeman-energy-induced current should vanish in the nor-
mal state. However, in the superconducting state, the exis-
tence of the paramagnetic supercurrent is not forbidden in
the absence of the inversion symmetry. The recent discovery
of superconducting materials without inversion symmetry
such as CePt3Si, UIr, and Cd2Re2O7 stimulates the renewed
interest in this issue.6–12 Under an applied magnetic field, the
Meissner diamagnetic supercurrent in addition to the
Zeeman-field-induced paramagnetic supercurrent should ex-
ist. Thus, it is important for the experimental observation of
this effect to discriminate between these two supercurrents.

In the present paper, we would like to investigate the
Fermi liquid corrections to this Edelstein magnetoelectric ef-
fect, which may be important for the application to heavy-
fermion superconductors such as CePt3Si and UIr. We obtain
the formula for the magnetoelectric effect coefficient taking
into account Fermi liquid corrections exactly. The most im-
portant finding is that the Zeeman-energy-induced paramag-
netic supercurrent is not at all affected by electron correla-

tion effects provided that ferromagnetic spin fluctuation is
not developed, in contrast with the diamagnetic Meissner
current of which the magnitude is much reduced by the mass
renormalization effect. This result implies that the experi-
mental detection of the paramagnetic supercurrent in heavy-
fermion superconductors may be more feasible than that in
weakly correlated metals.

The organization of this paper is as follows. In Sec. II, we
present the basic formulation of the Fermi liquid theory for a
model system without inversion symmetry. We would like to
make a brief comment on the superconducting state realized
in CePt3Si in Sec. III. In Sec. IV, the exact formula of the
magnetoelectric coefficient is obtained. In Sec. V, the impli-
cation for the experimental observation of this effect is dis-
cussed. Summary and discussion are given in the last section.

II. MODEL AND ANALYSIS BASED ON THE FERMI
LIQUID THEORY

As a simplest model which realizes the broken inversion
symmetry, we consider an interacting electron system with
the Rashba spin-orbit interaction.13 The Hamiltonian is given
by

H = �
p,�

�pc�p
† c�p + � �

p,���

�p� � n�� · �� ���c�p
† c��p + U�

i

n↑in↓i,

�1�

where c�p
† �c�p� is the creation �annihilation� operator for an

electron with spin � and momentum p. The number density
operator at the site i, n�i=c�i

† c�i. The second term of Eq. �1�
is the Rashba spin-orbit interaction which incorporates the
broken inversion symmetry. Here, the unit vector parallel to
the asymmetric potential gradient is given by n� = �0,0 ,1�.
This system is considered to be a model of CePt3Si, with
which we are mainly concerned in this paper. The f electron
of CePt3Si is in the �7 Kramers doublet state.11 Expanding
the �7 doublet in terms of the sz=1/2 and −1/2 basis, we
found that the Rashba spin-orbit interaction term expressed
in term of the �7 basis has the matrix structure given above
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up to a constant factor which can be absorbed into the re-
definition of the coupling constant �. Thus, in the case of
CePt3Si, the spin index � in Eq. �1� represents the �7 Kram-
ers doublet. According to the LDA band calculations,10,30 the
electronic structure near the Fermi level in CePt3Si is pre-
dominated by the f-electron component. Since the leading
interaction between f electrons is an on-site Coulomb type,
we assume the interaction term as given by Eq. �1� for sim-
plicity.

In the following, we do not specify the pairing mechanism
of superconductivity, but assume that the superconducting
state is realized by an effective pairing interaction with an
angular momentum l�1 which may stem from the on-site
Coulomb interaction in Eq. �1� or may have any other origin
not included in the Hamiltonian �1�. Then, we can analyze
electron correlation effects on this superconducting state in a
formally exact way by using the superconducting Fermi liq-
uid theory.14–16

In the conventional Nambu representation,17 the inverse
of the single-particle Green’s function is defined as

Ĝ−1�p� = �i�n − Ĥ�p� − �̂�p�

− �̂†�p� i�n + Ĥt�− p�
� , �2�

where p= �p� , i��, and

Ĥ�p� = Ĥ0�p� + 	̂�p� , �3�

Ĥ0 = �p − 
 + ��p� � n�� · �� − 
B�xHx, �4�

with 
 the chemical potential. Here, to discuss the magneto-
electric effect, we take into account the Zeeman magnetic
field in the x direction, Hx. For simplicity, we assume that the

g value is equal to 2. The self-energy matrix 	̂ consists of
both diagonal and off-diagonal components,

	̂ = �	↑↑�p� 	↑↓�p�
	↓↑�p� 	↓↓�p�

� . �5�

We can easily see from the symmetry argument that under
the applied in-plane magnetic field, 	↑↑�p�=	↓↓�p��	�p�
and 	↓↑�p� , i��=	↑↓

* �p� ,−i��. The superconducting gap func-

tion is ��̂�p����=����p� �� ,�= ↑ , ↓ �.
i�n− Ĥ�p� and i�n+ Ĥt�−p� in Ĝ−1�p� are diagonalized by

the unitary transformation Â�p�Ĝ−1�p�Â†�p� with

Â�p� = �Û�p�� 0

0 Ût†�− p��
� , �6�

Û�p�� =
1
	2
� 1 it̂−

it̂+ 1
� , �7�

where t̂±= t̂x± it̂y, and t̂x and t̂y are, respectively, the x and y

components of the unit vector t̂�p� t�p / 
t�p
 with

t�p�i�� = �px +
1

�
Im	↑↓,py +

1

�
Re	↑↓ −


BHx

�
,0� . �8�

As seen from Eqs. �3�–�5�, the main effect of the off-
diagonal self-energy 	↑↓ is to renormalize the Rashba inter-
action term, replacing the momentum p� in the Rashba term
with the vector t�p. Since the on-site Coulomb interaction
does not change the symmetry of the system, the off-
diagonal self-energy should satisfy the following condition
in the absence of magnetic fields:

Re 	↑↓�px,− py� = − Re 	↑↓�px,py� , �9�

Im 	↑↓�− px,py� = − Im 	↑↓�px,py� , �10�

and Re 	↑↓ �Im 	↑↓� is an even function of px �py�.
In the normal state, the single-particle excitation energy

�p�
* for the quasiparticle with the helicity �= ±1 is given by

the solution of the equation z− Ĥ�p� ,z�=0, which is, in the
diagonalized representation,

�p�
* + 
 − �p − ��
t�p��p�

* �
 − Re 	�p� ,�p�
* � = 0. �11�

The gap functions �̂�p� and �̂†�p� in Ĝ−1�p� are also di-

agonalized by the unitary transformation Â�p�Ĝ−1�p�Â†�p�
provided that the gap function has the following structure:

�̂�p� = �s�p�i�y + �t�p��t̂�p � n�� · �� i�y . �12�

Here �s�p� and �t�p� are even functions of momentum p� .
This means that the spin singlet and triplet component is

mixed in the diagonalized basis labeled by �= ±1, and the d�

vector of the triplet component is t̂�p�n� .3,18 In the case that

�̂�p� is not expressed as Eq. �12�, Ĥ�p� and �̂�p� cannot be
diagonalized simultaneously, and the nonzero off-diagonal

components of �̂�p� which correspond to the Cooper pairing
between the different Fermi surfaces induce pair-breaking
effects, resulting in the decrease of the transition temperature
Tc. Thus, the highest transition temperature is achieved by
the gap function given by Eq. �12�.19 The realization of the
gap function �12� in the case with no inversion center is also
elucidated by the group theoretical argument.20

Taking the inverse of Eq. �2�, we have

Ĝ�p� = � Ĝ�p� F̂�p�

F̂†�p� − Ĝt�− p�
� , �13�

where

Ĝ�p� = �
�=±1

1 + ��t̂�p � n�� · ��

2
G��p� , �14�

F̂�p� = �
�=±1

1 + ��t̂�p � n�� · ��

2
i�yF��p� , �15�

and

G��p� =
zp��i� + �p�

* �
�i� + i
 sgn ��2 − Ep�

2 , �16�
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F��p� =
zp����p�

�i� + i
 sgn ��2 − Ep�
2 . �17�

Here the mass renormalization factor is

zp� = ��1 −
� Re 	�p�

��i��
+ �� t̂x

� Im 	↑↓�p�
��i��

+ t̂y
� Re 	↑↓�p�

��i��
�
−1�

i�=Ep�

, �18�

and 
 is the quasiparticle damping. The single-particle exci-
tation energy is Ep�=	�p�

*2+��
2�p� with �p�=zp���s�p�

+��t�p��.
The superconducting gap function ��� and the transition

temperature are determined by the self-consistent gap equa-
tion,

��� = T�
n,p

Tr��̂���p,p��F̂�p��� , �19�

where we have introduced the four-point vertex function ma-

trix ��̂���p , p���
� which is diagrammatically expressed as
shown in Fig. 1. We expand the four-point vertex in the

particle-particle channel ��̂���p , p���
� in terms of the basis
of the irreducible representations of the point group, and

consider a component ��̂a
���p , p���
� which corresponds to

the pairing state giving the highest Tc. This pairing interac-
tion consists of the spin singlet and triplet channel,

��̂a
���p,p���
� = �s�p,p��i��y���i��y�
� + �t�p,p���t̂�p

� n�� · ��� i�y����t̂�p� � n�� · ��� i�y�
�. �20�

The symmetries of �s�p , p�� and �t�p , p�� in the momentum
space are characterized by the same irreducible representa-
tion, and as a result, �s�p� and �t�p� in Eq. �12� have the
same symmetry in the momentum space. The realized super-
conducting state is the mixture of the spin singlet and triplet
states.3,18 In this case, the possible pairing state is s+ p or d
+ f or g+h, and so forth.

III. A COMMENT ON THE SUPERCONDUCTING STATE
REALIZED IN CePt3Si: THE POSSIBILITY OF AN

UNUSUAL COHERENCE EFFECT

Here, we would like to make a brief remark about the
pairing state realized in CePt3Si. The NMR measurement
carried out by Yogi et al. shows the existence of the coher-
ence peak of 1/T1T just below Tc, indicating the full-gap

state without nodes.12 On the other hand, the recent experi-
ment on the thermal transport done by Izawa et al. supports
the existence of line nodes of the superconducting gap.23 A
possible resolution of this discrepancy is that the line nodes
of the superconducting gap are generated accidentally at the
magnetic zone boundary which emerges as a result of the
antiferromagnetic phase transition at TN=2.2 K, and crosses
the Fermi surface. For such accidental nodes without the sign
change of the superconducting gap function, the coherence
factor of 1 /T1T does not vanish, resulting in the enhance-
ment of the coherence peak just below Tc. In this case, a
plausible candidate for the pairing state is the s+ p wave
state. An important point which we would like to stress here
is that even when the superconducting state is dominated by
the p wave pairing, i.e., �s�p���t�p�, the coherence factor
which enters into 1/T1T does not vanish. This contrasts with
the case of the usual p wave state realized in centrosymmet-
ric superconductors, where the coherence factor of 1 /T1T
disappears. This is understood as follows. For simplicity, we
ignore electron correlation effects. Then, in noncentrosym-
metric superconductors, the nuclear relaxation rate is given
by17

1

T1T
� lim

�→0

1

�
Im �T�

�m

�
p,p�

��Tr��+

2
Ĝ�p,�m

+ �n�
�−

2
Ĝ�p�,�m�
 − Tr��+

2
F̂�p,�m

+ �n�
�−

2
F̂�p�,�m�
��

i�n→�+i�
�

=� d�

2�

1

2T cosh2 �

2T

��Nn����2 + �Na���2�� , �21�

with Nn��� and Na��� defined by the retarded Green’s func-
tions as

Nn��� = − �
p

�
�=±

Im G�
R�p,�� , �22�

Na��� = − �
p

�
�=±

Im F�
R�p,�� . �23�

The expression of 1/T1T �21� does not rely on the phase

factor t̂�p�n� of the triplet component of the gap function
�12�. The second term on the right-hand side of Eq. �21�
gives the nonzero contribution from the coherence factor, as
in the case of conventional s-wave superconductors. This
property enhances the coherence peak of 1/T1T prominently.
It may be important to take into account this unusual coher-
ence effect for clarification of the origin of the notable co-
herence peak of 1/T1T in CePt3Si.12 It is also intriguing to
explore the unusual coherence effect on other response func-
tions, such as the ultrasonic attenuation. We would like to
address this issue elsewhere.

FIG. 1. Four-point vertex in the particle-particle channel.
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IV. MANY-BODY EFFECTS ON THE
MAGNETOELECTRIC TRANSPORT IN THE

SUPERCONDUCTING STATE

In this section, we consider electron correlation effects on
the magnetoelectric transport in the superconducting state
first found by Edelstein and later discussed in detail by Yip
i.e., the emergence of the paramagnetic supercurrent induced
by the Zeeman magnetic field in the direction normal to the
n� vector.3,5

We consider the charge current flowing in the y direction,
which is defined as

Jy = T�
�n,p

1

2
Tr�V̂0yG�p�� �24�

with

V̂0y = �v̂0y�p�� 0

0 − v̂0y
t �− p��

� �25�

and v̂0y =�py
�p+��n� ��� �.

The transport coefficient which characterizes Edelstein’s
magnetoelectric effect is given by

Kyx � � �Jy

�Hx
�

Hx=0

= − T�
n,p

1

2
Tr��V̂0yG�p�

�G−1�p�
�Hx

G�p�
�
Hx=0

. �26�

Following Ref. 3, to simplify the expression of Kyx we
use Ward’s identity for the current vertex,

�Ĝ�p�
�py

= Ĝ�p�Ṽˆ y�p��Ĝ�p� + F̂�p�Ṽˆ y
t �− p��F̂†�p� ,− i�� + R̂�p� ,

�27�

where Ṽ
ˆ

y�p��= v̂0y +�	̂�p� /�py, and

R̂�p� = � 0 r�p�
r*�p� ,− i�� 0

� , �28�

r�p� = �G+ − G−

2�
t�p

− G+G− + F+F−
 t̂+�+−

cy �p� , �29�

�+−
cy �p� = t̂x�� +

� Re 	↑↓

�py
� − t̂y

� Im 	↑↓

�py
. �30�

Then, from Eqs. �13�, �26�, and �27�, we obtain

Kyx = − 2T�
n,p

Tr�F̂�p�v̂0y
t �− p��F̂†�p��
B�x −

�	̂

�Hx
�


− 2
B�T�
n,p

F+F−t̂x�+−
sx �p� + T�

n,p
Tr� �	̂

�py

�Ĝ

�Hx



− T�
n,p

Tr� �	̂

�Hx

�Ĝ

�py

 , �31�

where the three-point vertex function is

�+−
sx �p� = t̂x�1 −

1


B

� Re 	↑↓

�Hx
� +

t̂y


B

� Im 	↑↓

�Hx
. �32�

The last two terms of Eq. �31�, which emerge as a result of
Fermi liquid corrections, can be rewritten by using Luttinger-
Ward’s identity generalized to the superconducting state.
Luttinger-Ward’s identity in the normal state reads21,22

T�
n,p

Tr�	̂
�Ĝ

�p



 = 0. �33�

This relation is obtained by differentiating all closed linked
diagrams with respect to p
.21,22 In the superconducting
state, a similar analysis leads to

T�
n,p

Tr�	̂
�Ĝ

�p



 + T�
n,p

Tr��̂† �F̂

�p



 + T �
n,p

Tr��̂
�F̂†

�p




= 0. �34�

Differentiating Eq. �34� with respect to Hx, and integrating
over py by parts, we have

T�
n,p

Tr� �	̂

�py

�Ĝ

�Hx

 − T�

n,p
Tr� �	̂

�Hx

�Ĝ

�py



= − T�
n,p

Tr� ��̂†

�py

�F̂

�Hx

 + T�

n,p
Tr� ��̂†

�Hx

�F̂

�py



− T�
n,p

Tr� ��̂

�py

�F̂†

�Hx

 + T�

n,p
Tr� ��̂

�Hx

�F̂†

�py

 . �35�

We see from Eqs. �37� and �35� that Kyx vanishes exactly in
the normal state, as is consistent with the thermodynamic
argument that a static magnetic field cannot induce nonequi-
librium current flows.3,5 The right-hand side of Eq. �35� con-
sists of the terms which have the form �n,pG�F��. The ratio
of the contributions from these terms to those from other
terms of Eq. �31� is of order � /EF, and thus we can neglect
the last two terms of Eq. �31� approximately. Then, the mag-
netoelectric coefficient is expressed as
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Kyx

e
B
= �

p
�

�=±1
�v0y�

zp�
2 �p�

2

Ep�
2 �ch−2Ep�

2T

2T
−

th
Ep�

2T

Ep�
���

sx�p�

+ 2��
p

zp+zp−�p+�p−

Ep+
2 − Ep−

2 � th
Ep+

2T

Ep+
−

th
Ep−

2T

Ep−
�t̂x�+−

sx �p� ,

�36�

where

��
sx�p� = t̂y�1 −

1


B

� Re 	↑↓

�Hx
� −

t̂x


B

� Im 	↑↓

�Hx
−

�


B

� Re 	

�Hx
.

�37�

It is noted that the vertex corrections due to electron corre-
lation, �sx�p�, which appear in the above expression �36� is
nothing but the vertex corrections to the uniform spin sus-
ceptibility,

�xx = 
B
2�

p
�

�=±1

zp�

2Ep�
2 ��p�

*2ch−2Ep�

2T

2T
−

�p�
2 th

Ep�

2T

Ep�
�t̂y��

sx�p�

+ 
B
2�

p
��p+

* th
Ep+

2T

2Ep+
−

�p−
* th

Ep−

2T

2Ep−
� t̂x

�
t�p

�+−

sx �p� . �38�

Equation �38� is easily obtained by differentiating the x com-

ponent of the total magnetization Sx=
BT�n,p Tr��xĜ�p��
with respect to Hx. Note that the first term on the right-hand
side of Eq. �38� is the Pauli paramagnetic contribution and
the second one is the “van Vleck” term which arises from
excitations between spin-orbit split two bands. Generally, in
heavy-fermion systems, the magnitude of the uniform spin
susceptibility is enhanced by the vertex corrections �sx�p�.
In typical heavy-fermion systems including CePt3Si, the Wil-
son ratio RW=T� /C / �T�0 /C0��2, which implies that the
vertex corrections �sx is approximately of order the mass
enhancement factor 1 /zp�.

9 Therefore, in Eq. �36�, effects of
the vertex corrections and the mass renormalization factors
zp� cancel with each other. This cancellation holds as long as
there is no strong ferromagnetic spin fluctuation which in-
creases notably the magnitudes of the vertex corrections �sx.
Another important feature of Eq. �36� is the absence of the
backflow term of the charge current, which usually exists in
the nonequilibrium current flow. �See the discussion on the
usual Meissner current in the next section.� This is related to
the fact that the current induced by a static magnetic field is
a dissipationless equilibrium flow. As a result, the Fermi liq-
uid corrections do not exist in this magnetoelectric coeffi-
cient for heavy fermion superconductors, provided that there
is no ferromagnetic fluctuation. This is one of the main re-
sults of this paper. In terms of the Kubo formula, the absence
of electron correlation effects for Kyx is understood as fol-
lows. Kyx is given by the correlation function of the current
and spin-density operators. The spin-density vertex is renor-
malized by electron correlation in the opposite way to the

current vertex, resulting in the cancellation of the mass
renormalization factors. The important implication of this re-
sult is that the Zeeman-field-induced paramagnetic supercur-
rent is not suppressed by electron correlation effects in con-
trast with the usual diamagnetic supercurrent of which the
magnitude is much reduced by the large mass enhancement
in heavy fermion systems. This property may make the ex-
perimental observation of the magnetoelectric effect easier,
as discussed in the next section.

V. IMPLICATIONS FOR EXPERIMENTAL OBSERVATIONS

On the basis of the formula �36�, we would like to discuss
how the Zeeman-field-induced paramagnetic supercurrent is
experimentally observed.

When the magnetic field is applied in the x direction, the
London equation is modified to

J�s = −
c

4��2A� + Kyx�n� � H� x� , �39�

where A� is the vector potential. Since the applied magnetic
field always induces both the diamagnetic and the paramag-
netic supercurrent in the system with the Rashba spin-orbit
interaction, it is important for the experimental observation
of this effect to discriminate between these two supercur-
rents. If one measures currents simply attaching leads to the
sample and applying an in-plane magnetic field, the Zeeman-
field-induced paramagnetic supercurrent cannot flow in the
sample because it generates the Joule heat in the normal
metal leads.24 In this case, the magnetoelectric effect is can-
celed with the nonzero phase gradient of the superconducting
order parameter in the equilibrium state.

Here, to highlight the observation of the paramagnetic
supercurrent, we consider an experimental setup composed
of two superconducting samples joined together as depicted
in Fig. 2. The n� vectors of the sample A and B are, respec-
tively, given by n�A= �0,0 ,1� and n�B=−n�A. The joined sur-
face at the junction is normal to the n� vectors. The applied

magnetic field in the x direction H� = �H ,0 ,0� gives rise to the
paramagnetic supercurrent in the sample A �B� in the direc-

FIG. 2. An experimental setup for the detection of the Zeeman-
field-induced supercurrent. The n� vectors of the two superconduct-
ing samples A and B �depicted by the gray arrows� are aligned in
the directions �0,0,1� and �0,0 ,−1�, respectively. The in-plane mag-

netic field H� is applied in the x direction. The paramagnetic super-
current circulates in the system as depicted by the black thin arrows.
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tion n�A�H� �−n�A�H� �. Then, electrons accumulated in the
right �left� edge of the sample A �B� transfer to the right �left�
edge of the sample B �A� to decrease the chemical potential
difference between the samples A and B, resulting in super-
current flows circulating in the system. The applied magnetic
field also induces the Meissner diamagnetic supercurrent. As
explained below, the paramagnetic contribution can be dis-
criminated from the diamagnetic current by using the Volo-
vik effect.25

Let us first consider the coefficient of the diamagnetic
Meissner supercurrent with the Fermi liquid corrections at
zero temperature, which is equal to the Drude weight in the
normal state,14

c

4��2 =
e2

c
�

p,�=±1
vp�


*Jp�

*��
 − �p�

* � , �40�

where the quasiparticle velocity is vp�

*=��p�

* /�p
, and the
charge current is

Jp�

* = vp�


* + �
p

fp�,p�����
 − �p�
* �vp���


* . �41�

Here fp�,p��� is the interaction between two quasiparticles.
The second term of Eq. �41� is the backflow term. In heavy
fermion systems, the mass renormalization factor zp� and the
backflow term in the current Jp�

* give rise to the pronounced
reduction of the Meissner coefficient. For example, in
CePt3Si, zp� is estimated as �1/100.6,10 If we assume the
spherical Fermi surface, Eq. �40� reduces to �e2 /c�vF

*ns / pF.
Here vF

* is the renormalized Fermi velocity, ns is the super-
fluid density, and pF is the Fermi momentum. It should be
notified that ns is renormalized by the backflow effect of Jp�

* ,
and is not equal to the carrier density even at zero tempera-
ture. In particular, for heavy fermion systems in which um-
klapp scattering is expected to be strong, ns is smaller than
the carrier density. In contrast to the diamagnetic Meissner
current, the Zeeman-field-induced paramagnetic supercurrent
is not influenced by the many-body effects described above,
as discussed in the previous section. This difference of elec-
tron correlation effects between the diamagnetic and para-
magnetic supercurrents can be utilized to detect the magne-
toelectric effect.

If the superconducting gap has a nodal structure as is
often realized in some heavy-fermion superconductors, the
existence of the paramagnetic supercurrent is indirectly ob-
served through the Volovik effect on the single-particle den-
sity of states under the applied in-plane magnetic field for
Hc1�H�Hc2. Here Hc1 and Hc2 are, respectively, the lower
and upper critical field. In fact, the recent thermal transport
measurements for CePt3Si supports the existence of the line
node in the superconducting state of this system.23 Applying
the semiclassical approximation based upon the Doppler
shift effect,25 and assuming a spherical Fermi surface, we
calculate the local density of states from the modified Lon-
don equation �39�. In the calculation of Kyx, we use the fact
that the vertex correction ���+−�

sx is appropriately approxi-
mated as �zp�

−1 in typical heavy-fermion systems as discussed
in Sec. IV, and we expand Eq. �36� in terms of �pF /EF up to
the lowest order. The result at T=0 is

�Dloc�0� � �	 H

Hc2

e2vF
*�0

c�
±

H

Hc2

e
B�pF�0n0

��2EFns
� . �42�

Here �0=hc / �2e�, and n0 is the density of electrons. EF is
the unrenormalized Fermi energy. The first term on the right-
hand side of Eq. �42� is due to the usual Volovik effect, and
the second term linearly proportional to the applied magnetic
field stems from the Zeeman-energy-induced paramagnetic
supercurrent. Thus, the magnetic-field dependence distin-
guishes between the paramagnetic and diamagnetic currents.
The above behavior of the local density of states may be
observed by the measurement of the specific-heat coefficient
or the thermal conductivity in sufficiently low field
regions.26–29 In the above expression of �Dloc�0�, it is seen
that the conventional diamagnetic contribution is suppressed
by the mass renormalization factor zp� which appears
through vF

* , whereas the magnetoelectric contribution is not
affected by this correlation effect. It is also noted that the
carrier density which enters into the paramagnetic term is not
ns but equal to the electron density n0. This is due to the
absence of the backflow term in the Zeeman-energy-induced
supercurrent. As mentioned before, ns is affected by the
backflow term. For simplicity, we assume that ns�n0 for a
while.

In the case of CePt3Si, according to the measurement of
Hc2, the coherence length ��8.1�10−7 cm.6 It is a bit dif-
ficult to estimate the renormalized Fermi velocity from ex-
perimental measurements. Bauer et al. obtained vF

* �5.29
�105 cm/s from the data of dHc2 /dT and the specific-heat
coefficient, assuming a spherical Fermi surface.6 This value
of vF

* is almost of the same order as that obtained by com-
bining the unrenormalized Fermi velocity computed from the
LDA method and the mass enhancement factor z−1�100 es-
timated from the specific-heat measurement.6,10 According to
the LDA band calculations,10,30 the spin-orbit splitting is not
so small compared to the Fermi energy, and may be approxi-
mated as �pF /EF�0.1. Then, for CePt3Si, we have

�Dloc�0� � �1.0 � 10−24	 H

Hc2
± 0.48 � 10−24 H

Hc2
� .

�43�

It is remarkable that the contribution from the paramagnetic
supercurrent �the second term of Eq. �43�� is comparable to
that from the Meissner supercurrent �the first term of Eq.
�43��. It should be stressed that the feasibility of the experi-
mental observation of Edelstein’s magnetoelectric effect is
due to the large mass enhancement in the heavy-fermion sys-
tem, which suppresses strongly the Meissner supercurrent,
but in contrast, does not affect the Zeeman-field-induced
paramagnetic supercurrent. Moreover, if the superfluid den-
sity ns is reduced by the backflow effect, the Meissner term
of Eq. �42� is more suppressed compared with the paramag-
netic term, and thus the observation of the magnetoelectric
effect may become easier.

VI. SUMMARY AND DISCUSSION

We have investigated electron correlation effects on the
magnetoelectric transport phenomena in superconductors
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without inversion symmetry. It is found that, in contrast to
the Meissner diamagnetic supercurrent which is much re-
duced by the mass enhancement factor in the absence of
translational symmetry, the Zeeman-field-induced paramag-
netic supercurrent is not affected by the strong electron cor-
relation provided that ferromagnetic fluctuation is not devel-
oped. Because of this remarkable property, the experimental
detection of the magnetoelectric effect may be more feasible
in heavy-fermion superconductors without inversion symme-
try such as CePt3Si, where the enormous mass enhancement
suppresses the magnitude of the Meissner supercurrent, than
in conventional metals with moderate effective electron
mass. We have proposed the experimental setup for the ob-
servation of the magnetoelectric effect in CePt3Si which uti-
lizes the Volovik effect. It has been also pointed out that in
noncentrosymmetric p wave superconductors, the coherence
effect on the nuclear relaxation rate 1 /T1T is similar to that
of conventional s-wave superconductors.

Finally, we would like to comment on the implication of
our results for UIr, which is the recently discovered ferro-
magnetic superconductor without inversion symmetry.7 UIr
exhibits superconductivity under high pressure in the vicinity
of the phase boundary between ferromagnetic and nonmag-

netic states. The resistivity of this system increases remark-
ably as the applied pressure approaches the critical value at
which the ferromagnetism disappears, indicating the exis-
tence of ferromagnetic critical fluctuation. In this case, the
magnetoelectric coefficient Eq. �36� may be enhanced by the
three-point vertex functions ���+−�

sx , of which the magnitudes
are much increased by ferromagnetic fluctuation, provided
that the spin easy axis is taken as the x axis. Since the crystal
structure of UIr is monoclinic, and does not possess any
mirror planes, the Rashba spin-orbit interaction with the n�
vector perpendicular to the spin easy axis should always ex-
ist. Thus, the magnetoelectric effect strongly enhanced by
ferromagnetic fluctuation may be observed in UIr under an
applied magnetic field parallel to the spin easy axis.
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