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Superconducting states of an anisotropic s-wave superconductor on a Möbius strip are studied numerically
based on the Ginzburg-Landau theory and the Bogoliubov–de Gennes theory. In both, the equations are solved
numerically on discretized lattice and the nonlinearity and the self-consistency are fully taken into account.
First, we study the superconducting states on the Möbius strip in the presence of the Aharonov-Bohm flux
threading the ring by employing the Ginzburg-Landau theory, and confirm the phase diagram previously
proposed by Hayashi and Ebisawa �J. Phys. Soc. Jpn. 70, 3495 �2002��. The metastable states as well as the
equilibrium state are studied and the nonequilibrium processes when the magnetic field is varied at a fixed
temperature are discussed. Next, we study the microscopic superconducting states on the Möbius strip based on
the Bogoliubov–de Gennes theory, especially focusing on the state with a real-space node in the superconduct-
ing gap, which is expected to appear when the flux threading the ring is close to a half-odd integer times the
superconducting flux quantum. The local density of states in this nodal state is calculated in detail and the
existence of the zero-energy bound states is shown.
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I. INTRODUCTION

The realization of crystals with unusual shapes, e.g., ring,
cylinder, etc., by Tanda et al.1–3 has stimulated renewed in-
terest in the effects of the system geometry on the physical
properties. Especially, the synthesis of Möbius strip made of
transition metal chalcogenides �NbSe3 ,TaS3, etc.�4 opens a
possibility to examine the physical properties of supercon-
ductivity or charge density wave in topologically nontrivial
spaces.

Recently several groups have studied physical systems on
Möbius strips. Hayashi and Ebisawa5 studied s-wave super-
conducting �SC� states on a Möbius strip based on the
Ginzburg-Landau �GL� theory and found that the Little-
Parks oscillation, which is characteristic to the ring-shaped
superconductor, is modified for the Möbius strip and a state,
which does not appear for ordinary ring, shows up when the
number of the magnetic flux quanta threading the ring is
close to a half-odd integer. Yakubo, Avishai, and Cohen6

have studied the spectral properties of the metallic Möbius
strip with impurities and clarified statistical characteristics of
the fluctuation of the persistent current as a function of the
magnetic flux threading the ring. The persistent current in a
more simplified version of the Möbius strip has also been
studied by Mila, Stafford, and Caponi.7 Wakabayashi and
Harigaya8 have studied the Möbius strip made of a nan-
ographite ribbon, and the effects of Möbius geometry on the
edge localized states, which is peculiar to the graphite rib-
bon, has been clarified. A study from a more fundamental
point of view can be found in the paper by Kaneda and
Okabe9 where the Ising model on Möbius strip and its do-
main wall structures are studied.

The main result of Ref. 5 is that if the magnetic flux
threading the ring is close to a half-odd integer times the flux

quantum �0=hc / �2e� �h , c , e being the Planck constant, the
speed of light, and the electron charge, respectively�, a char-
acteristic SC state appears. This state has a real-space node
in SC gap along the circumference of the strip: namely, the
gap tends to zero along the line located in the middle of the
strip. Throughout this paper we call this state the “nodal
state.” It has been shown that the free energy of this state can
be lower than that of uniformly gapped state, which is known
to be the most stable state in case of the ordinary SC rings.

This paper extends the previous study in the following
two points.

�a� In Ref. 5, we have shown that the free energy of the
nodal state is lower than other likely states. However, there
is no evidence that it is the most stable. Although it is diffi-
cult to examine all possible local-minimum states of the non-
linear GL free energy, in this paper we try to give a more
convincing evidence by resorting to a numerical method. We
perform numerical minimization of the GL free energy and
find as many local-minimum states as possible and reexam-
ined the phase diagram of Ref. 5. A similar method is previ-
ously employed, for example, in Refs. 10 and 11 in studying
SC disks, etc.

�b� The electronic states, which are not treated in Ref. 5,
are studied in terms of the Bogoliubov–de Gennes �BdG�
theory. We numerically solve the BdG equation on a lattice
self-consistently, where electrons are treated by the tight-
binding approximation. Based on the solution we study the
local density of states in the nodal state, which may be ob-
served, for example, by scanning tunneling microscope mea-
surement.

This paper is organized as follows. In Sec. II, we review
the behavior of a SC Möbius strip in a magnetic field, pre-
sented in Ref. 5. In Sec. III, the model, method, and results
of the numerical analyses of GL theory are presented. In Sec.
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IV, studies based on the BdG theory for the electronic prop-
erties of the nodal state are presented. In Sec. V, discussions
on the results and their relation to experiments are given.
Section VI is devoted to summary.

II. A SUPERCONDUCTING MÖBIUS STRIP IN A
MAGNETIC FIELD

Here we summarize the results obtained in Ref. 5. In that
paper, the behavior of a SC Möbius strip in an external mag-
netic field is studied based on the GL theory.

We consider the Möbius strip made of a superconductor
as shown in Fig. 1�a�. The magnetic field is assumed to be
threading the ring in a form of the so-called Aharonov-Bohm
�AB� flux as indicated in the figure by a bold arrow, which
gives rise to a nonzero vector potential on the strip although
the magnetic field is vanishing on the strip. In actual Möbius
strip, the crystal is expanded in the edges and contracted in
the center. Therefore elastic deformations are inevitable. In
this paper we assume that the circumference of the strip is
long enough as compared to the width that the elastic defor-
mation is negligible. Then we can set an approximately or-
thogonal two-dimensional coordinate on the strip as indi-
cated in the developed figure, Fig. 1�b�. We take the x and y
axis along and perpendicular to the circumference, respec-
tively. In this coordinate system, one must rotate along the x
axis twice to come back to the initial point because of the
twisting due to the Möbius geometry. Such a path is indi-
cated in Fig. 1�b�. We denote the circumference and the
width by L and W, respectively. We further assume that the
coherence length along and that perpendicular to the circum-
ference of the strip, respectively denoted as �� and ��, are
different.

In this paper the effects of the bending, or the nonzero
curvature caused in the strip by the Möbius geometry on the
electronic properties are neglected. Namely, the Möbius ge-
ometry is taken into account only by the boundary condition.
Although these effects may be important in case of uncon-
ventional pairing, such as p-wave superconductors,12 they
may be neglected for s-wave superconductors, which we
treat in this paper.

In addition, we assume that the magnetic field is applied
in the direction shown in Fig. 1�a� and the flux exists only
inside the ring. The situations change if the magnetic field is
applied in other directions because of the complicated three-
dimensional structure of the Möbius strip. Some related
problems are studied by Vodolazov and Peeters in the case of
“eight figure” rings.13

The equilibrium states of SC Möbius strip depends on the
magnetic flux � threading the ring. The SC Möbius strip
shows the so-called Little-Parks oscillation of the transition
temperature with a period �0, as we naively expect from the
analogy to the ordinary rings. However, it turned out that the
oscillation can be appreciably modified in SC Möbius strip
depending on the strength of the anisotropy of the coherence
lengths.

The analysis of Ref. 5 shows that there are two important
parameters, which are given by

r� =
���0�

W
, r� =

���0�
L

, �1�

where ���0� and ���0� are the coherence lengths at absolute
zero temperature �T=0�.

It has been shown that when the condition � /2�3r� �r�

is satisfied, the phase diagram in a magnetic field behaves
like the one shown in Fig. 2�a�, which is basically the same

FIG. 1. �Color online� �a� Geometry of SC Möbius strip where
an AB flux is threading the ring. The “x axis” and the “y axis”
indicate the direction of the orthogonal coordinated set on the strip.
�b� A figure obtained by cutting and spreading the Möbius strip on
a flat surface. The points A and B are identified with C and D,
respectively. The dashed line indicates a closed path along the x
axis, which winds twice in the direction of the arrows before com-
ing back to the initial point.

FIG. 2. Phase diagram of a superconducting Möbius strip in the
presence of a AB flux with �a� �r� /2�3�r� and �b� �r� /2�3
�r�.
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as that for the ordinary ring. Here Tc is the transition tem-
perature in the bulk and the index n indicated in the figure
denotes the winding number of the phase as we go around
the ring once along a trajectory parallel to the edge. When

�

2�3
r� � r� �2�

is satisfied, states characteristic to the Möbius geometry ap-
pear when the number of the flux quantum threading the ring
is close to a half-odd integer, as shown in Fig. 2�b� by
hatched regions. These states are indexed with a half-odd
integer n and the phase of the order parameter changes by an
odd number times � as we go around ring once. The spatial
dependence of the order parameter is shown in Fig. 3, where
the real part, the imaginary part, and the amplitude are
shown for n=1/2 case. It is clear that the order parameter
has a real-space node in the middle of the strip. Therefore we
call these states the “nodal states.” The nodal states can exist
above t1 shown in Fig. 2�b�. Here t1 is given by

t1 = 1 − � 3�2

4�2

r�
2

r�
�2

�3�

as one can see from the results in Ref. 5.
The results of Ref. 5 are obtained by comparing the free

energies of the several possible states, which are chosen em-
pirically. Therefore it is not easy to say that there are no
states with lower free energies. Of course, it is impossible to
investigate all possible order parameter configurations. How-
ever, more reliable analysis, which can cover wider range of
the configuration space is required. In this paper, to fulfill
this requirement, we perform numerical study on GL theory,
which is given in Sec. III.

The analysis of Ref. 5 is limited to the phenomenological
one. Since the nodal state is also interesting from electronic
points of view, more microscopic study is required. We solve
BdG equations on the Möbius strip numerically and clarify
the electronic bound state near the node of the nodal state.
This will be given in Sec. IV.

III. NUMERICAL STUDY BASED
ON GINZBURG-LANDAU THEORY

In this section, we study the SC state on the Möbius strip
numerically using the GL theory. Here we employ nonlinear
optimization method �quasi-Newton method� to find the local
minimum state of the GL free energy.14

GL free energy F of our system is given as follows:

F = d�	 d2r�
 �2

2m*��� �

�x
− i

2�

�0
Ax���2

+ 	2�� �

�y
− i

2�

�0
Ay���2 + 
0�t − 1����2 +

�

2
���4� .

�4�

The integral is over the flat two-dimensional area of Fig. 1�b�
and the vector components of A� �r�� are defined in the same
coordinate system. The constants m* ,�0=hc / �2e� are the

mass of a Cooper pair �twice the electron mass� and the
magnetic flux quantum, respectively. The thickness of the
strip d� is much smaller than the SC coherence length and

the strip can be treated as two dimensional. ��r�� and A� �r�� are
the SC order parameter and the vector potential, respectively.
t=T /Tc is the reduced temperature. 
0 and � are positive
constants, and 	=�� /�� is the anisotropy parameter.

FIG. 3. �a� Real part, �b� imaginary part, and �c� amplitude of
the order parameter in the nodal state.
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Here we should note the setting of the vector potential.

The AB flux is incorporated by taking A� =� /Le�x, where e�x is
the unit vector in x direction. This comes from the fact that
the following relation should be satisfied:

�
C2

A� · dr� = 2� , �5�

where C2 means that the integral is carried out along a closed
loop on a Möbius strip, such as the one shown in Fig. 1�b�,
which winds twice.

For numerical calculations we introduce the lattice ver-
sion of F as

F = F0
�
j=1

Nx

�
k=1

Ny

�̃2���̃�j,k��2 + ��̃�j + 1,k��2 − �̃*�j,k��̃�j + 1,k�

�e−iãx − c.c.� + 	2�
j=1

Nx

�
k=1

Ny−1

�̃2��̃�j,k� − �̃�j,k + 1��2

+ �
i=1

Nx

�
j=1

Ny ��t − 1���̃�j,k��2 +
1

2
��̃�j,k��4� , �6�

where ãx=2�dAx /�0 , �̃=���0� /d , ���0�=��2 /2m*
0 and d
is the lattice spacing. Here the lattice is assumed to be a
square one. Note that Nxd=L and Nyd=W. F0 is V0
2 /�

where V0=d2�d�. The order parameter �̃ is normalized so

that �̃→1 as t→0.
In order to incorporate the Möbius geometry, we put

�̃�Nx + 1,k� = �̃�1,Ny + 1 − k� �7�

�1kNy� in the first two lines of Eq. �6�.
The order parameter �̃�j ,k� minimizing F is obtained by

solving the equation

�F

��̃*�j,k�
= 0, �8�

which yields

�̃2�− �̃�j + 1,k�e−iãx − �̃�j − 1,k�eiãx − 	2�̃�j,k + 1�

− 	2�̃�j,k − 1� + 2�1 + 	2��̃�j,k�� + �t − 1��̃�j,k�

+ ��̃�j,k��2�̃�j,k� = 0. �9�

We obtained the solution of Eq. �9� in terms of the non-
linear optimization of the free energy Eq. �6�. In this paper
we especially utilized the so-called quasi-Newton method.14

Like other methods of nonlinear optimization, quasi-Newton

method starts from an initial value of �̃ and changes it so that
the free energy becomes lower until finally we reach the
local minimum. Therefore which local minimum we reach

depends on the initial value of �̃. In this paper we randomly
chose the initial values and performed optimization as many
times as possible. Then we obtained several local-minimum
states. These procedure is the same as the one adopted in
Refs. 10 and 11.

The results are as follows. The system size we used is
Nx=10, Ny =10, �0=1.5d, and ��=1.2d.

First we discuss the phase diagram. The numerically ob-
tained free energy is shown in Fig. 4 using the log scale: we
have shown only the region with F�0 and log�F� is plotted
as a function of � and T. We can see from this figure that the
structure corresponding to the nodal state appears near �
=�0 /2 �shown by bold arrows�. Actually, the order param-
eter in this region behaves like that shown in Fig. 3.

In Fig. 5, we have depicted the free energies of the meta-
stable states at three different temperatures ��a� t=0.78, �b�
t=0.5, and �c� t=0.1�. We clearly see three distinct series of
states in each graph. The branch which starts from �=0 cor-
responds to the state with a uniform order parameter

FIG. 4. �Color online� The free
energy of the most stable state as a
function of T and �. Around �
��0 /2 a structure corresponding
to the nodal state can be seen. The
vertical axis is the logarithm of
the �F� and the region with �F�
�10−5 near Tc has been cutoff.
The free energy is measured in the
unit of F0.
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�=�const.� and that ends at �=�0 corresponds to the state
with �=�const.��ei2�x/L. Between these two branches, a
branch corresponding to the nodal state can be seen. At t
=0.78 and t=0.5, the nodal state has the lowest free energy
near ���0 /2. However, at t=0.1, although the nodal state
is still a metastable state, there is no region where the nodal
state is the most stable. These features agree with the predic-
tion of Ref. 5.

IV. NUMERICAL STUDY BASED
ON BOGOLIUBOV–DE GENNES THEORY

In order to study the s-wave SC state on a Möbius strip
microscopically, we treat a tight-binding model on a square
lattice with attractive on-site interactions. The Hamiltonian
of the system is given by

H = − tx�
j�

�ei�xcj+x̂,�
† cj,� + e−i�xcj,�

† cj+x̂,�� − ty�
j�

�cj+ŷ,�
† cj,�

+ cj,�
† cj+ŷ,�� − V�

j

nj↑nj↓ − ��
j�

cj,�
† cj,�, �10�

where cj� is the annihilation operator of electron at the site j
with spin ��=↑ , ↓ �. V��0� and � are the strength of the
attractive interaction and the chemical potential, respectively.

j= �jx , jy� �1 jxNx ,1 jy Ny� numbers the sites, where
Nx and Ny are the numbers of sites along the x and y axis,
respectively, and x̂= �1,0� , ŷ= �0,1�. nj�=cj�

† cj� is the elec-
tron number operator. The transfer integrals in x and y direc-
tion are denoted as tx and ty, respectively. The Peierls phase
�x= �� /Nx��� /�0� represents the effect of the AB flux �
threading the Möbius strip. To realize the Möbius geometry
we put

c�Nx+1,jy�,� = c�1,Ny−jy+1�,�. �11�

The interaction term is decoupled within a mean-field ap-
proximation as

nj↑nj↓ → � jcj↓
† cj↑

† + � j
*cj↑cj↓ − �� j�2 �12�

with � j ��cj↑cj↓� being the SC order parameter. Then the
mean-field Hamiltonian is written as

HMFA = �
j

�
k

� j
†hjk�k, �13�

where

hjk = �Wjk Fjk

Fjk
* − Wjk

, � j � �cj↑

cj↓
†  �14�

with

Wjk = − tx�ei�x�k,j+x̂ + e−i�x�k,j−x̂� − ty��k,j+ŷ + �k,j−ŷ� − �� jk,

Fjk = − � j� jk. �15�

By solving the following BdG equation:

�
l

hjl�uln

vln
� = En�ujn

v jn
� �16�

we can obtain the energy eigenvalues En and the correspond-
ing eigenfunctions �ujn ,v jn�, where n is numbering the states.
The unitary transformation using �ujn ,v jn� diagonalizes
HMFA, and the SC order parameter � j can be written in terms
of En and �ujn ,v jn�. These constitute the self-consistency
equations which will be solved numerically. In the following
we take the parameters as:

tx = 1.0, ty = 0.49, � = 0, T = 0.22, V = 0.25. �17�

First we estimate the correlation lengths, ���0� and ���0�,
by calculating the anomalous Green’s function F�j�
��ck↓ck+j↑� at T=0 without applying the magnetic flux, and
the results are depicted in Fig. 6. �This calculation has been
carried out in a larger system with 100�100 sites using
periodic boundary condition for both x and y directions.�
From the results in Fig. 6 and the relation F�j�
�exp�−�j� /�� , ���0� and ���0� are estimated as

���0� = 2.37d, ���0� = 0.64d , �18�

where d is the lattice spacing.
The calculation in the Möbius geometry is carried out for

a system with Nx=13 and Ny =14. Putting L=13d and W
=14d, we obtain r� =0.18 and r�=0.046. These values satisfy
the condition, Eq. �2�. Furthermore, t1 is estimated to be −13,

FIG. 5. The free energy of the metastable states as a function of
� for �a� t=0.78, �b� t=0.5, and �c� t=0.1. The branches corre-
sponding to the nodal states are indicated by bold arrows in every
graph. They become the most stable state when t=0.78 and 0.5 for
a certain region of �. When t=0.1 there is no stable region for the
nodal state.
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which means that the nodal state is stable at all temperature
range down to 0 K. In passing, the bulk Tc of this system is
0.358 �estimated numerically in the system with 100�100
sites�, which coincides with that in 13�14 system with �
=0 within numerical accuracy.

In this calculation, we limited ourselves to the case of the
nodal state at �=�0 /2. Since this microscopic calculation
needs more time to obtain good convergence as compared to
the GL calculation, we have selected for the initial order
parameter the solution obtained by the GL analysis, such as
the one depicted in Fig. 3. After the calculation, the behavior
of the order parameter has not changed so much and we
considered that the iteration converged to the nodal state.
The local density of states �LDOS� is calculated from the
equation

N�j,E� = −
1

�
Im�

n

ujn
* ujn

E − En + i�
, �19�

where � is the broadening of the single energy level, intro-
duced to simulate the actual experiment. The result is shown
in Fig. 7 with �=0.03. Each line of Fig. 7 corresponds to the
LDOS at j= �1, jy� where jy numbers the chain from the edge
of the strip. �The LDOS is independent of jx.� Because of the
inversion symmetry with respect to the center, we depicted
LDOS only for 1 jy 7, where jy =1 and jy =7 correspond
to the outermost and the innermost chain, respectively.

In Fig. 7, a well-developed gap behavior can be seen for
1 jy 5 and the bound states are formed in the chains jy
=6 and 7. These bound states originates from the node. Since
the node can be regarded as the spontaneously formed �
junction �as one can see from Fig. 3, the phase of the order
parameter changes by � in crossing the node�, the bound
state energy is expected to be zero. However, in Fig. 7, the
deviation from zero energy is seen. The phase variation
along the node line, which does not exist for the ordinary
Josephson junctions, may be important for this phenomenon.
We have confirmed numerically that the deviation is smaller
for the systems with larger circumferences and thus it is
likely to be a finite-size effect. This point will be discussed in
detail in a separate paper.15

V. DISCUSSION

In this paper, by using the numerical methods, we have
confirmed that the predictions of Ref. 5 are satisfied within
both GL and BdG level. Until now, we have limited our
discussion to purely two-dimensional cases. This is not the
case for actually synthesized Möbius crystals.4 Here we dis-
cuss the effects of the finite thickness of the strip. If the
Möbius strip is thicker than the SC coherence length, the
nodal state may no longer be stable and the node, which is
obtained under the assumption that the gap is uniform in the
direction of the thickness, may become a vortex line embed-
ded inside the strip. Then there is no gapless region on the
surface. In this case, we cannot observe the node by only
measuring the surface density of states by scanning tunneling
microscope. Even then the observation of the nodal state
may be possible through measurement of the variation of the
gap or the magnetization as a function of the magnetic flux.
More precise analysis on the thicker Möbius strips is left for
the future study.

In Sec. III, we have calculated the free energies not only
of the equilibrium state but also of the metastable states. The
metastable states do not appear in the thermodynamic equi-
librium, though they play important roles in actual experi-
ments in which one sweeps the magnetic flux.16–19 As shown
by the previous studies, when we change the magnetic flux

FIG. 6. The anomalous correlation function �ck↓ck+j↑� for the
system with the parameters in Eq. �17�. �a� and �b� correspond to
the correlation in the x and y direction, respectively. The equations
in the figures are the approximating lines to the exponential decay.

FIG. 7. The local density of state in the nodal state on the
Möbius strip
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the state of the system remains in one of the metastable states
and it does not switch to another lower-energy state until the
initial state finally becomes unstable. Although there may be
an effect of thermally assisted tunneling, such effects are
limited to the very vicinity of the critical temperature. From
these we point out a possibility that the nodal state may not
appear at all in the field sweep experiment even though it can
be a true equilibrium state for some values of the flux. This is
understood from Fig. 8�a�, where the free energy for t=0.5
and the time evolution of the system under a field sweep

process are shown. The bold curves show the free energies of
the metastable states and the equilibrium state at t=0.5. The
branch corresponding to the nodal state is indicated by a
bold arrow. The dashed and dotted curves show the time
evolution of the system in up-sweep and down-sweep experi-
ment, respectively, where it is assumed that the transition
between different branches are prohibited by the energy bar-
rier except when the system comes to the end of a branch. In
this case, although the nodal state can be a true equilibrium
state, it does not appear during the field sweep process. In
contrast to this, the nodal state appears during the field
sweep process at t=0.78, as shown in Fig. 8�b� �only the
up-sweep process is indicated�. Because of these reasons, the
observability of the nodal state in the field-sweep experiment
may be further limited to the region in the vicinity of the
critical temperature. More precise numerical simulations are
required to clarify these dynamical processes quantitatively,
which are left for future studies.

VI. SUMMARY

In this paper, we have investigated the superconducting
states on a Möbius strip in terms of the numerical analyses
based on Ginzburg-Landau and Bogoliubov–de Gennes
theory. It has been shown that in the Möbius geometry a
nodal state can appear both in equilibrium and metastable
states. The experimental observability of the nodal states is
discussed based on the findings.
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