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Thermodynamic properties of the multiband superconductor MgB, have often been described using a simple
sum of the standard BCS expressions corresponding to o- and 7r bands. However, it is a priori not clear if this
approach is working always adequately, particularly in cases of strong interband scattering. Here we compare
the often used approach of a sum of two independent bands using BCS-like a model expressions for the
specific heat, entropy, and free energy to the solution of the full Eliashberg equations. The superconducting
energy gaps, the free energy, the entropy, and the heat capacity for varying interband scattering rates are
calculated within the framework of two-band Eliashberg theory. We obtain good agreement between the
phenomenological two-band « model with the Eliashberg results, which delivers the theoretical verification to
use the @ model as a useful tool for a reliable analysis of heat capacity data. For the thermodynamic potential
and the entropy we demonstrate that only the sum over the contributions of the two bands has physical

meaning.
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I. INTRODUCTION

Apart from the high transition temperature of 40 K,! two-
band superconductivity was the other unexpected phenom-
enon in MgB, which attracts increasing attention. Histori-
cally, two-band superconductivity has already been
investigated theoretically shortly after the formulation of
BCS theory. Suhl, Matthias, and Walker” suggested a model
for transition metals considering overlapping s and d bands.
At the same time, Moscalenko proposed an extension of
BCS theory for multiple bands.> A review of theoretical
treatment of the critical temperature 7. of multiband super-
conductors may be found in Ref. 4.

In the early 1960s there had been experimental claims for
the observation of two-band superconductivity in some tran-
sition metals like, e.g., V, Nb, and Ta,>° and later in oxygen
depleted SrTiO5.” Two-band superconductivity was also pro-
posed for rare earth nickel borocarbides, RNi,B,C,? and,
more recently, for the system MgNi;C.?

Until now, MgB, appears to be the system for which
multiband superconductivity has independently been evi-
denced by several experimental techniques like, for example,
heat capacity, tunneling spectroscopy, Raman spectroscopy,
penetration depth measurements, angle-resolved photoelec-
tron spectroscopy (ARPES), and the analysis of the critical
fields.!® Two-band superconductivity in MgB, was proposed
by Shulga et al.'® based on the idea of coupling to phonons
and additionally to an unknown low energy boson mode. A

1098-0121/2005/72(2)/024504(11)/$23.00

024504-1

PACS number(s): 74.25.Bt, 74.70.Ad, 74.62.Dh

full theoretical justification for two-band superconductivity
in MgB, has been given from electronic structure
calculations.!"!? These find that the Fermi surface contains
two quasicylindrical sheets corresponding to nearly two-
dimensional o bands. A three-dimensional network of the
Fermi surface is attributed to the 7 bands. It has been dem-
onstrated that the optical bond stretching E5, phonons couple
strongly to the holes at the top of o bands while the three-
dimensional 7 electrons couple only weakly to the phonons.
The different coupling strengths of the o and 7 bands lead to
superconducting gaps different in character and size.'*~'® Us-
ing linear response theory it is possible to calculate the
electron-phonon coupling (Eliashberg functions) from first
principles. The superconducting gaps obtained from Eliash-
berg theory are in very good agreement with the
experiments.'7!

Interband scattering from impurities will complicate this
picture because interband scattering leads to a decrease of T,
and finally to a single order parameter.'®->? Interband scatter-
ing is weak in MgB,,? but this is not necessarily the case in
samples in which Mg has been replaced by Al or B by C
(Refs. 24-40) or which have been exposed to neutron
irradiation.*! Such samples exhibit considerably reduced T,
while the two gaps persist even at very low critical tempera-
tures. Recently it was shown that the 7, reduction in MgB,
due to Al or C doping can be explained mainly as due to a
simple effect of band filling.*>* A similar observation has
been made using a phenomenological weak-coupling
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approach.** Further, the doping independent = gap in
C-doped MgB, can be understood as due to a compensation
of band filling and interband scattering effects.

Thermodynamic properties of anisotropic superconduct-
ors in the weak coupling regime were extensively studied in
the past. In the case of weak anisotropy the BCS model was
extended by Pokrovsky.* It was shown that the specific heat
jump at T, is reduced as compared to the isotropic case. For
two-band weakly coupled superconductors the specific heat
was calculated by several authors**-’ (for a recent review
see also Ref. 58). The main prediction is that at T, the rela-
tive jump in the electronic specific heat, (Cy—Cy)/Cy, is
reduced as compared to the universal BCS value of 1.43. On
the other hand, for an isotropic strongly coupled supercon-
ductor the relative specific heat jump is larger than 1.43 (see,
e.g., the review in Ref. 59). The combined effect of strong
coupling and multiband anisotropy on the specific heat was
studied earlier by the present authors,'” where the results of
the first-principles calculations of the electron-phonon inter-
action in MgB, were used but the effect of interband impu-
rity scattering was not considered. Recently strong-coupling
corrections were taken into account in the so-called two-
square-well approximation (separable model),®*-%? where the
effect of interband scattering on some thermodynamic func-
tions was studied.®!-2

In the present work we formulate a generalized descrip-
tion of the thermodynamics of multiband superconductors
taking into account impurity scattering (magnetic and non-
magnetic) in the framework of two-band Eliashberg theory.
The results are applied to MgB, using the first-principles
band-structure results for the electronic spectra and electron-
phonon interaction' by extending our preceding approach.'”
The superconducting energy gaps, the free energy, the en-
tropy, and the heat capacity for varying nonmagnetic inter-
band scattering rates are calculated within the framework of
two-band Eliashberg theory. It will be shown that the expres-
sion for the thermodynamic potential on the extremal trajec-
tory corresponding to solutions of the Eliashberg equations
has the form of the sum of contributions of o and 7 bands,
but that only the total thermodynamic potential (the sum of
both contributions) has physical meaning.

In a second step, we perform a comparison of the phe-
nomenological two-band « model with the Eliashberg results
and apply a fit program developed for the e model to extract
the gaps and the Sommerfeld constants from the Eliashberg
results. Good agreement of the two band « model with the
Eliashberg data is found for the temperature dependence of
total heat capacity, the entropy, and the free energy and the
gaps. There are, however, distinct deviations in the partial
contributions to the individual quantities and the Sommerfeld
constants obtained from the fits. We conclude that the phe-
nomenological & model approach can be taken as a handy
tool to analyze, e.g., experimental heat capacity data and the
gaps to a satisfying accuracy, however that care must be
taken for other quantities.

The paper is organized as follows: In Sec. II the introduc-
tion to the formalism and the method of solution is given. In
Sec. III numerical results for the densities of states (DOS)
and various thermodynamic quantities as a function of inter-
band impurity scattering rate are discussed. In Sec. IV the
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comparison of the two-band « model with the Eliashberg
results is performed. In the Appendix a general expression
for the thermodynamic potential of a multiband supercon-
ductor with nonmagnetic impurities is derived.

II. FREE ENERGY AND ELIASHBERG EQUATIONS

A general expression for the difference of free energies
AQ=Qy—Qg in the normal (N) and superconducting (S)
state for a system with electron-phonon interaction and mul-
tiple bands can be obtained in two ways: One has been de-
rived by a straightforward integration over the electron-
phonon interaction constants by Golubov et al.'® The
derivation of the expression for the thermodynamic potential
for the case of nonmagnetic as well magnetic impurities is
presented in the Appendix. In terms of Matsubara frequen-
cies the () potential can be written as

2072 2
w,(Z, - 1)+ Dy,
0=0"+0f - 2772N(0)T2 ——
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where Q( is the () potential of the noninteracting electrons,
and Q(h is the ) potential of the noninteracting phonons.

For the difference of the () potentials in the normal and
the superconducting state one obtains

AQ=Qy - Qg
:—WEN(O)T E |wn|(Zﬁl1_l)
202 1]+2<I>in O Zu(Zh— 1) + P,
|wn|+\fwi( Z+ ¥ N (Z))+ @,

(1)

Z is the renormalization factor (which is unity in the weak
coupling limit) and ® is the order parameter which is con-
nected to the energy gap via AJw,)=P(w,)/Z(w,)
=®,./Z,. ZV and Z° correspond to the normal state (A=0)
and the superconducting state, respectively. The summations
in Eq. (1) are carried out over the fermionic Matsubara (tem-
perature) frequencies w,=7T(2n—1) as well as over the
band index i=0, 7. N,(0) are the partial electronic DOS’s for
the o and 7 bands at the Fermi level.

The corresponding Eliashberg equations have the follow-
ing form:

Z.

— - —____ymm
Zinw, = w, + 7T N, ) = zm =,
m,j N (ijwn) + q)jm
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FIG. 1. The Dependence of T, on the interband scattering pa-
rameter I".
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represents the electron-phonon interaction together with non-
magnetic I';; and magnetic I'}; impurity scattering terms. The
Coulomb pseudopotentlal Mij (w,) is determined at a fre-
quency . which has to be chosen much larger than the
maximal phonon frequency.

For the calculations, e.g., of the densities of states N,(w)
in the superconducting state, we need to know the renormal-
ization factors Z; and the order parameters ®; along the real
frequency axis. The corresponding analytical continuation of
Eq. (2) substituting iw,= w+i5 gives
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and n(v) and f(w’) are Bose and Fermi distribution func-
tions, respectively. Please note that the nondiagonal elements
of all functions «; (V)FU(V) MU o), I';;, and I’} have to
satisfy the requirement of the detailed balance principle

N, 0y, =N,

where N,(0) and N_(0) are the normal state bare electronic
DOS’s in the o and the 7 bands, respectively.

As has been shown in Refs. 61 and 62, for a separable
interaction \;j(@,-®,,)=\;0(wy—|w,|)O(wy—|w,|) the stan-
dard weak couplmg expressions can be obtained which cor-
respond to the two-band BCS results.

In this paper we will use the following representation of
the Eliashberg equations which is better suited for numerical
solution by iterations®

iy ) w-y
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where ®;(w) and @,(w)=Z;(w)w are the renormalized gap
function and the renormalized frequency, respectively, I';; de-
notes the impurity scattering rate within the Born approxi-
mation. The real and the imaginary parts of the Eliashberg

ai(y) %
V@i (y) - @3(y)
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FIG. 2. (Color online) The energy dependencies of the renor-

malization functions in a two-band model at 7/7,.=0.1 in the clean
limit I'=0 and for ['=50 cm™.

functions ®;(w) and @,(w) are connected by the Kramers-
Kronig relations. Hence, they have the same Fourier images.
This yields a procedure for a rapid solution. The convolution
type integrals [Egs. (5) and (6)] should be calculated by the
fast fourier transform (FFT) algorithm. The inverse complex
Fourier transformations of the results obtained give complex
values of ®;(w) and @,(w).

III. INTERBAND SCATTERING

Intraband scattering from nonmagnetic impurities does
not affect 7. and the superconducting densities of states
Ni(w), as well as the thermodynamic potentials. However,
interband scattering is expected to modify 7, and N(w)

—ReA r=0cm’ (@)

—ImaA T=0 cm’

-= ImA T=0cm” ®)
- - -Ima =50 am”
Ima, =50 e’

®(10° cm™)

FIG. 3. (Color online) The energy dependencies of the gap func-
tions obtained by using a strong coupling two-band Eliashberg
model at T/T,=0.1 in the clean limit and with ['=50 cm™".
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FIG. 4. (Color online) The evolution of the low-temperature
densities of states with the interband scattering rate I" in a strong
coupling two-band Eliashberg model at 7/7,.=0.1. The upper panel
(a) shows the superconducting DOS for the o band, the lower (b)
the same for the 7r band.

strongly. In the weak coupling regime this effect has been
demonstrated in Refs. 4, 20, and 21. In the following we will
calculate T,, the gap functions, and the superconducting
DOS by solving the nonlinear equations [Egs. (3)-(6)] for
various values of the interband nonmagnetic scattering rates
I', and I' .. For convenience, we define an interband scat-
tering parameter I in the following way: T,
=I'N(0)/N(0), T'75=I'N;(0)/Nyo;(0).

A. Gap functions and the density of states

As shown in Fig. 1, T, gradually decreases with increas-
ing I' and saturates at a value corresponding to that expected
for isotropic coupling. The initial decrease of 7, with T’
amounts to T.(I")=T.(0)=-0.10(1) K/cm™"-T".

The DOS in the superconducting state, Nj(w), is given by
the expression

Nj(w) = N(0)Re =222
VZ; (0)w® — P (w)
where N;(0) is the DOS in the normal state at the Fermi level
of the corresponding energy band. Here ®;(w)=A;(w)Z(w),
where A;(w) and Z;(w) are complex pair potentials and renor-
malization functions. Figures 2 and 3 display the Z,, ,(w) and
A, (w) as obtained from using spectral functions calculated
from first principles for the effective two-band model in
MgB,."

The results demonstrate the self-energy effects arising due
to the sizeable electron-phonon interaction in MgB,. The real
parts A, (w) and Z, (w) strongly depend on @ when
becomes comparable to the characteristic phonon frequen-
cies. The imaginary parts appearing at these energies indicate
the decay of quasiparticles due to this strong interaction. Fur-
thermore, the effects of impurity scattering are also visible as

(7
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FIG. 5. (Color online) The evolution of the superconducting
densities of states with temperature at a fixed interband scattering
rate =10 cm™ in a strong coupling two-band Eliashberg model.

additional structure at low energies comparable to the scat-
tering rate I'. This structure is particularly strong in the real
and imaginary parts of Z;(w). The latter can be seen from the
last term in Eq. (3). The impurity contribution to Im Z,(w) is
proportional to I'N;(w), where i,/ belong to different bands.

Figure 4 shows the densities of states for different mag-
nitudes of the interband scattering rate I" at low temperature
(T/T,=0.1). In the clean limit, the two bands show two dif-
ferent excitation gaps. In accordance with -earlier
calculations,?!?° the interband impurity scattering mixes the
pairs in the two bands, so that the states appear in the o band
at the energy range of the w-band gap. These states are
gradually filled in with increasing scattering rate. At the
same time the minimal 7r-band gap in the DOS raises due to
increased mixing to the o band with stronger electron-
phonon coupling. Thus the decrease in 7. is accompanied by
an increase of the minimal gap in the excitation spectrum as
has been observed by Gonnelli ez al. in Ref. 40 and theoreti-
cally supported by some of us in Ref. 42.

Figure 5 shows the evolution of the superconducting DOS
with temperature for a fixed value of the interband scattering
rate '=10 cm™!. One can see that at finite temperature the
densities of states in both bands become gapless: In addition
to the states at the energy range between the 7 band and the
o-band gap, states appear down to the lowest energies due to
thermal phonons. Such gapless behavior is most pronounced
close to T,. In the isotropic single-band superconductor, this
thermal effect in the strong-coupling regime was demon-
strated earlier in Ref. 64. Note, that the shape and tempera-
ture dependence of the superconducting DOS are very differ-
ent compared to the sum of two BCS-like densities of states.
This is particularly pronounced for the o band. Therefore,
one would expect a non-BCS temperature behavior in the
thermodynamical functions.
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FIG. 6. (Color online) Partial and total contributions to the free
energy (AQ), the entropy (AS), and the heat capacity AC/T in the
clean case.

B. Thermodynamic functions

For the numerical calculations for the free energy differ-
ence we have used Eq. (1) with parameters described in the
previous section. The difference between the normal and su-
perconducting states entropies is determined by the first de-
rivative of the difference between the normal and the super-
conducting states free energies

AS(T) = dASUT)/dT,

and the difference between the superconducting and normal
states specific heats is determined by its second derivative
with respect to temperature

AC(T) = Td*AQ(T)/dT?.

Here we note that taking derivatives from numerically calcu-
lated data (as well as from experimental ones) is often a
mathematically ill-defined or numerically unstable proce-
dure. Therefore, we used three different schemes to interpo-
late the numerical data: (a) A Chebyshev scheme to interpo-
late the free energy calculated at nonequidistant points 7;
=cos(mj/n), (j=0,1,...,n; where n=T,/AT is the number
of points) and constructing a corresponding matrix nXn
operator;% (b) a polynomial approximation which works
well for large temperatures where the densities of states are
smooth functions without square-root singularities; and (c)
an interpolation of the free energy differences by a series of
Bessel functions K;(nA/T) similar to the weak-coupling
BCS approximation (see, e.g., Ref. 66). The latter captures
the superconducting square-root features and works well at
low temperatures. The data presented below were chosen
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FIG. 7. (Color online) Total contributions to the free energy
(AQ), the entropy (AS), and the heat capacity AC/T for various
impurity scattering rates I'.

such that all three approaches gave similar results.

The specific heat jumps AC(T,) at T=T,. were determined
separately by the calculation of the coefficient g
=T.AC(T,)/2 in the term AQ(T—T,)=B(1-T/T,)>.

First, we consider the case without interband impurity
scattering (“clean” case I'=0). The expression for AQ(T)
[see Eq. (1)] consists of two terms containing N;(0), the
renormalization factor Z;, and the order parameter ®; (or the
energy gap A;=®,/Z;) for each band separately. These terms
reflect the partial contributions of each band to the total free
energy (cf. upper panel of Fig. 6). One sees that the 7 band
gives a negative contribution to the free energy over the full
temperature range. This surprising observation reflects the
fact that creation of the superconducting state in the 7 band
and, since the superconducting state in the 7 band is induced
by the occurrence of superconductivity in the strongly inter-
acting o band, costs energy.

The coupling due to the nonzero off-diagonal elements of
the electron-phonon interaction is the reason for the same
critical temperature 7, and the induced superconducting or-
der parameter in the 7 band. But the analogy to two-
independent contributions to the free energy is not fully ap-
plicable. The partial AQ;’s near T, behave as O(T.—T)
instead of AQ,, > O[(T.—T)?], according to the requirements
of a mean field theory. In the middle panel of Fig. 6 one can
further see that the entropies AS, .(7.) have finite values,
whereas only AS,,(7.) =0, as required by the third law of
thermodynamics. According to this, one has to consider only
the total thermodynamic functions as physical ones.

Effects of interband impurity scattering on thermody-
namic functions are shown in Fig. 7. The reduced specific
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FIG. 8. (Color online) solid lines Fits of the Eliashberg entropies
and the heat capacities for I'=0 (7,=39.4 K) and I'=1000 cm™
(T.=26.5 K) with the a model [Egs. (11) and (12)]. For both en-
tropy data sets ('=0 cm™' (O) and 1000 cm™' (CJ) and the heat
capacity data set with ['=0 cm™' (O) a fit with the two-band «
model was carried out. The fit of the heat capacity data for I"
=1000 cm™! (J) was performed with a single-band a-model alone.

heat jumps AC(T,)/T, at T=T, grows monotonically with
the increase of I' from 3.4 mJ mol~! K2 in the clean case'’
to 5.1 mJ mol™! K72 for I'=1000 cm™!. These values corre-
spond to ratios AC(T,)/ /(T,)T.=~ 1.05 (clean case) which is
smaller then the corresponding BCS value of 1.43 in a single
band model and 1.56 (dirty case), which is larger then this
value. At low temperatures the ratio AC(T)/T saturates to the
value limy_,o[Csc(T)/ T—C\(T) I T]==yp(T=0)=—7,(1
+N,y)=-3.24 mJ mol~! K=2 which is determined by the bare
(band) electronic specific heat capacity y,=2mk3[N,(0)
+N,(0)]/3, and the average coupling constant

N(J’(O)()\(J’(r + )\0'77) + N’IT(O)()\’ZTO' + )\7T7T)
)\av = ’
Ny(0) +N(0)

and does not depend on impurities.

IV. ELIASHBERG VERSUS TWO-BAND o MODEL

Since the two-band a model has been widely used to ana-
lyze the experimental heat capacity data of MgB, it was
interesting to see to which extent a two-gap a model can
reproduce the Eliashberg results and, if so, how the corre-
sponding parameters compare with those identified from the
Eliashberg calculations.

The « model originally introduced by Padamsee et al.,®’
in close analogy to the BCS theory, assumes a BCS tempera-
ture dependence of the superconducting gap. The magnitude
of superconducting gap at 7=0 is introduced as an adjustable
parameter « (from which the a model received its name).%’
The parameter « is defined according to
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FIG. 9. (Color online) Partial and total contributions to the free
energy (AQ), the entropy (AS), and the heat capacity AC/T in the
clean case calculated with the two-band « model.

A(T) = (o agcs) Apcs(T) (8)

with apcs=Apcs(0)/kgT.=1.764 being the weak-coupling
value of the gap ratio.

Within the scope of the @ model the free energy Fg in the
superconducting state can be written as

- 2
Og(T) = 2N(O)f de{ 2T In[1 - f(E)] - 1(E-¢)
0 2 E
A’f(E)
CE } )

with E=ve*+A? and N(0) being the electron and phonon
renormalized band-structure electronic density of states at
the Fermi energy.

We subtract the normal state contribution to the free en-
ergy which corresponds to A=0 and introduce the dimen-
sionless parameters t=T/T,, 8(t)=A(T)/Ay, and x=¢€/kgT,
and arrive at

l—f(y,a)] C1h-x?

— 2 i
AQ([)—zN(O)(kBTc)Ldx{2tln|: 1 - f(x) 2y

) aza(r)zﬂy,a)} o)

y
where y=\x’+a?8(1)%, f(y,a)=1/[1+exp(y/1)], and f(x)
=f(y,a=0)=1/[1+exp(x/1)]
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heat capacity || entropy

A, (meV)

FIG. 10. (Color online) Superconducting gaps A(0), and A(0),
as obtained from the fits of the Eliashberg entropies (O) and the
heat capacities ((J) with the two-band @ model [Egs. (11) and (12)].
Gap data gained from fits of the heat capacities for 7.<35 K were
obtained from a fit with a single one-band @ model. The (red) solid
line shows the weak coupling result Agcs=1.76 T,. The dashed
(blue) lines represent the results of the Matsubara calculations of
A (w,=7T) and A (w,=7T).

The electronic entropy in the superconducting state is ob-
tained from the first derivative of the free energy with respect
to temperature and can be written as

SO/ YT =~ (3/#)] dx{f(y,a)n f(y, @)
0

+[1=f(y,@)]In[1 - f(y,a)]} (11)

wherein the normal-state electronic specific heat capacity
(“Sommerfeld-term”) is given by y= %N(O)wzsz.

The electronic heat capacity C, is calculated from Eq.
(11) according to

Col YT, = H(dldD)Se/ YT, (12)

To compare the Eliashberg results with the two-gap «
model approximation we have developed least-squares re-
finement codes to fit the entropy [Eq. (11)] and the heat
capacity [Eq. (12)] with an « model which linearly super-
poses the contributions from the o and the 7 electronic sys-
tem. For the temperature dependence of the reduced gap
&(T)=A(T)/A(0) we adopted the tabulated values provided
by Miihlschlegel.%® For the analytical calculations we used a
polynomial fit of these data.

The heat capacity was calculated from Eq. (12) using an
appropriate numerical difference quotient as an approxima-
tion for the derivative with respect to . Integrations in Eq.
(11) were performed numerically with a Gaussian quadrature
scheme with a cutoff for x=100. Examples for the fits of the
entropy and the heat capacity for '=0 and '=1000 cm™!
corresponding to 7.=39.4 K and 7,.=26.6 K, respectively,
are displayed in Fig. 8.

In the least-squares fits we varied only «; viz. the magni-
tude of the energy gaps A;(T) and the Sommerfeld constants
v; (i=0, ). In addition, the critical temperature T, for the
two gaps was also refined. All results are compiled in Table I.
Figure 10 displays the fitted gaps versus T, viz. the interband
scattering parameter I'.
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Attempts to fit also the total energy were less successful
and provided results inconsistent with the results of the en-
tropy and heat capacity fits. In these fits we observed a ten-
dency to converge to essentially a single-band model with an
averaged gap somewhat above the weak coupling BCS result
of A(0)/kgT,=1.76. Calculations of the free energies with
the a; and v; parameters obtained from the fits to the entro-
pies and heat capacities reproduced the Eliashberg free ener-
gies equally well as obtained from the fits of Eq. (9). A closer
inspection revealed that characteristic differences for various
I' are only visible at small temperatures (<7,/5) where the
free energy levels to saturation. The fits apparently are not
sensitive enough to catch these slight deviations at a satisfy-
ing level.

Table I compiles the parameters obtained from the fits of
the entropies and the heat capacities. The results are largely
independent of whether they are obtained from fits of the
entropy or the heat capacity. In general, gaps obtained by
fitting of the entropy are closer to the Eliashberg (Matsubara)
gaps. Fits in the clean case (I'—0) readily converged with
the parameters listed in Table I. For large values of I', con-
vergence of the fits of the heat capacities with the two-band
model were less stable and fits with a single-band model in
some cases proved to be more conclusive.

In Fig. 9 we show the total and the partial contributions to
the free energy, entropy, and the heat capacity calculated
according to the a model using the fitted parameters given in
Table I for I'=0 (7,.=39.4 K). The a model describes the
total heat capacity rather well. There are subtle differences in
the partial 7 and o contributions below 7= 10 K. These dif-
ference are also reflected in the fitted ratios of the Sommer-
feld constants (vy,/7y,)s which deviates markedly from the
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ratio of the phonon renormalized Sommerfeld terms used for
the Eliashberg calculations, (y,/v,)=N,(0)/N_(0)[(1+\,,
Ao/ (TNt N )] = 1.

Naturally, since within the scope of the & model all partial
contributions are positive definite, the negative 7 partial free
energy and the sign change of the 7r partial entropy (compare
to Fig. 6) cannot be reproduced.

Finally, Fig. 10 shows the superconducting gaps as ob-
tained from the fits in comparison with the Eliashberg calcu-
lations. The agreement is fairly good for higher T,. Devia-
tions are seen for 7=33 K for the gaps gained from the fits
of the heat capacities, while the gaps received from the fits of
the entropy rather well follow the Matsubara calculations
and the merging point of both gaps at the weak coupling
value is also well reproduced.

V. CONCLUSION

In summary, using the Eliashberg approach, we have stud-
ied the behavior of the superconducting density of states,
energy gaps, free energy, entropy, and specific heat in a
strongly coupled two-band superconductor with interband
impurity scattering. We have demonstrated strong modifica-
tions of the densities of states by interband scattering and
have shown how thermal effects modify these results. We
have calculated the temperature dependencies of the free en-
ergy, the entropy and the specific heat and the specific jump
at 7. as a function of interband scattering rates and per-
formed a detailed comparison of the phenomenological two-
band a model with the Eliashberg results. We have shown
that despite strong modifications of the DOS by interband
scattering, the & model approach is sufficiently accurate and

TABLE 1. Critical temperatures T, A;, and Sommerfeld parameters vy; as obtained from least-squares fit
of the polynom interpolated Eliashberg entropies (S) and the heat capacities (C) by a two-band a model. I'
is the interband scattering parameter. The sum y=1y,+ 7y, of the fitted Sommerfeld terms was found to be
constant within 3%. For comparison the Eliashberg (Matsubara) gaps [solutions of Eq. (2)] as displayed in

Fig. 10 are listed.

T. (K) T (cm™) source AEH"‘S (meV) A, (meV) A];:T“as}' (meV) A, (meV) Yol Var
394 0 S 7.04 7.48 2.67 2.88 0.72
C 7.16 2.51 0.74
38.1 10 S 6.51 6.97 2.92 3.12 0.63
C 7.00 3.15 0.62
36.9 23.8 S 6.12 6.71 3.14 3.40 0.64
C 6.39 3.05 0.67
35.5 40 S 5.77 6.34 3.36 3.58 0.53
C 6.30 3.58 0.52
34.0 64.4 S 5.47 5.68 3.56 3.63 0.66
C 4.57 — —
32.5 100 S 5.95 5.45 1.38 0.60
C 4.51 3.57 — —
30.1 196 S 4.80 5.02 3.97 3.92 0.80
C 4.49 — —
26.6 1000 S 4.23 4.44 4.09 3.59 2.7
C 4.30 — —
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can—as a first approximation—be used to extract gap values
from experimental heat capacity or entropy data.

Interband scattering alone, however, is not sufficient to
model the decrease of T, observed for Al and C doped
samples Mg;_,Al(B;_,C,),. As demonstrated recently, the
decrease of T, can rather be understood in terms of a band
filling effect due to the electron doping by Al and C and a
concomitant scaling of the electron-phonon coupling con-
stant N by the variation of the density of states as a function
of electron doping.*> Compensation of band filling and inter-
band scattering effects shifts the merging point of the o and
7 gaps to higher doping concentrations and lower T,’s than
expected based on interband scattering considerations alone.
Only the combination of interband scattering with band fill-
ing effects allowed us to model the nearly constant 7 gap
and the decreased critical temperature and increased doping
concentrations at which the o and 7 gaps finally merge.
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APPENDIX

In order to calculate the thermodynamic potential () for a
superconductor with strong electron-phonon coupling and
nonmagnetic impurities, we use a general expression for the
electron Matsubara 2 X2 matrix Green function

ianw 7o+ £(p) 75+ D(p)H
(Z5,0,)> + £(p) + Dp)

where &(p) is the bare spectrum (p={j,p,w,}, with band
index j and momentum p). Pauli matrices 7 correspond to
Nambu space. This Green’s function obeys the Eliashberg
equations, which allows us to express the potential () di-
rectly through it as will be shown below.

The thermodynamic potential () can always be expressed
by the electron Green’s function by means of integration

Gi(p) =~ (A1)

0=00+09+ J dr f —tr(E( )G(x) - )—‘dz(x)é( )+

J f i (xdE(x)G( ))

xdE(x)
2 dx G( )) Qg})l)
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over the electron charge. Using, e.g., Eq. (16.9) from Ref. 66
one obtains

1
dx A A~ ~
Q=00+ 05+ T2 f ~ G () (Gxp) = Gio(p))]
p YO

1
d X~ A
=00 +00)+ 1> f ZulS(p)Grp)], (A2)
p Jo X

where x is a dimensionless factor. G(x, p) and S(x, p) are the
exact electron Green’s function and the self-energy for the
case when the electron charge has the value xe. G(O)(p) is the
Green’s function for zero coupling constant.

The electron-phonon contribution can be expressed in
terms of electron and phonon Green’s functions by means of
the Eliashberg equation

=T 2 S(w,p.j)ePriotm

®,,p.j=T,0

EA«(.X,ZM,r)

= 233G (x, 1), 1) 3D (1y7,1), (A3)
where D(tM,I')=g2D(0)(tM,l')+Dimp(tM,l'). D(O)(IM’I') is the
phonon Green’s function expressed in coordinate representa-
tion, —1/T<1ty,<1/T is the Matsubara time. Here we sup-
pose that the phonon Green’s function is independent of the
coupling constant in the adiabatic approximation. This is the
usual approximation, which is related to the fact that the
electron-phonon Hamiltonian contains the phonon spectrum
already renormalized due to the electron-phonon interaction
and one should not take this renormalization into account
once more. The second term corresponding to impurity scat-
tering is considered in the Born approximation, where
Dipp(tyg, 1) 2. Below we follow Ref. 69. Making use of Eq.
(A3) we can derive the simple identity

xdE(x) A xdG(x) N
o OC )) (2 dx (x)>

( S ()G (x) -

which allows us to rewrite Eq. (A2) in the coordinate repre-
sentation (r={z,,,r})

Jo 2l 32505

| 1 dG(x) 1 1 dG R R
+Q§f}l)— 2 J drf0 dxtr(T(x)G(x)) ~5 f drfo dxtr{ d)(cX) (G(_ol)_ G_l(x))}’
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we can now perform the integration over x exactly and find
after Fourier transformation the required expression

Q=0 +0 + T2 (Indet G) - f dr(In det Gq)
p

2 (GG - 1). (A4)

This expression is valid provided that the Green functions G
satisfy the Eliashberg equations.

For the difference of free energies in the S and N states we
have after the Fourier transformation

T i A oa
= > ]Gyl (G- G,

Jp,w,

det G,
AQ=T (m e—L) -
Jspsy det G;-v

(A5)

where GV is given by

GN=_ iZNm w, T+ §j(P)7A'3

T (Zhw) + E(p)

Equation (A5) is the sum of the Green’s function in different
bands. Finally AQ can be expressed as

PHYSICAL REVIEW B 72, 024504 (2005)

<ﬁwy+ﬁm+ﬁ}
Q=-T 1 n I n

ZS w, +(Z; ' w,)* + O?
T jn
*'§%[<M»+g@+

72V + (Z%wn)2 ]

jn—"n
( jnwn)z + gf(p)

After integration with respect to the momentum we obtain
the expression

||

AQ=-27T> N, (@[\fm

j W,

1Z500,]]

[eoc] S 2 2 2
VARG Z w,)" + D7
+7TT§ Nj(O){ n 2 ( ) [

J,w, \’(Z w)2+(1)12n
2V + (Z w, )2}

jn~n

| jnwn|

This expression does not contain any impurities directly. The
effect of infraband impurities cancels from Egs. (3)—(7).
Also Z5, ZV, and @ do not depend on intraband scattering,
however these functions are dependent on interband impu-
rity scattering.”!

The final answer is the expression given in Eq. (1)

AQ=-aT ZN(O)I w,| - |w,|

j=o,m n=—w,
2( )% - 2wﬁ+2CD]2»n (Z3w,) -2 o +CI>2

in%n n%n
2 s 2
)2+(I)jn V(Z w)2+®jn

Iwnl (20,
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