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We have measured the conductance and shot noise of superconductor-normal metal �S-N� junctions between
a niobium �Nb� film and a two-dimensional electron gas �2DEG�, formed in an InAs-based semiconductor
heterostructure. Adjacent to the junction, the 2DEG is shaped into a sub-micrometer beam splitter. The current
shot noise measured through one arm of the beam splitter is found to be enhanced due to Andreev reflection.
Both noise and conductance measurements indicate that the Nb-2DEG interface is of high quality with a
transparency approaching �60–70 %. The present device can be seen as a quasi-ballistic S-N beam-splitter
junction.
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I. INTRODUCTION

Shot-noise measurements provide a powerful tool to study
charge transport in mesoscopic systems.1 Whereas resistance
measurements yield information on the average probability
for the transmission of electrons from source to drain, shot
noise provides additional information on the electron transfer
process, which cannot be obtained from resistance measure-
ments. For instance, the charge of quasiparticles can be ex-
tracted from shot-noise measurements, an experiment that
was applied to the fractional quantum Hall regime.2–4 Shot
noise also provides information on the statistics of the elec-
tron transfer. In general, the fermionic nature of the particles
lead to a suppression of the shot noise from its classical
value SI=2e�I�, corresponding to Poissonian statistics �SI is
the power-spectral density of current fluctuations in units of
A2s�. Suppression can also be induced by Coulomb interac-
tion, which was observed in the single-electron tunneling
regime.5 That shot noise can be fully suppressed in an open
channel was confirmed in quantum-point contacts.6,7 In a
general conductor, the suppression is not full, but depends on
the actual distribution of transmission eigenvalues.8–10 For
example, shot noise is suppressed to 1/3 in a disorder
wire11–16 and to 1/4 in an open cavity.17–20 For a recent re-
view, see Ref. 21.

Different to mesoscopic devices with normal electron res-
ervoirs, shot noise can be enhanced in devices with super-
conducting leads by virtue of the Andreev reflection process
taking place at the interface between a normal metal and a
superconductor.22–29 In some limiting cases, e.g., in the tun-
neling and disordered limit, the shot noise can be doubled
with respect to its normal state value.8,30–34

In addition to measure shot noise in a two-terminal geom-
etry, multiterminal fluctuation measurements have been
proposed.35 Whereas shot noise corresponds to the autocor-
relation of fluctuations, cross-correlation measurements of
fluctuations between different leads provide a wealth of new
experiments. As pointed out by Büttiker, exchange correla-

tions can, for example, be measured directly.35 In an attempt
to go beyond conventional shot-noise measurements, corre-
lation measurements36,37 on electron beam splitters38 were
studied. The partitioning of a “stream” of ferminons in a
beam splitter results in negative correlations between the
fluctuations measured on the two output ports �antibunch-
ing�. In contrast, bunching-like behavior �positive correla-
tion� has theoretically been predicted in multiterminal de-
vices in which at least one electrode is a superconductor.39–42

In the subgap region, charge is injected from the supercon-
ducting lead into the device in correlated pairs of electrons,
which—in the simplest picture—may separate in the normal
scattering region and exit at two different leads. As a conse-
quence, the current in the exit leads fluctuate in parallel.
However, it has been pointed out that this picture is mislead-
ing, in particular in the regime where the superconductor is
strongly coupled to the normal region. In this case, the nor-
mal region should rather be viewed as a proximity-induced
superconductor.43 Positive correlations have not been ob-
served in mesoscopic devices until today.

Finally, we mention that the experimental quest for posi-
tive correlations is also important for the new field of quan-
tum computation and communication in the solid state,44,45 in
which entangled electrons play a crucial role. A natural
source of entanglement is found in superconductors in which
electrons are paired in a spin-singlet state. A source of en-
tangled electrons may therefore be based on a superconduct-
ing injector.42,46–54 Even more so, an electronic beam splitter
is capable of distinguishing entangled electrons from single
electrons.55,56

Motivated by all this theoretical work, we decided to fab-
ricate superconductor-normal metal �S-N� devices composed
of a superconducting injector �Nb� into a high-mobility
InAs-based two-dimensional electron gas �2DEG�,57–62 in
which beam splitters can be fabricated. In this paper, we
focus on the fabrication of such devices in Sec. II and their
electrical characterization in terms of linear and nonlinear
resistance in Sec. III A, as well as shot noise in Sec. III B.
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The shot noise of the current from the superconductor to one
of the normal reservoirs is enhanced for bias currents corre-
sponding to voltages below the superconducting gap of the
Nb contact. This enhancement is due to Andreev reflections
at the superconducting contact and disappears in a magnetic
field higher than the critical field of Nb. Using the coherent
scattering theory, we extensively compare our measurements
with different models in Sec. IV. Our devices can best be
described as composed of a highly transparent S-N interface
in series with a short scattering region, whose size L is com-
parable to the elastic mean-free path le.

II. EXPERIMENT

The InAlAs/ InGaAs heterostructure was grown by mo-
lecular beam epitaxy on a Fe-doped semi-insulating InP sub-
strate. The 2DEG is confined in a 4 nm wide InAs quantum
well 35 nm below the surface of the heterostructure, see Ref.
57 and Fig. 1�a� for details. The substrate is first structured
into a 50 �m wide Hall bar �MESA� by wet etching. Hall
and Shubnikov-de Haas measurements �Fig. 1�b�� then yield
an electron density of ne=2.1·1016 m−2 and a mobility of
�=5.0 m2/Vs for the 2DEG, corresponding to a Fermi
wavelength of �F=18 nm and an elastic mean-free path of
le=1.2 �m.

The Nb electrode is defined by electron beam lithography
at one side of the MESA. First, the MESA is etched in the
patterned electrode area to a depth of �50 nm. Then, the
sample is mounted in an evaporation chamber and rf-sputter
cleaned. Without breaking the vacuum, an 80 nm thick Nb
film is subsequently deposited at an angle of 30 deg to the

horizontal. After liftoff, a 50 �m wide superconductor-
2DEG contact is obtained. A cross section through such a Nb
contact is schematically shown in Fig. 1�a�.

E-beam lithography is now used to reduce the macro-
scopic superconductor-2DEG contact to submicron dimen-
sions, see Fig. 1�c�. This is achieved by etching trenches into
the heterostructure to a depth of 60 nm below the surface,
removing the conducting InAs quantum well. Three trenches
are etched, two vertical ones and one horizontal one, which
start at the nanometer-sized contact in front of the supercon-
ductor and extend across the whole MESA. The vertical
trenches have a width of about �100 nm and are placed
parallel and as close as possible to the Nb interface at a
distance of less than 50 nm. The three-terminal junction con-
sist thereafter of a 300�350 nm square area in the 2DEG
which is bound on one side �350 nm wide� by the edge of the
superconductor and the other side by two constrictions lead-
ing to two macroscopic normal electron reservoirs. The con-
strictions have a nominal width w of 170 nm, corresponding
to N=2w /�F�19 conducting channels. This part can be
viewed as a beam splitter for charge carriers �Cooper pairs in
the superconducting state�, injected from the Nb contact.

Many samples were fabricated and electrically analyzed
with qualitatively identical results. In the following, we
present the data of one sample, which was measured in a 3He
cryostat with a base temperature of 270 mK. Though corre-
lation measurements are the long term goal of this work, we
decided to focus on two-terminal shot-noise measurements
first as schematically shown in Fig. 1�c�, because the mea-
surement signal �for technical reasons� is much higher in this
type of measurement as compared to correlation measure-
ments. The sample is current biased through a 1 M� series
resistor thermally anchored at the 1 K pot of the cryostat.
The current is determined by the dc bias voltage U, on which
a small ac voltage is superimposed in order to measure the
differential resistance dV /dI. All measurement lines are fil-
tered at low temperature by lossy microcoax cables and ad-
ditional � filters are used at room temperature. Two ultra-
low-noise amplifiers �LI-75, NF Corp., Yokohama, Japan�
with a fixed gain of 100, followed by two low-noise ampli-
fiers �Stanford SR560, operated at a nominal gain of 10 or
100�, are used to measure the voltage fluctuations across the
sample in parallel. All amplifiers are operated at room tem-
perature and powered by independent sets of batteries to
minimize cross talk. The voltage signals from the amplifiers
are then cross correlated by a spectrum analyzer �HP
89410A�. This cross-correlation technique63 can eliminate
�or greatly reduce� the voltage noise contributions due to the
two amplifiers, because they ought to fluctuate in an uncor-
related manner.

In order to measure shot noise, which is a frequency-
independent contribution, one has to ensure that 1 / f noise
can be neglected at the highest bias currents. As a conse-
quence, we have measured the noise at rather large frequen-
cies f around 50–200 kHz. In this window, 1/ f noise can be
neglected up to the highest currents of �2 �A. Due to ca-
pacitances in the whole circuit including the measurement
lines, the signal is damped. The overall gain, including the
frequency-dependent attenuation, has to be carefully cali-
brated for each device separately. This is done by measuring

FIG. 1. �a� Schematic side view of the Nb contact to the InAs
semiconductor heterostructure and the corresponding energy band
diagram. �b� Longitudinal �Rxx� and Hall �RH� resistance measured
on this heterostructure. �c� SEM picture of a sample �top view� with
a diagram of the measurement setup. The sample is current biased
through a series resistor and the voltage fluctuations are measured
with the aid of two sets of amplifiers whose outputs are cross cor-
related. S denotes the power spectral density in units of V2/Hz.
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the equilibrium voltage noise �i.e., the thermal noise�, given
by SV=4kBTR, as a function of temperature T, as shown in
Fig. 2�a�. Here, kB is the Boltzmann constant and R is the
linear-response sample resistance �more precisely, the paral-
lel connection of the sample resistance with the series bias-
ing resistor�. The measured voltage noise SV1,V2

, including
the amplifier noise, can be written as �see Fig. 1�c��

SV1,V2
= A���R2�SI + SI,off� + SV,off. �1�

Here, SI is the current noise of the sample, which in the
calibration procedure is of thermal origin only, i.e., SI
=4kBT /R. SI,off denotes the current noise offset of the two
LI-75 amplifiers. This contribution cannot be eliminated by
the cross-correlation scheme. We also find a nonzero voltage
noise offset SV,off accounting for residual cross talk between
the amplifiers, possibly due to spurious ground currents. The
nominal overall gain of either 103 or 104 of the amplifiers has
been divided off in the above Eq. �1�. Hence, all the quanti-
ties refer to “input” noise. Finally, A��=2�f� denotes the
frequency-dependent attenuation factor.

A typical calibration measurement at f =110 kHz is
shown in Fig. 2�a�. The attenuation A at this frequency is
obtained from the slope of SV�T� and the residual amplifier
noise from the vertical offset of the fitted linear dependence
extrapolated to T=0.64 The attenuation was measured for dif-
ferent devices with varying resistances R, ranging between
�1.5 and �2.5 k� and frequencies in the range of 50 to
�200 kHz. A��� for a set of devices is shown in Fig. 2�b� to
follow the expected damping for a simple �RC� network, i.e.,
A���= �1+ ��RC�2�−1. The extracted capacitance of C
=840 pF is mainly due to the filtering of the wires �micro-
coax filters� and the two input capacitances of the amplifiers.

The noise offset Soff, extracted from the calibration proce-
dure, typically amounts to 1 ·10−19 V2 s. The current noise of
a single LI-75 amplifier is specified to be 	2·10−28 A2 s and
independently measured to be 	8·10−28 A2 s, corresponding
to a voltage noise of 	3.2·10−21 V2 s for a single amplifier
on a typical sample resistor of R=2 k�, or to

	6.4·10−21 V2 s for two amplifiers in parallel. The offset
current noise of the amplifiers is therefore at least an order of
magnitude smaller than the measured offset and can there-
fore not account for it. Hence, the dominating part of the
measured offset is caused by residual voltage fluctuations
and we set the amplifier current offset to zero in the follow-
ing. The voltage noise floor of a single LI-75 amplifier is
specified to be 1.4·10−18 V2 s and independently measured
�short circuit input� to be 2.5·10−18 V2 s, a value which is
substantially larger than the measured offset noise after the
cross correlation. The cross correlation technique therefore
reduces the voltage fluctuations of the amplifiers by as much
as a factor of 25.

The deduced calibration parameters are then used to ex-
tract the intrinsic current shot-noise SI generated in a
superconducting-2DEG junction from the measured noise
SV1,V2

using Eq. �1�. It is important to emphasize that R in Eq.
�1� has to be replaced by the differential resistance dV /dI for
the nonequilibrium measurement. This is crucial, because of
the nonlinear current-voltage characteristic of these devices.

III. RESULTS

We measured the linear-response resistance R as a func-
tion of temperature T, the differential resistance dV /dI, and
the spectral density of the voltage fluctuations �the noise� as
a function of bias current I, both at T=270 mK. We focus
first on the resistance and then on the noise measurements.

A. Resistance measurements

Figure 3 shows the temperature dependence of the linear-
response resistance R measured from the superconductor to
one of the normal reservoirs, as schematically shown in Fig.

FIG. 2. �a� Example of a measurement of the equilibrium �ther-
mal� voltage noise �spectral density SV� versus temperature T used
to deduce the calibration parameters. Here, the frequency and
sample resistance were f =110 kHz and R�2 k�, respectively. The
thermal noise is linearly dependent on T and the slope �Ref. 64�
yields the attenuation factor A of the signal. �b� The attenuation A as
a function of �R follows the dependence expected for a simple RC
network, i.e., A���= �1+ ��RC�2�−1.

FIG. 3. Temperature dependent resistance R�T�. Circles corre-
spond to the measurements, whereas the curves are calculated using
the BTK model together with a classical series resistor RS=0
�solid�, RS=500 �dashed�, and RS=1000 � �dotted�. 
 was fixed to
1.14 meV and the barrier transparency ��0.72 and channel num-
ber N�9 were deduced so that the theoretical R�T� matches the
experiment one in the normal state and the superconducting state at
the lowest temperature. The inset shows the superconducting tran-
sition of the Nb film measured with two probes on a structured
device. The transitions of the Nb film and the submicron Nb contact
are marked by arrows.
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1�c�. Above T=7.5 K, the resistance is constant, whereas it
varies nonmonotonically below. R first drops abruptly below
7.5 K, has a minimum at �6 K and then starts to increase for
lower temperatures. At the lowest temperature, R is �8%
higher than R�T�7.5 K�. The drop at 7.5 K is identified with
the superconducting transition temperature Tc of the junc-
tion. The superconducting transition of the Nb film was also
measured via two contacts bonded to the Nb electrode of the
actual device. We found Tc=8.5 K �inset of Fig. 3�. A sup-
pression of Tc in a film from its bulk value of 9.5 K is
commonly observed, as is a similar suppression of Tc in mi-
crofabricated structures. The relative modest suppression of
�1 K is in agreement with previous work, see for example
Ref. 27.

The nonmonotonic temperature dependence, which we
observe in Fig. 3, suggests that the superconductor-2DEG
interface has an intermediate transparency. This is qualita-
tively deduced by referring to the Blonder-Tinkham-
Klapwijk �BTK� model of a superconductor-normal metal
junction.65 In this model scattering is exclusively taking
place at the junction interface described by a single param-
eter, which is the transmission probability �transparency� of
the junction. This situation is referred to as the clean or bal-
listic junction limit �also the BTK limit�, as opposed to the
case in which additional scattering in the normal part of the
junction is introduced. If the junction has a low transparency
�tunnel junction�, the resistance is expected to increase expo-
nentially fast at low temperature. On the other hand, if the
junction has a very high transparency, R decreases monotoni-
cally to reach half of its normal state value at the lowest
temperature. We neither see an exponential increase, nor a
monotonic decrease of R, suggesting intermediate transpar-
ency.

In the following, if we refer to the normal state resistance
RN, we mean R��8 K�, and if we refer to the resistance in
the superconducting state RS, we mean R�270 mK�.

The measured normal-state resistance RN of this device
equals 2.13 k�. It is straightforward to compare the corre-
sponding normal-state conductance GN=RN

−1 with the Land-
auer formula,66 i.e., with GN= �2e2 /h�N�, where N is the
number of eigenchannels with nonzero transmission eigen-
values Tn and � the mean value of Tn. Taking N to be 19, as
determined from the geometrical width of the constrictions,
yields ��0.32 as the average transmission coefficient of the
entire device. The resistance can have contributions from
both the superconductor-2DEG interface and the point con-
tacts to the normal reservoirs. Therefore, ��0.32 must be
seen as a lower bound for the S-N interface transparency.
This will be studied in greater detail in Sec. IV.

In Fig. 3 are also shown calculated curves of R�T� which
were matched to agree simultaneously with RN and RS. The
solid curve corresponds to the BTK model for a junction
transparency of 72%. The minimum of R�T� is much more
pronounced in the calculated curve. In an attempt to account
for additional scattering, for example, at the constrictions of
the beam splitter, a classical series resistor was added
�dashed and dotted curves�. This clearly improves the overall
matching, but strong deviations remain close to Tc. We men-
tion that similar resistance values and temperature dependen-

cies were measured for several other samples.
We also measured the differential resistance dV /dI, which

is shown as a function of voltage V in Fig. 4. What actually
was measured is dV /dI as a function of bias current I. This
data was converted to the displayed voltage dependence by
integration. Similar to the temperature dependence, dV /dI
has a nonmonotonic dependence. It first drops for increasing
voltage and shows a minimum �a dip� before increasing
again at higher voltages. The dip occurs close to the gap
value 
 of the superconductor. 
 is estimated from the ap-
parent transition temperature Tc=7.5 K of the junction using
the zero-temperature BCS relation 
=1.76kBTc, yielding 

=1.14 meV �black arrows�. The agreement is even better if
we use instead of the BCS factor of 1.76 for the ratio 
 /kBTc
the factor 1.9, which is the reported ratio for bulk Nb. This
yields 
=1.23 meV �open arrows�. Similar to R�T�, we used
the BTK model to calculate the differential resistance, which
is shown as a solid curve. The dashed and dotted curves
correspond as before to the BTK model including a classical
resistor in series. The theoretical curves display very pro-
nounced dips at ±
, which are apparently strongly damped
in the measurements. Unlike in the temperature dependent
case, i.e., R�T�, the series-resistor model improves the agree-
ment only marginally. In particular the strong dips are not
removed.

B. Shot-noise measurements

We measured the shot noise from the superconductor to
one of the normal reservoirs of the submicrometer beam
splitter as schematically shown in Fig. 1�c�. The measure-
ment yields SV1V2

=SV as a function of bias current I. To
obtain the intrinsic current noise SI�I� of the junction, Eq. �1�
is applied using the calibration parameters as we have de-
scribed it in the experimental part of Sec. II. The result is
shown in Fig. 5. It corresponds to the same sample, for
which R�T� and dV /dI�V� have been shown in Figs. 3 and 4,
respectively.

FIG. 4. Voltage dependent differential resistance dV /dI�V� mea-
sured at T=270 mK. Circles correspond to the measurements,
whereas the curves are calculated using the BTK model together
with a classical series resistor RS=0 �solid�, RS=500 �dashed�, and
RS=1000 � �dotted�. The parameters are similar to the ones used in
Fig. 2. The full arrows point to the gap value 
 estimated from the
transition temperature Tc using the standard BCS relation 

=1.76kBTc, whereas the open arrows point to 
=1.9kBTc, where the
factor 1.9 is known for bulk Nb.
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The full temperature and voltage dependence of the
power-spectral density SI of the current fluctuations can only
be expressed in a simple analytical form for a junction with
a constant channel transmission coefficient T. It is given by35

SI =
4�1 − F�kBT

R
+ F · 2eI coth	 eV

2kBT

 , �2�

where F is known as the Fano factor and equals 1−T.
Noise measurements are generally analyzed in two limit-

ing cases: �a� for small applied voltages eVkBT, for which
SI equals the Johnson-Nyquist equilibrium noise �the thermal
noise� 4kBT /R, and �b� for large applied voltages eV�kBT,
for which a linear dependence of SI�I� is expected. In the
limit of shot noise, i.e., the latter case, SI=F ·2eI and it is the
Fano factor F, which is the central parameter that is deduced
from such measurements.1,5,7 F=1 for a junction in which all
channels have low transmission eigenvalues, i.e., in tunnel
junctions.5 In electronic devices in which charge is trans-
ported by single electrons alone, the Fano factor can in gen-
eral be written as F=�nTn�1−Tn� /�Tn, which is always
smaller or at most equal to one. Hence, the suppression of
shot noise in mesoscopic devices has been a central focus of
research during recent years. For a review we refer to Refs. 1
and 21. In contrast to “normal” conducting devices, enhance-
ment of shot noise has recently been found in superconduct-
ing devices, in �S-I-S� �Ref. 22� and S-N junctions,30,31 as
well as in superconducting S-N-S links.27,28 The two extreme
cases of S-N junctions are the tunnel junction and the ballis-
tic junction. In the former, the noise in the superconducting
state is doubled �FS=2� as compared to the normal state
�FN=1�.22,31 In the latter, shot noise disappears completely,
i.e., FS=FN=0.

The doubling of the shot noise in the superconducting
state may be interpreted as being caused by the effective
charge e� of the charge carriers,8,24,31–33 which are Cooper
pairs with e�=2e, provided the temperature and the applied
voltage are sufficiently small. One has to emphasize that the
doubling of the shot noise is not generic.46 For a single chan-
nel S-N junction with transparency T, the ratio of the Fano

factors in the superconducting and normal state equals
FS /FN=8/ �2−T�2, which is always larger than 2. It only
equals 2 in the tunneling regime. If there are many channels
with a distribution of eigenvalues Tn, there is a doubling
from FN=1/3 to FS=2/3 in the diffusive case,30,34,67 but
FN=1/4 �Refs. 18 and 20� increases to FS=0.604 in case of
an open chaotic cavity with a superconducting and normal
terminal. The ratio in this case is FS /FN=2.4. Whereas the
doubling of shot noise in S-N devices has been stressed and
confirmed in the tunneling and diffusive regime, a ratio of
FS /FN�2, which should be the rule rather than the excep-
tion in few-channel conductors, has not been reported before.

The measured shot noise in Fig. 5 clearly displays two
regimes in which SI�I� is nearly linear. In the low-current
�low-voltage� regime, the slope is larger than in the high-
current �high-voltage� regime. The crossover on the positive
�I�0� and negative �I	0� side of the curve occurs at �0.62
and �−0.78 �A, corresponding to a voltage of �1.3 and
�−1.5 mV, in reasonable agreement with the value of the
superconducting gap parameter 
 /e=1.23 mV �open ar-
rows�, which we have deduced before. The agreement is
good on the positive side, but somewhat off on the negative
side, where the crossover appears to be shifted to a larger
value. Asymmetries in the crossover as well as in the Fano
factors were seen in other samples too. The low- and high-
bias slopes are identified with FS �low currents� and FN �high
currents�. We deduce FS=0.58±0.10 and FN=0.25±0.04
�average of slopes for I	0 and I�0�. We note that the val-
ues of the Fano factors are considerably suppressed as com-
pared to the case of a weakly transparent S-N junction. We
also see that the experimental results yields a ratio of the
Fano factors FS /FN=2.3, which is indeed larger than two.

In contrast to conductivity measurements, from which the
average transmission probability can be deduced, measure-
ments of the shot noise provide insight into the actual distri-
bution of the transmission eigenvalues, which helps to find
the correct description of the scattering problem of the actual
device. By making use of all measured parameters, the resis-
tance in the normal and superconducting state, as well as FS
and FN, different models will be compared in detail in the
last section.

Finally, shot noise measurements were also performed in
a perpendicular magnetic field B, see Fig. 6. It is seen that
the separation in two regimes, characterized by distinct Fano
factors, disappears around B=3T, corresponding to the criti-
cal field of the Nb contact, which was measured indepen-
dently. Figure 6 also shows that not only the Fano factor FS
in the superconducting state is suppressed, a decrease,
though a smaller one, is also observed in the normal state for
FN. The origin is likely due to magnetic-field induced sup-
pression of backscattering in the semiconductor nanostruc-
ture, a well-known phenomenon in mesoscopic physics.68

This observation proves that scattering is taking place within
the beam splitter in zero magnetic field adding up with the
finite transparency of the superconductor-2DEG interface to
the whole scattering problem. If we assume that ideally
transmitting edge states have formed at the highest field, the
superconductor-2DEG interface would have to account for
the remaining Fano factor of FN=0.16 alone, yielding a
transparency of as much as T=1−FN=0.84 in a single chan-

FIG. 5. Power spectral density SI of the current noise of a sub-
micrometer S-N junction as a function of applied current I. SI is
extracted from the measured voltage noise SV1,V2

between the su-
perconductor and one of the normal reservoirs �see Fig. 1�c�� ac-
cording to the Eq. �1�. A clear crossover from a large Fano factor FS

at small bias currents to a reduced Fano factor FN for large currents
is observed. This crossover coincides with gap 
 of the supercon-
ductor �open arrows�.
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nel model. From reference transport measurements on Hall
bars we know that the longitudinal resistance of the 2DEG
displays pronounced magnetic-field-induced oscillations
�Shubnikov-de Haas oscillations� for B�3T. Though the re-
sistance minima do not yet reach zero, clear quantum Hall
plateaus are discernible, see Fig. 1�b�. At 4 T, for example,
the Hall measurements show that ten Landau levels are oc-
cupied. Hence, the number of edge channels is already
smaller than the number of transporting channels in zero
magnetic field, which was estimated from the width of the
constrictions to be 19. Since, transport follows the edges in
the quantum Hall regime, the 84% transmission at the S-N
interface must be seen as an upper bound for the respective
transmission probability in zero magnetic field.

In order to deepen our understanding of both the resis-
tance and the shot noise data, we need to thoroughly com-
pare our data with a model consisting of a S-N contact with
finite transparency to which an additional scattering region is
added.

IV. DISCUSSION AND MODELING

We compare the data of one device with a set of models.
These models are schematically shown in Fig. 7. Figure 7�a�
is the wire model with a fixed number of channels N. Ideal
contacts are assumed for the superconductor on the left and
normal metal on the right side. The barrier, which may form
in the processing of the Nb contact to the InAs 2DEG is
captured by a tunneling barrier with transparency �. A dis-
ordered region, parametrized by its length L and elastic scat-
tering mean-free path le, can be included. Figure 7�b� is the
cavity model. Here, both sides can have different numbers of
channels. This is in fact closer to the real device geometry
where the contact on the Nb side is wider than the constric-
tions at the Y branch. The contact on the right is always
assumed to be “open,” meaning that its conductance is equal
to NG0, where G0=2e2 /h is the quantum conductance,
whereas there may be a tunneling barrier in the left contact in

order to model the effective transparency of the N-S contact.
In the following when we refer to “the normal state” we
consider the N-N case in which the superconductor is in the
normal state. Similarly, when we refer to “the superconduct-
ing state” we consider the S-N case. Note that in contrast to
the real device all the models have two terminals only. This
simplification is likely to introduce deviations, because the
open third terminal will add dephasing. However, neglecting
dephasing �relaxation in general� facilitates the comparison
with theory greatly. Now, we can use the machinery of me-
soscopic physics to calculate the conductances and shot-
noise Fano factors in the normal and superconducting state.
It is one of the great hallmarks of mesoscopic physics that
these quantities can be calculated in the coherent transport
regime if the distribution ��T � of transmission eigenvalues T
for the particular device is known.

At zero temperature T=0 the respective equations for the
conductances G�N,S� and shot-noise powers S�N,S� in the nor-
mal �N� and superconducting �S� state are69

GN = G0N�
0

1

dT��T �T , �3�

GS = G0N�
0

1

dT��T �
2T 2

�2 − T �2 , �4�

SN = S0N�
0

1

dT��T �T �1 − T � , �5�

SS = S0N�
0

1

dT��T �
16T 2�1 − T �

�2 − T �4 , �6�

where S0=2eVG0 and N is the total number of conducting
channels in the system. Even more so, general concepts have
been developed allowing to calculate the distribution func-
tion ��T � for all models shown in Fig. 7.70

The result of this comparison is summarized in Table I. In
the following we will go sequentially through the models and
discuss the assumptions and results. We focus on the quanti-
ties G�N,S� and F�N,S� at zero temperature. In case of the sim-
plest models we will also compare with the full temperature

FIG. 6. Fano factors versus perpendicular magnetic field B
�symbols�. The dashed curves are guides to the eyes. As B is in-
creased, the enhancement of the Fano factor in the superconducting
relative to the normal state �i.e., the ratio FS /FN� diminishes and
fully disappears for B�3 T. Note, that FN also slightly decreases as
the field increases. Inset: The power spectral density SI of the cur-
rent noise as a function of the bias current I for B=0, 1, 2, and 4 T.
The curves are shifted vertically for clarity. The crossover �arrows�
between the superconducting and normal state shifts to lower volt-
ages for increasing magnetic field as expected.

FIG. 7. Illustration of the two basic models which we have used
to analyze our data. �a� is based on a wire and �b� on a cavity. The
models are considered in different regimes, but always in the limit
of zero temperature. In �a� we distinguish between the ballistic �le

�L�, intermediate �le�L�, and diffusive �leL� regime, whereas in
�b� the cavity is assumed to be either open on both sides �no barrier�
or only open on one side with a tunneling barrier on the other side,
described by its transparency �.
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dependence of the conductance G�T� and the voltage depen-
dence of the differential conductance dI /dV�V�. The param-
eters GS and GN are deduced in the experiment from the
linear-response conductance measured at the smallest tem-
perature 270 mK and at �8 K, respectively.

The simplest possible model to compare with is a S-N
junction in which the normal part is ballistic. This problem
was considered by Blonder, Tinkham, and Klapwijk and is
known as the BTK model.65 In the BTK model of a S-N
interface, the junction is characterized by a single transmis-
sion coefficient, i.e., ��T �=��T−��. For �=1, the junction
resistance decreases with decreasing temperature and the
conductance is doubled at T=0 K due to Andreev reflection.
In the opposite limit �1, Andreev reflection is suppressed
and the resistance increases monotonically with decreasing
temperature below Tc. The comparison of the equations for
GN and GS with the experimental values yields �=0.73 and
N�9. We can now use these two parameters to calculate the
full temperature and the nonlinear voltage dependence of the
conductance and compare both with the measurements. This
is shown in Figs. 3 and 4 where the calculated curves are the
solid ones. Figure 3 shows the temperature dependence of
the linear two-terminal resistance R�T� and Fig. 4 the differ-
ential resistance dV /dI as a function of voltage V, measured
at T=270 mK. As imposed by this procedure the measured
�circles� and calculated �solid� curves in Fig. 3 match at zero
temperature and at �or above� Tc in the normal state. Simi-
larly, the measured �circles� and calculated �dashed� curves
in Fig. 4 match at zero bias and approximately at the largest
bias voltage of �V�=4 mV at which one closely approaches
the normal state. In the intermediate temperature and voltage
regime substantial deviations are found. The theory predicts
a much larger conductance increase in the intermediate re-
gime than is seen in the experiment. This is particularly strik-
ing in the differential resistance where a strong dip �or a peak
in the conductance� is expected to occur near the supercon-
ducting gap 
.

The experimentally observed strong damping of this con-
ductance peak near the superconducting gap has also been
seen in other work.62,71 It can be caused by pair breaking due
to inelastic scattering. Even more so, the shape of the quasi-
particle density-of-state in the vicinity of ±
, which acquires

singularities in the BCS model, may strongly be damped at
the interface between the Nb and the 2DEG.62 The reason for
the latter may be a disordered interface caused by sputter
cleaning or by partial oxidation. For the former, we suspect
that the second terminal of the Y branch, which has been left
open, is a source of dephasing. Electrons at the Y branch can
scatter into the drain contact, but may also be scattered into
the third terminal, from which they are reflected back but
with unknown phase. In addition, the large deviations in the
intermediate regime may also stem from the assumed model,
which is likely to be too simple. We will come back to this
issue when we refine the model. Let us now see whether the
ballistic BTK model can capture the shot-noise results, i.e.,
the measured Fano factors. In case of an N-N barrier, the
Fano factor is given by FN=1−�. The estimated �=0.73
predicts FN=0.27, which is consistent with the measured
shot-noise Fano factor of 0.25. In the superconducting state,
however, the theory for a S-N barrier69 predicts FS=8�1
−�� / �2−��2=1.34, whereas the measured Fano factor is
substantially smaller and amounts to 0.58 only. We may also
do the reverse and deduce the transparency � from the mea-
sured Fano factors instead. FS=0.58 then implies �=0.91
which is both inconsistent with the measured Fano factor in
the normal state FN and with the temperature dependence of
the resistance in Fig. 3. Hence, the ballistic junction model
does not yield consistent values. This is not surprising, be-
cause of the structured beam splitter in front of the supercon-
ductor. Each arm of the splitter is comprised of a relatively
narrow opening. Hence, parts of the eigenchannels emanat-
ing from the Nb-2DEG interface must be back reflected at
these exit ports. This results in an additional voltage drop,
i.e., in an additional resistance. Since the sample is likely to
be coherent, this resistance cannot simply be treated as a
classical series resistor. The whole structure composed of the
S-N interface, cavity, and exit leads need to be treated as one
scattering problem. We will discuss this latter on, but still try
the classical series resistor model as an additional test case
next.

Fits to the measured two-terminal resistance R�T� and
dV /dI�V� including a classical resistor RS in series to the S-N
interface are shown in Figs. 3 and 4 for two values of RS, i.e.,
RS=500 and RS=1000 �. It turns out that if RS is increased,

TABLE I. Comparison of the measured data, i.e., the linear conductance G�N,S� and the shot-noise Fano factors F�N,S� in the normal �N�
and superconducting �S� state with various models. Schematics for the models are shown in Figs. 7�a� and 7�b�.

L le L� le L� le

Measured Ballistic �BTK� Ballistic with RS
a Diffusive Open chaotic cavity Quasi-ballistic Chaotic cavity with barrier

Fig. 7 a a a b a b

GN /G0 6.1±0.05 6.1 6.1 5.8 5.4 6.1 6.1

GS /G0 5.5±0.05 5.5 5.5 5.8 6.4 5.5 5.6

FN 0.25±0.04 0.27 0.16 0.33 0.25 0.36 0.33

FS 0.58±0.10 1.34 0.80 0.67 0.60 0.77 0.84

� 0.73 0.72 1 1 0.55 0.7

N 9 11 19b 11 17 11

aSeries resistance, RS=500�.
bThe number of channels is fixed by the geometry, i.e., N�2w /�F.
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the fit of R�T� improves in the intermediate temperature re-
gime. However, the width of the zero-bias peak in dV /dI
broadens with increasing RS, so that the agreement gets
worse here. A reasonable compromise is found for RS
=500 �. Using the conductance measurements we deduce a
junction transparency of �=0.72 and obtain for the number
of channels N�11 within this model. Because the series
resistor is a classical one it does not contribute to nonequi-
librium shot noise. In order to deduce the Fano factor the
current fluctuations SI have to be plotted versus current I. SI
is obtained from the measured voltage fluctuations by divid-
ing SV with the total resistance R=RSN+RS squared. In the
framework of this model this division is incorrect. Instead,
one should divide by RSN

2 , only. This now yields a correction
factor amounting to �1+RS /RSN�2, which has to be applied to
the measured data. For ease of comparison, we apply the
inverse 1/ �1+RS /RSN�2�0.60 to the model calculation. As a
result, the predicted Fano factor in the superconducting state
FS=0.80 is getting closer to the measured value, but FN
=0.16 is now clearly too small as compared with the mea-
sured value. Adding a classical series resistance improves
somewhat the agreement between the experiment and model
of R�T�. It also relaxes slightly the large discrepancy of the
Fano factor in the superconducting state. However, it is clear
that this model is an oversimplification, because the device is
more than just one junction with a single transparency and
the whole device, including the cavity and beam splitter
should be treated on equal footing.

A fixed transparency is a very idealized assumption, one
which never holds true in a practical multichannel device.
There are many reasons why a distribution of transparencies
has to be considered: The junction interface is never per-
fectly homogeneous, the sample has been structured and the
boundaries may be rough on the scale of the Fermi wave-
length and there are dopants within the heterostructure. It is
possible that the quality of the 2DEG was degraded near the
S-N interface during the sample processing, for example, due
to the Ar sputtering of the MESA prior to Nb deposition.62 In
addition, the narrow constrictions defining the output ports
must be seen as a scattering center. If we assume that disor-
der is substantial, we are led to the diffusive regime, which is
another limiting case contrasting with the ballistic junction
limit discussed before. For a diffusive conductor, the distri-
bution of transmission eigenvalues ��T � is given by a uni-
versal result 1 / �2sT1−T �, where s=L / le.

12 Using this dis-
tribution function yields GS /GN=1,72 FN=1/3,12 and FS
=2/3.32 As can be seen from the table, the agreement is
much better, in particular for the Fano factors, suggesting
that elastic scattering must be considered. However, the mea-
sured conductances are not equal in the normal and super-
conducting state, i.e., GS /GN=1, as predicated by this model.
Though the agreement is much better, this model is an over-
simplification too. We know that the scattering-mean-free
path in the bulk of the 2DEG is much larger than the size of
the nanostructure which is considered here. In addition, the
magnetic-field dependence of the Fano factor FN in the nor-
mal state �Fig. 6� is inconsistent with a diffusive conductor.
One should therefore rather view the device as a cavity with
three terminals: a wide Nb one, and two narrow leads defined

by the constriction. This justifies comparing our data also to
an open chaotic cavity.

We only compare our data in Table I with the symmetric
cavity, because this is suggested by the measured Fano factor
in the normal state, which is found to be close to FN=0.25. A
suppression factor of 1 /4 is the expected result for the sym-
metric open cavity.18,20,21 The distribution of transmission
eigenvalues ��T � for a chaotic cavity, contacted by two open
leads each having N ideally transmitting channels, is given
by another bimodal distribution function 1/�T �1−T �.18,69

Using Eqs. �3�–�6� yields: GN /G0=N /2, GS /G0= �2−2�N,
FN=0.25, and FS=0.6036. As can be seen from Table I, the
measured Fano factors compare very well with this model.
On the other hand, this model predicts GS�GN, whereas
GS	GN in the experiment. We mention that GS�GN also
holds if the cavity is allowed to be asymmetric. In fact,
GS /GN is minimal for the symmetric cavity and reaches the
well-known factor of two for strong asymmetries. This
shows that we cannot cure the deficiency in the conductances
between theory and model just by tuning the asymmetry
alone. In an attempt to lower GS as compared to GN we now
further try to refine our model. There are two refinements we
can consider: We may start from the “universial” diffusive
case and ask the question what happens if the elastic scatter-
ing mean-free path le is increased up to the point when le
becomes of the order of the device size. Second, we may add
additional scattering by adding a barrier to one side of the
open cavity.

We first consider the “quasi-ballistic” case studied by de
Jong and Beenakker.32,69 In their model of a S-N device, a
tunnel barrier is inserted �which may be used to model the
quality of the contact itself� in series to a disordered region
of length L in which the elastic scattering length is le. de
Jong and Beenakker were able to study the crossover from
the ballistic to the diffusive regime for an arbitrary ratio of
s=L / le. We have already considered the limiting cases s=0,
which is the ballistic BTK limit, and the universal diffusive
case s→�. Interesting for us is the intermediate case s�1,
which can be computed for both the normal and the super-
conducting state using the scaling theory of the generalized
conductance.32,67 The numerical calculation yields �=0.55
and N=17 for s�1. de Jong and Beenakker also showed that
the shot noise power can vary between zero and twice the
Poisson value, depending on the junction parameters.32 Us-
ing �=0.55 and N=17, we obtain for the Fano factors FN
=0.36 and FS=0.77.

In view of the real device geometry, a refinement of the
open cavity model is appealing too. The real device is asym-
metric in that the width of the contact at the Nb side is wider
than the constrictions at the exits. In addition, there is likely
a barrier at the interface of the 2DEG and the supercon-
ductor, the transparency of which has been denoted by � in
the previous models. The simplest way to calculate ��T � is
to apply circuit theory70 to the series connection of a tunnel
junction with a quantum-point contact �QPC�. The tunnel
junction is the element at the Nb side. It is parameterized by
its conductance Gt. The QPC models the narrow constriction
on the right side. It is parameterized by its conductance G
= �2e2 /h�N, i.e. by the number of �open� channels. Though �
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does not appear in the model explicitly �only the ratio G /Gt
enters�, it can be extracted from the fitted value which we
obtain for Gt. Gt can be expressed as G0�NwS /wN, where
wS,N is the width of the 2DEG at the S and at the N side,
respectively. In trying to find the best match, we fix the con-
ductance in the normal state to the measured value and vary
N to get the best agreement with all measured parameters.
This approach yields N=11, �=0.7, FN=0.33, and FS=0.84.

Let us summarize the results of all the models. One may
say that none yields perfect agreement in all four measured
parameters, i.e., GN ,GS ,FN, and FS. The most realistic ones
in terms of the actual geometry, i.e., the quasi-ballistic and
cavity with barrier models, yield reasonable agreement in all
parameters. The Fano factors are predicted to be slightly
larger than measured. In fact, this trend holds true for all
models considered. The measured Fano factors are system-
atically smaller. We suspect that the origin for this discrep-
ancy is found in the third terminal, i.e., the second outgoing
lead of the Y branch, which was left open in the measure-
ments of the conductance and noise. Electrons entering into
this lead will relax and thermalize before being re-injected
into the device again. Relaxation in general reduces shot
noise.35,73–76 With regard to the number of channels the dif-
ferent models predict N=9,… ,17 for the channel number in
the constriction. This is in fair agreement with an estimate of
the channel number based on the lithographic width and the
Fermi wavelength, yielding N�19. It is quite reasonable that
the channel number deduced electrically turns out to be
somewhat smaller, because of depletion in the vicinity of the
MESA after etching.

V. CONCLUSIONS

In summary, we have realized a mesoscopic
superconductor-normal beam splitter geometry in a solid
state hybrid system and characterized its electrical properties
using two-terminal measurements. We can account for both
the conductance and shot noise data by modeling the device
as a highly transparent S-N interface connected in series with
a “short” scattering region, which is in the quasi-ballistic

transport regime. The scattering region is formed by the cav-
ity in the 2DEG between the S-N interface and the two con-
strictions forming the electron beam-splitter. The shot noise
measured across the superconductor and one arm of the
beam splitter is enhanced relative to the normal state. The
respective Fano factors are in reasonable agreement with the
Landauer description �scattering problem� of coherent trans-
port. In particular the ratio of the Fano factors FS /FN is ex-
perimentally found to be larger than two, showing that the
doubling of shot noise is not a generic property of S-N de-
vices. Residual deviations, in particular in the vicinity of the
gap energy in the differential conductance measurements, are
likely due to relaxation, a source of which is the second arm
of the beam splitter which was left open in the reported ex-
periments. Current fluctuations can be suppressed by an extra
terminal, even in the absence of a net �average� current.

Our devices are very well suited to explore positive
cross-correlations,39 as have recently been predicted in sev-
eral theoretical papers.39–42,49,50 Of these theoretical treat-
ments, Ref. 42 is in closest correspondence with our experi-
ments. In Ref. 42, an electron cavity is connected to one
superconducting and two normal leads via point contacts.
Positive correlations are predicted to appear for a dominant
coupling to the superconducting lead. The devices which we
have studied in this work have roughly similar couplings to
the S and N leads. In the next step, one has to make use of
the ability of semiconductors to tune the transparency of the
constrictions with additional electrodes �split gates�, which
can be fabricated self-aligned with the etched trenches. This
would greatly help in the search for positive correlations in
solid-state nanostructures.
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